{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T15:29:37Z","timestamp":1742398177853,"version":"3.37.3"},"reference-count":165,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2023,1,25]],"date-time":"2023-01-25T00:00:00Z","timestamp":1674604800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Association of Universities for Research in Astronomy, Inc. (AURA)","award":["NASA contract NAS5-26555"]},{"DOI":"10.13039\/100026928","name":"international Gemini Observatory","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100026928","id-type":"DOI","asserted-by":"crossref"}]},{"name":"NSF\u2019s NOIRLab"},{"name":"AURA"},{"name":"NSF"},{"name":"Gemini Observatory partnership"},{"name":"National Science Foundation (NSF, United States)"},{"DOI":"10.13039\/501100000046","name":"National Research Council (Canada)","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100000046","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Agencia Nacional de Investigaci\u00f3n y Desarrollo (Chile)"},{"name":"Ministerio de Ciencia, Tecnolog\u00eda e Innovaci\u00f3n (Argentina)"},{"name":"Minist\u00e9rio da Ci\u00eancia, Tecnologia"},{"name":"Inova\u00e7\u00f5es e Comunica\u00e7\u00f5es (Brazil)"},{"name":"Korea Astronomy and Space Science Institute (Republic of Korea)"},{"DOI":"10.13039\/100013757","name":"STScI","doi-asserted-by":"crossref","award":["GO-10782","GO-14661","GO-16913"],"id":[{"id":"10.13039\/100013757","id-type":"DOI","asserted-by":"crossref"}]},{"name":"NASA Solar System Observations program","award":["80NSSC21M0344","80NSSC18K1001","80NSSC19M0189"]},{"name":"NASA Juno Participating Scientist program","award":["17-JUNOPS17_2-0048","80NSSC19K1265","17-JUNOPS17_2-0031"]},{"DOI":"10.13039\/100026928","name":"international Gemini Observatory","doi-asserted-by":"crossref","id":[{"id":"10.13039\/100026928","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Jupiter\u2019s atmospheric water abundance is a highly important cosmochemical parameter that is linked to processes of planetary formation, weather, and circulation. Remote sensing and in situ measurement attempts still leave room for substantial improvements to our knowledge of Jupiter\u2019s atmospheric water abundance. With the motivation to advance our understanding of water in Jupiter\u2019s atmosphere, we investigate observations and models of deep clouds. We discuss deep clouds in isolated convective storms (including a unique storm site in the North Equatorial Belt that episodically erupted in 2021\u20132022), cyclonic vortices, and northern high-latitude regions, as seen in Hubble Space Telescope visible\/near-infrared imaging data. We evaluate the imaging data in continuum and weak methane band (727 nm) filters by comparison with radiative transfer simulations, 5 micron imaging (Gemini), and 5 micron spectroscopy (Keck), and conclude that the weak methane band imaging approach mostly detects variation in the upper cloud and haze opacity, although sensitivity to deeper cloud layers can be exploited if upper cloud\/haze opacity can be separately constrained. The cloud-base water abundance is a function of cloud-base temperature, which must be estimated by extrapolating 0.5-bar observed temperatures downward to the condensation region near 5 bar. For a given cloud base pressure, the largest source of uncertainty on the local water abundance comes from the temperature gradient used for the extrapolation. We conclude that spatially resolved spectra to determine cloud heights\u2014collected simultaneously with spatially-resolved mid-infrared spectra to determine 500-mbar temperatures and with improved lapse rate estimates\u2014would be needed to answer the following very challenging question: Can observations of deep water clouds on Jupiter be used to constrain the atmospheric water abundance?<\/jats:p>","DOI":"10.3390\/rs15030702","type":"journal-article","created":{"date-parts":[[2023,1,25]],"date-time":"2023-01-25T09:54:41Z","timestamp":1674640481000},"page":"702","source":"Crossref","is-referenced-by-count":12,"title":["Deep Clouds on Jupiter"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-2804-5086","authenticated-orcid":false,"given":"Michael H.","family":"Wong","sequence":"first","affiliation":[{"name":"Center for Integrative Planetary Science, University of California, Berkeley, CA 94720, USA"},{"name":"Carl Sagan Center for Research, SETI Institute, Mountain View, CA 94043, USA"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9679-4153","authenticated-orcid":false,"given":"Gordon L.","family":"Bjoraker","sequence":"additional","affiliation":[{"name":"NASA Goddard Space Flight Center, Code 693, Greenbelt, MD 20771, USA"}]},{"given":"Charles","family":"Goullaud","sequence":"additional","affiliation":[{"name":"Center for Integrative Planetary Science, University of California, Berkeley, CA 94720, USA"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4434-2307","authenticated-orcid":false,"given":"Andrew W.","family":"Stephens","sequence":"additional","affiliation":[{"name":"Gemini Observatory, NSF\u2019s NOIRLab, Hilo, HI 96720, USA"}]},{"given":"Statia H.","family":"Luszcz-Cook","sequence":"additional","affiliation":[{"name":"Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027, USA"},{"name":"American Museum of Natural History, New York, NY 10024, USA"}]},{"given":"Sushil K.","family":"Atreya","sequence":"additional","affiliation":[{"name":"Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-4278-3168","authenticated-orcid":false,"given":"Imke","family":"de Pater","sequence":"additional","affiliation":[{"name":"Center for Integrative Planetary Science, University of California, Berkeley, CA 94720, USA"}]},{"given":"Shannon T.","family":"Brown","sequence":"additional","affiliation":[{"name":"Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA"}]}],"member":"1968","published-online":{"date-parts":[[2023,1,25]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1016\/0019-1035(86)90135-1","article-title":"Clouds, aerosols, and photochemistry in the Jovian atmosphere","volume":"65","author":"West","year":"1986","journal-title":"Icarus"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"780","DOI":"10.1016\/j.icarus.2010.08.013","article-title":"The haze and methane distributions on Neptune from HST-STIS spectroscopy","volume":"211","author":"Karkoschka","year":"2011","journal-title":"Icarus"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"759","DOI":"10.1016\/j.icarus.2011.06.010","article-title":"Neptune\u2019s cloud and haze variations 1994-2008 from 500 HST-WFPC2 images","volume":"215","author":"Karkoschka","year":"2011","journal-title":"Icarus"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.icarus.2016.04.032","article-title":"Retrieving Neptune\u2019s aerosol properties from Keck OSIRIS observations. I. Dark regions","volume":"276","author":"Adamkovics","year":"2016","journal-title":"Icarus"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"e07189","DOI":"10.1029\/2022JE007189","article-title":"Hazy Blue Worlds: A Holistic Aerosol Model for Uranus and Neptune, Including Dark Spots","volume":"127","author":"Irwin","year":"2022","journal-title":"J. Geophys. Res. Planets"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"498","DOI":"10.1016\/j.pss.2004.04.002","article-title":"Jupiter\u2019s ammonia clouds\u2014Localized or ubiquitous?","volume":"53","author":"Atreya","year":"2005","journal-title":"Planet. Space Sci."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.icarus.2011.06.032","article-title":"Vertical structure of Jupiter\u2019s Oval BA before and after it reddened: What changed?","volume":"215","author":"Wong","year":"2011","journal-title":"Icarus"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"084501","DOI":"10.1103\/PhysRevLett.111.084501","article-title":"Three-Dimensional Vortices Generated by Self-Replication in Stably Stratified Rotating Shear Flows","volume":"111","author":"Marcus","year":"2013","journal-title":"Phys. Rev. Lett."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.icarus.2014.02.030","article-title":"Neptune\u2019s global circulation deduced from multi-wavelength observations","volume":"237","author":"Fletcher","year":"2014","journal-title":"Icarus"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1016\/j.icarus.2018.04.009","article-title":"Vertical wind shear in Neptune\u2019s upper atmosphere explained with a modified thermal wind equation","volume":"311","author":"Tollefson","year":"2018","journal-title":"Icarus"},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Bjoraker, G.L., Wong, M.H., de Pater, I., Hewagama, T., and \u00c1d\u00e1mkovics, M. (2022). The Spatial Variation of Water Clouds, NH3, and H2O on Jupiter Using Keck Data at 5 microns. Remote Sens., 14.","DOI":"10.3390\/rs14184567"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"e06655","DOI":"10.1029\/2020JE006655","article-title":"Aerosols in Exoplanet Atmospheres","volume":"126","author":"Gao","year":"2021","journal-title":"J. Geophys. Res. Planets"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"E04004","DOI":"10.1029\/2005JE002556","article-title":"Vertical wind shear on Jupiter from Cassini images","volume":"111","author":"Li","year":"2006","journal-title":"J. Geophys. Res. Planets"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1016\/j.icarus.2016.12.014","article-title":"A possibly universal red chromophore for modeling color variations on Jupiter","volume":"291","author":"Sromovsky","year":"2017","journal-title":"Icarus"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1006\/icar.2000.6527","article-title":"Reconciling Galileo Probe Data and Ground-Based Radio Observations of Ammonia on Jupiter","volume":"149","author":"Dunn","year":"2001","journal-title":"Icarus"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/j.icarus.2004.04.010","article-title":"Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter","volume":"171","author":"Wong","year":"2004","journal-title":"Icarus"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"5317","DOI":"10.1002\/2017GL073159","article-title":"The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data","volume":"44","author":"Li","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"609","DOI":"10.1038\/s41550-020-1009-3","article-title":"The water abundance in Jupiter\u2019s equatorial zone","volume":"4","author":"Li","year":"2020","journal-title":"Nat. Astron."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1146\/annurev.astro.46.060407.145222","article-title":"The Chemical Composition of the Sun","volume":"47","author":"Asplund","year":"2009","journal-title":"Annu. Rev. Astron. Astrophys."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"A141","DOI":"10.1051\/0004-6361\/202140445","article-title":"The chemical make-up of the Sun: A 2020 vision","volume":"653","author":"Asplund","year":"2021","journal-title":"Astron. Astrophys."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1442","DOI":"10.1029\/2002JA009418","article-title":"Possible in situ tests of the evolution of elemental and isotopic abundances in the solar convection zone","volume":"107","author":"Turcotte","year":"2002","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"202","DOI":"10.3847\/1538-4357\/835\/2\/202","article-title":"A New Generation of Standard Solar Models","volume":"835","author":"Vinyoles","year":"2017","journal-title":"Astrophys. J."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"22831","DOI":"10.1029\/98JE01050","article-title":"The composition of the Jovian atmosphere as determined by the Galileo probe mass spectrometer","volume":"103","author":"Niemann","year":"1998","journal-title":"J. Geophys. Res."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1737","DOI":"10.1126\/science.289.5485.1737","article-title":"Nonlinear Simulations of Jupiter\u2019s 5-Micron Hot Spots","volume":"289","author":"Showman","year":"2000","journal-title":"Science"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.icarus.2005.03.004","article-title":"Water, ammonia, and H2S mixing ratios in Jupiter\u2019s five-micron hot spots: A dynamical model","volume":"177","author":"Friedson","year":"2005","journal-title":"Icarus"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1007\/s11214-017-0349-5","article-title":"MWR: Microwave Radiometer for the Juno Mission to Jupiter","volume":"213","author":"Janssen","year":"2017","journal-title":"Space Sci. Rev."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"821","DOI":"10.1126\/science.aal2108","article-title":"Jupiter\u2019s interior and deep atmosphere: The initial pole-to-pole passes with the Juno spacecraft","volume":"356","author":"Bolton","year":"2017","journal-title":"Science"},{"key":"ref_28","unstructured":"Li, C., Allison, M., Atreya, S., Bhattacharya, A., Fletcher, L., Galanti, E., Guillot, T., Ingersoll, I., Kaspi, Y., and Li, L. Jupiter\u2019s tropospheric temperature and composition revealed by the Juno Microwave Radiometer. Nat. Astron., 2022. submitted."},{"key":"ref_29","unstructured":"Steffes, P., Bolton, S., and Levin, S. (2022, January 16\u201324). Laboratory Measurements of the Microwave Opacity of Water Vapor under Temperature Conditions Characteristic of the Deep Atmopshere of Jupiter. Proceedings of the 44th COSPAR Scientific Assembly, Athens, Greece. Available online: https:\/\/ui.adsabs.harvard.edu\/abs\/2022cosp...44..550S."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1006\/icar.2002.6977","article-title":"Monte Carlo Radiative Transfer Modeling of Lightning Observed in Galileo Images of Jupiter","volume":"160","author":"Dyudina","year":"2002","journal-title":"Icarus"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"219","DOI":"10.2138\/rmg.2008.68.10","article-title":"Oxygen and Other Volatiles in the Giant Planets and their Satellites","volume":"68","author":"Wong","year":"2008","journal-title":"Rev. Mineral. Geochem."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"e06504","DOI":"10.1029\/2020JE006504","article-title":"Lightning Generation in Moist Convective Clouds and Constraints on the Water Abundance in Jupiter","volume":"126","author":"Aglyamov","year":"2021","journal-title":"J. Geophys. Res. Planets"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/0019-1035(83)90129-X","article-title":"Lightning generation in planetary atmospheres","volume":"56","author":"Levin","year":"1983","journal-title":"Icarus"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1038\/s41586-020-2532-1","article-title":"Small lightning flashes from shallow electrical storms on Jupiter","volume":"584","author":"Becker","year":"2020","journal-title":"Nature"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"e06403","DOI":"10.1029\/2020JE006403","article-title":"Storms and the Depletion of Ammonia in Jupiter: I. Microphysics of \u201cMushballs\u201d","volume":"125","author":"Guillot","year":"2020","journal-title":"J. Geophys. Res. Planets"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"579","DOI":"10.1016\/0019-1035(86)90093-X","article-title":"The gas composition of Jupiter derived from 5 micron airborne spectroscopic observations","volume":"66","author":"Bjoraker","year":"1986","journal-title":"Icarus"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"e06404","DOI":"10.1029\/2020JE006404","article-title":"Storms and the Depletion of Ammonia in Jupiter: II. Explaining the Juno Observations","volume":"125","author":"Guillot","year":"2020","journal-title":"J. Geophys. Res. Planets"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1007\/s11214-019-0631-9","article-title":"How Well Do We Understand the Belt\/Zone Circulation of Giant Planet Atmospheres?","volume":"216","author":"Fletcher","year":"2020","journal-title":"Space Sci. Rev."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"e95651","DOI":"10.1029\/2021GL095651","article-title":"Evidence for Multiple Ferrel-Like Cells on Jupiter","volume":"48","author":"Duer","year":"2021","journal-title":"Geophys. Res. Lett."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"139","DOI":"10.3847\/1538-3881\/ab3643","article-title":"First ALMA Millimeter-wavelength Maps of Jupiter, with a Multiwavelength Study of Convection","volume":"158","author":"Sault","year":"2019","journal-title":"Astron. J."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1031","DOI":"10.1126\/science.198.4321.1031","article-title":"Carbon monoxide on Jupiter and implications for atmospheric convection","volume":"198","author":"Prinn","year":"1977","journal-title":"Science"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1006\/icar.1994.1111","article-title":"Chemical models of the deep atmospheres of Jupiter and Saturn","volume":"110","author":"Fegley","year":"1994","journal-title":"Icarus"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1006\/icar.2002.6917","article-title":"Carbon Monoxide on Jupiter: Evidence for Both Internal and External Sources","volume":"159","author":"Lellouch","year":"2002","journal-title":"Icarus"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"101","DOI":"10.3847\/1538-3881\/aad186","article-title":"The Gas Composition and Deep Cloud Structure of Jupiter\u2019s Great Red Spot","volume":"156","author":"Bjoraker","year":"2018","journal-title":"Astron. J."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1088\/0004-637X\/738\/1\/72","article-title":"Quenching of Carbon Monoxide and Methane in the Atmospheres of Cool Brown Dwarfs and Hot Jupiters","volume":"738","author":"Visscher","year":"2011","journal-title":"Astrophys. J."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"A43","DOI":"10.1051\/0004-6361\/201219310","article-title":"A chemical model for the atmosphere of hot Jupiters","volume":"546","author":"Venot","year":"2012","journal-title":"Astron. Astrophys."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.icarus.2014.11.026","article-title":"New insights on Jupiter\u2019s deep water abundance from disequilibrium species","volume":"250","author":"Wang","year":"2015","journal-title":"Icarus"},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Wang, D., Lunine, J.I., and Mousis, O. (2016). Modeling the disequilibrium species for Jupiter and Saturn: Implications for Juno and Saturn entry probe. Icarus, 276.","DOI":"10.1016\/j.icarus.2016.04.027"},{"key":"ref_49","unstructured":"Hyder, A., Li, C., and Chanover, N. (2022, January 12\u201316). Hydrodynamical and Thermochemical Modeling of Jupiter\u2019s Atmosphere\u2014Constraining the Vertical Mass Transport. Proceedings of the AGU Fall Meeting, Chicago, IL, USA. Available online: https:\/\/agu.confex.com\/agu\/fm22\/meetingapp.cgi\/Paper\/1082358."},{"key":"ref_50","unstructured":"Dressel, L. (2022). WFC3 Instrument Handbook for Cycle 30 v. 14, Space Telescope Science Institute. Available online: https:\/\/ui.adsabs.harvard.edu\/abs\/2022wfci.book...14D."},{"key":"ref_51","unstructured":"Lupie, O., Hanley, C., and Nelan, J. (2000). Wide Field Camera #3 Filter Selection Process \u2014 Part II Compendium of Community Input, Space Telescope Science Institute. Available online: https:\/\/ui.adsabs.harvard.edu\/abs\/2000wfc..rept....8L."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1388","DOI":"10.1086\/379669","article-title":"The Gemini Near-Infrared Imager (NIRI)","volume":"115","author":"Hodapp","year":"2003","journal-title":"Publ. Astron. Soc. Pac."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"L63","DOI":"10.1086\/180386","article-title":"Observations of localised 5-micron radiation from Jupiter","volume":"157","author":"Westphal","year":"1969","journal-title":"Astrophys. J."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"274","DOI":"10.1016\/0019-1035(77)90159-2","article-title":"The Vertical Cloud Structure of Jupiter from 5 \u03bcm Measurements","volume":"30","author":"Terrile","year":"1977","journal-title":"Icarus"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"58","DOI":"10.3847\/1538-4365\/ab775f","article-title":"High-resolution UV\/Optical\/IR Imaging of Jupiter in 2016-2019","volume":"247","author":"Wong","year":"2020","journal-title":"Astrophys. J. Suppl. Ser."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"e88397","DOI":"10.1029\/2020GL088397","article-title":"High-Spatiotemporal Resolution Observations of Jupiter Lightning-Induced Radio Pulses Associated With Sferics and Thunderstorms","volume":"47","author":"Imai","year":"2020","journal-title":"Geophys. Res. Lett."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"968","DOI":"10.1126\/science.abf1015","article-title":"Microwave observations reveal the deep extent and structure of Jupiter\u2019s atmospheric vortices","volume":"374","author":"Bolton","year":"2021","journal-title":"Science"},{"key":"ref_58","unstructured":"Deustua, S., and Oliveira, C. (2011). 2010 STScI Calibration Workshop: Hubble after SM4. Preparing JWST, Space Telescope Science Institute. Available online: https:\/\/ui.adsabs.harvard.edu\/abs\/2010hstc.workE..22W."},{"key":"ref_59","unstructured":"Calamida, A., Mack, J., Medina, J., Shanahan, C., Bajaj, V., and Deustua, S. (2021). New Time-Dependent WFC3 UVIS Inverse Sensitivities, Space Telescope Science Institute. Available online: https:\/\/ui.adsabs.harvard.edu\/abs\/2021wfc..rept....4C."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1016\/j.icarus.2009.05.001","article-title":"Jupiter\u2019s shrinking Great Red Spot and steady Oval BA: Velocity measurements with the \u2018Advection Corrected Correlation Image Velocimetry\u2019 automated cloud-tracking method","volume":"203","author":"Marcus","year":"2009","journal-title":"Icarus"},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1006\/icar.1998.5985","article-title":"Jupiter\u2019s Cloud Structure from Galileo Imaging Data","volume":"135","author":"Banfield","year":"1998","journal-title":"Icarus"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"1541","DOI":"10.1126\/science.1079462","article-title":"Cassini Imaging of Jupiter\u2019s Atmosphere, Satellites, and Rings","volume":"299","author":"Porco","year":"2003","journal-title":"Science"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"628","DOI":"10.1038\/35001017","article-title":"Observation of moist convection in Jupiter\u2019s atmosphere","volume":"403","author":"Gierasch","year":"2000","journal-title":"Nature"},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"460","DOI":"10.1016\/j.icarus.2012.12.013","article-title":"Dynamics of Saturn\u2019s great storm of 2010-2011 from Cassini ISS and RPWS","volume":"223","author":"Sayanagi","year":"2013","journal-title":"Icarus"},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"115224","DOI":"10.1016\/j.icarus.2022.115224","article-title":"Investigating temporal changes in Jupiter\u2019s aerosol structure with rotationally-averaged 2015\u20132020 HST WFC3 images","volume":"389","author":"Fry","year":"2023","journal-title":"Icarus"},{"key":"ref_66","unstructured":"Bagenal, F., Dowling, T.E., and McKinnon, W.B. (2004). Jupiter. The Planet, Satellites and Magnetosphere, Cambridge University Press."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"306","DOI":"10.1006\/icar.1999.6195","article-title":"Galileo Images of Lightning on Jupiter","volume":"142","author":"Little","year":"1999","journal-title":"Icarus"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1088\/0004-637X\/812\/1\/55","article-title":"First Results from the Hubble OPAL Program: Jupiter in 2015","volume":"812","author":"Simon","year":"2015","journal-title":"Astrophys. J."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"4679","DOI":"10.1002\/2017GL073421","article-title":"A planetary-scale disturbance in the most intense Jovian atmospheric jet from JunoCam and ground-based observations","volume":"44","author":"Rogers","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_70","unstructured":"Rogers, J., and Mizumoto, S. (2022, January 11). Jupiter in 2022\/23: Report no.2. British Astronomical Association 2022. Available online: https:\/\/britastro.org\/section_information_\/jupiter--section--overview\/jupiter--in--2022--23\/jupiter--in--2022--23--report--no--2."},{"key":"ref_71","doi-asserted-by":"crossref","unstructured":"Brueshaber, S. (2022, January 23\u201327). Multi-Instrument Observations of a Jovian Thunderstorm from Juno and Ground-Based Telescopes. Proceedings of the EGU General Assembly, Vienna, Austria. Abstract Number EGU22-10499.","DOI":"10.5194\/egusphere-egu22-10499"},{"key":"ref_72","unstructured":"Belton, M.J.S., West, R.A., and Rahe, J. (1987, January 25\u201327). Time-Variable Nature of the Jovian Cloud Properties and Thermal Structure: An Observational Perspective. Proceedings of the Workshop on Time-Variable Phenomena in the Jovian System, Flagstaff, AZ, USA. Available online: https:\/\/ntrs.nasa.gov\/citations\/19890019103."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"927","DOI":"10.1126\/science.206.4421.927","article-title":"The Galilean Satellites and Jupiter: Voyager 2 Imaging Science Results","volume":"206","author":"Smith","year":"1979","journal-title":"Science"},{"key":"ref_74","doi-asserted-by":"crossref","unstructured":"Simon, A.A., Wong, M.H., Sromovsky, L.A., Fletcher, L.N., and Fry, P.M. (2022). Giant Planet Atmospheres: Dynamics and Variability from UV to Near-IR Hubble and Adaptive Optics Imaging. Remote Sens., 14.","DOI":"10.3390\/rs14061518"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1146\/annurev.fl.27.010195.001453","article-title":"Dynamics of jovian atmospheres","volume":"27","author":"Dowling","year":"1995","journal-title":"Annu. Rev. Fluid Mech."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"113475","DOI":"10.1016\/j.icarus.2019.113475","article-title":"Observations and numerical modelling of a convective disturbance in a large-scale cyclone in Jupiter\u2019s South Temperate Belt","volume":"336","author":"Hueso","year":"2020","journal-title":"Icarus"},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"114994","DOI":"10.1016\/j.icarus.2022.114994","article-title":"Convective storms in closed cyclones in Jupiter\u2019s South Temperate Belt: (I) observations","volume":"380","author":"Hueso","year":"2022","journal-title":"Icarus"},{"key":"ref_78","doi-asserted-by":"crossref","unstructured":"Palotai, C., Brueshaber, S., Sankar, R., and Sayanagi, K. (2023). Moist Convection in the Giant Planet Atmospheres. Remote Sens., 15.","DOI":"10.3390\/rs15010219"},{"key":"ref_79","unstructured":"Go, C., de Pater, I., Rogers, J., Orton, G., Marcus, P., Wong, M.H., Yanamandra-Fischer, P.A., and Joels, J. (2007, January 8\u201312). The Global Upheaval of Jupiter. Proceedings of the AAS\/Division for Planetary Sciences Meeting, Orlando, FL, USA. Available online: https:\/\/ui.adsabs.harvard.edu\/abs\/2007DPS....39.1909G."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"114973","DOI":"10.1016\/j.icarus.2022.114973","article-title":"A new convective parameterization applied to Jupiter: Implications for water abundance near the 24\u00b0N region","volume":"380","author":"Sankar","year":"2022","journal-title":"Icarus"},{"key":"ref_81","doi-asserted-by":"crossref","unstructured":"Foster, C., Rogers, J., Mizumoto, S., Orton, G., Hansen, C., Momary, T., and Casely, A. (October, January 21). A rare methane-bright outbreak in Jupiter\u2019s South Temperate domain. Proceedings of the Europlanet Science Congress, Online. Abstract Number EPSC2020-196.","DOI":"10.5194\/epsc2020-196"},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1038\/s41586-018-0156-5","article-title":"Prevalent lightning sferics at 600 megahertz near Jupiter\u2019s poles","volume":"558","author":"Brown","year":"2018","journal-title":"Nature"},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1007\/s11214-014-0094-y","article-title":"JIRAM, the Jovian Infrared Auroral Mapper","volume":"213","author":"Adriani","year":"2017","journal-title":"Space Sci. Rev."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"113589","DOI":"10.1016\/j.icarus.2019.113589","article-title":"Colour and tropospheric cloud structure of Jupiter from MUSE\/VLT: Retrieving a universal chromophore","volume":"338","author":"Braude","year":"2020","journal-title":"Icarus"},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"16","DOI":"10.3847\/PSJ\/abd400","article-title":"Vertical Structure and Color of Jovian Latitudinal Cloud Bands during the Juno Era","volume":"2","author":"Dahl","year":"2021","journal-title":"Planet. Sci. J."},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"114031","DOI":"10.1016\/j.icarus.2020.114031","article-title":"Color and aerosol changes in Jupiter after a North Temperate Belt disturbance","volume":"352","author":"Irwin","year":"2020","journal-title":"Icarus"},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.icarus.2018.11.018","article-title":"Analysis of Neptune\u2019s 2017 bright equatorial storm","volume":"321","author":"Molter","year":"2019","journal-title":"Icarus"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"962","DOI":"10.1126\/science.1146244","article-title":"Widespread Morning Drizzle on Titan","volume":"318","author":"Wong","year":"2007","journal-title":"Science"},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"938","DOI":"10.1016\/j.icarus.2010.03.007","article-title":"Seeing double at Neptune\u2019s south pole","volume":"208","author":"Hammel","year":"2010","journal-title":"Icarus"},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1016\/j.icarus.2010.07.027","article-title":"Persistent rings in and around Jupiter\u2019s anticyclones - Observations and theory","volume":"210","author":"Wong","year":"2010","journal-title":"Icarus"},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/j.icarus.2015.04.021","article-title":"Clouds and aerosols on Uranus: Radiative transfer modeling of spatially-resolved near-infrared Keck spectra","volume":"256","author":"Hammel","year":"2015","journal-title":"Icarus"},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"376","DOI":"10.1016\/j.icarus.2015.05.023","article-title":"Meridional variation in tropospheric methane on Titan observed with AO spectroscopy at Keck and VLT","volume":"270","author":"Mitchell","year":"2016","journal-title":"Icarus"},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"2502","DOI":"10.1364\/AO.27.002502","article-title":"Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media","volume":"27","author":"Stamnes","year":"1988","journal-title":"Appl. Opt."},{"key":"ref_94","unstructured":"McCartney, E.J. (1976). Optics of the Atmosphere. Scattering by Molecules and Particles, Wiley."},{"key":"ref_95","unstructured":"Allen, C.W. (1963). Astrophysical Quantities, University of London, Athlone Press."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"284","DOI":"10.1016\/j.icarus.2004.07.016","article-title":"Effects of Rayleigh-scattering polarization on reflected intensity: A fast and accurate approximation method for atmospheres with aerosols","volume":"173","author":"Sromovsky","year":"2005","journal-title":"Icarus"},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1016\/j.icarus.2004.08.008","article-title":"Accurate and approximate calculations of Raman scattering in the atmosphere of Neptune","volume":"173","author":"Sromovsky","year":"2005","journal-title":"Icarus"},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1006\/icar.1994.1139","article-title":"Spectrophotometry of the Jovian Planets and Titan at 300- to 1000-nm Wavelength: The Methane Spectrum","volume":"111","author":"Karkoschka","year":"1994","journal-title":"Icarus"},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1006\/icar.1998.5913","article-title":"Methane, Ammonia, and Temperature Measurements of the Jovian Planets and Titan from CCD-Spectrophotometry","volume":"133","author":"Karkoschka","year":"1998","journal-title":"Icarus"},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/j.icarus.2009.02.010","article-title":"The haze and methane distributions on Uranus from HST-STIS spectroscopy","volume":"202","author":"Karkoschka","year":"2009","journal-title":"Icarus"},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"9027","DOI":"10.1029\/90JD01945","article-title":"A description of the correlated-k distribution method for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres","volume":"96","author":"Lacis","year":"1991","journal-title":"J. Geophys. Res."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"674","DOI":"10.1016\/j.icarus.2009.07.044","article-title":"Methane absorption coefficients for the jovian planets from laboratory, Huygens, and HST data","volume":"205","author":"Karkoschka","year":"2010","journal-title":"Icarus"},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1016\/j.icarus.2017.11.031","article-title":"Analysis of gaseous ammonia (NH3) absorption in the visible spectrum of Jupiter","volume":"302","author":"Irwin","year":"2018","journal-title":"Icarus"},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"342","DOI":"10.1006\/icar.1999.6228","article-title":"Ammonia and Eddy Mixing Variations in the Upper Troposphere of Jupiter from HST Faint Object Spectrograph Observations","volume":"142","author":"Edgington","year":"1999","journal-title":"Icarus"},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.icarus.2016.03.008","article-title":"Chromophores from photolyzed ammonia reacting with acetylene: Application to Jupiter\u2019s Great Red Spot","volume":"274","author":"Carlson","year":"2016","journal-title":"Icarus"},{"key":"ref_106","doi-asserted-by":"crossref","first-page":"552","DOI":"10.1016\/j.icarus.2011.08.004","article-title":"Jovian chromophore characteristics from multispectral HST images","volume":"215","author":"Strycker","year":"2011","journal-title":"Icarus"},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.icarus.2016.02.010","article-title":"The spectrum of Jupiter\u2019s Great Red Spot: The case for ammonium hydrosulfide (NH4SH)","volume":"271","author":"Loeffler","year":"2016","journal-title":"Icarus"},{"key":"ref_108","doi-asserted-by":"crossref","first-page":"854","DOI":"10.1175\/1520-0469(1969)026<0854:MAATPS>2.0.CO;2","article-title":"Molecular absorption and the possible structure of the cloud layers of Jupiter and Saturn","volume":"26","year":"1969","journal-title":"J. Atmos. Sci."},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"390","DOI":"10.1016\/0019-1035(73)90116-4","article-title":"Methane Absorption in the Jovian Atmosphere. II. Absorption Line Formation","volume":"19","author":"Bergstralh","year":"1973","journal-title":"Icarus"},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1007\/BF00216864","article-title":"The Galileo Solid-State Imaging experiment","volume":"60","author":"Belton","year":"1992","journal-title":"Space Sci. Rev."},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1007\/s11214-004-1456-7","article-title":"Cassini Imaging Science: Instrument Characteristics Furthermore, Anticipated Scientific Investigations At Saturn","volume":"115","author":"Porco","year":"2004","journal-title":"Space Sci. Rev."},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"1243","DOI":"10.1016\/S0032-0633(99)00047-1","article-title":"A comparison of the atmospheres of Jupiter and Saturn: Deep atmospheric composition, cloud structure, vertical mixing, and origin","volume":"47","author":"Atreya","year":"1999","journal-title":"Planet. Space Sci."},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/j.icarus.2014.09.042","article-title":"Fresh clouds: A parameterized updraft method for calculating cloud densities in one-dimensional models","volume":"245","author":"Wong","year":"2015","journal-title":"Icarus"},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1016\/0019-1035(73)90019-5","article-title":"Atmospheric and cloud structures of the Jovian planets","volume":"20","author":"Weidenschilling","year":"1973","journal-title":"Icarus"},{"key":"ref_115","unstructured":"Hunt, G.E. (1985). Planetary Meteorology, Cambridge University Press."},{"key":"ref_116","doi-asserted-by":"crossref","unstructured":"Mousis, O., Atkinson, D.H., Ambrosi, R., Atreya, S., Banfield, D., Barabash, S., Blanc, M., Cavali\u00e9, T., Coustenis, A., and Deleuil, M. (2021). In Situ exploration of the giant planets. Exp. Astron.","DOI":"10.1007\/s10686-021-09775-z"},{"key":"ref_117","doi-asserted-by":"crossref","first-page":"105","DOI":"10.3847\/PSJ\/abf837","article-title":"Neptune\u2019s Spatial Brightness Temperature Variations from the VLA and ALMA","volume":"2","author":"Tollefson","year":"2021","journal-title":"Planet. Sci. J."},{"key":"ref_118","doi-asserted-by":"crossref","first-page":"22857","DOI":"10.1029\/98JE01766","article-title":"Thermal structure of Jupiter\u2019s atmosphere near the edge of a 5-\u03bcm hot spot in the north equatorial belt","volume":"103","author":"Seiff","year":"1998","journal-title":"J. Geophys. Res."},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"22815","DOI":"10.1029\/98JE00695","article-title":"Helium in Jupiter\u2019s atmosphere: Results from the Galileo probe helium interferometer experiment","volume":"103","author":"Hunten","year":"1998","journal-title":"J. Geophys. Res."},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"15061","DOI":"10.1029\/1999JE001224","article-title":"Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer","volume":"105","author":"Mahaffy","year":"2000","journal-title":"J. Geophys. Res."},{"key":"ref_121","doi-asserted-by":"crossref","first-page":"159","DOI":"10.3847\/PSJ\/ac6956","article-title":"Jupiter\u2019s Temperature Structure: A Reassessment of the Voyager Radio Occultation Measurements","volume":"3","author":"Gupta","year":"2022","journal-title":"Planet. Sci. J."},{"key":"ref_122","doi-asserted-by":"crossref","first-page":"98","DOI":"10.1016\/j.icarus.2005.07.019","article-title":"Jupiter\u2019s atmospheric temperatures: From Voyager IRIS to Cassini CIRS","volume":"180","author":"Conrath","year":"2006","journal-title":"Icarus"},{"key":"ref_123","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.icarus.2016.06.008","article-title":"Mid-infrared mapping of Jupiter\u2019s temperatures, aerosol opacity and chemical distributions with IRTF\/TEXES","volume":"278","author":"Fletcher","year":"2016","journal-title":"Icarus"},{"key":"ref_124","doi-asserted-by":"crossref","first-page":"410","DOI":"10.1006\/icar.2002.6891","article-title":"The Stratification of Jupiter\u2019s Troposphere at the Galileo Probe Entry Site","volume":"158","author":"Seiff","year":"2002","journal-title":"Icarus"},{"key":"ref_125","doi-asserted-by":"crossref","first-page":"L03201","DOI":"10.1029\/2005GL024554","article-title":"Static stability of the Jovian atmospheres estimated from moist adiabatic profiles","volume":"33","author":"Sugiyama","year":"2006","journal-title":"Geophys. Res. Lett."},{"key":"ref_126","doi-asserted-by":"crossref","first-page":"A98","DOI":"10.1051\/0004-6361\/201629140","article-title":"Condensation-inhibited convection in hydrogen-rich atmospheres. Stability against double-diffusive processes and thermal profiles for Jupiter, Saturn, Uranus, and Neptune","volume":"598","author":"Leconte","year":"2017","journal-title":"Astron. Astrophys."},{"key":"ref_127","doi-asserted-by":"crossref","first-page":"5099","DOI":"10.1029\/2000JE001287","article-title":"A high-resolution, three-dimensional model of Jupiter\u2019s Great Red Spot","volume":"106","author":"Cho","year":"2001","journal-title":"J. Geophys. Res."},{"key":"ref_128","doi-asserted-by":"crossref","first-page":"4432","DOI":"10.1175\/2007JAS2097.1","article-title":"On the Interaction of Jupiter\u2019s Great Red Spot and Zonal Jet Streams","volume":"64","author":"Shetty","year":"2007","journal-title":"J. Atmos. Sci."},{"key":"ref_129","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1016\/j.icarus.2008.02.018","article-title":"Vertical structure of Jupiter\u2019s troposphere from nonlinear simulations of long-lived vortices","volume":"196","author":"Legarreta","year":"2008","journal-title":"Icarus"},{"key":"ref_130","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.icarus.2010.06.026","article-title":"Changes in Jupiter\u2019s Great Red Spot (1979-2006) and Oval BA (2000-2006)","volume":"210","author":"Shetty","year":"2010","journal-title":"Icarus"},{"key":"ref_131","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1017\/jfm.2012.180","article-title":"The universal aspect ratio of vortices in rotating stratified flows: Theory and simulation","volume":"706","author":"Hassanzadeh","year":"2012","journal-title":"J. Fluid Mech."},{"key":"ref_132","doi-asserted-by":"crossref","first-page":"695","DOI":"10.1038\/s41567-020-0833-9","article-title":"Remote determination of the shape of Jupiter\u2019s vortices from laboratory experiments","volume":"16","author":"Lemasquerier","year":"2020","journal-title":"Nat. Phys."},{"key":"ref_133","doi-asserted-by":"crossref","first-page":"22891","DOI":"10.1029\/98JE00353","article-title":"The clouds of Jupiter: Results of the Galileo Jupiter mission probe nephelometer experiment","volume":"103","author":"Ragent","year":"1998","journal-title":"J. Geophys. Res."},{"key":"ref_134","doi-asserted-by":"crossref","first-page":"925","DOI":"10.1086\/150124","article-title":"The 2.8-14-MICRON Spectrum of Jupiter","volume":"157","author":"Gillett","year":"1969","journal-title":"Astrophys. J."},{"key":"ref_135","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1016\/0019-1035(72)90083-8","article-title":"The Clouds of Jupiter: Observational Characteristics","volume":"16","author":"Owen","year":"1972","journal-title":"Icarus"},{"key":"ref_136","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1088\/0004-637X\/810\/2\/122","article-title":"Jupiter\u2019s Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes","volume":"810","author":"Bjoraker","year":"2015","journal-title":"Astrophys. J."},{"key":"ref_137","doi-asserted-by":"crossref","first-page":"79","DOI":"10.3847\/1538-3881\/aacaf5","article-title":"A New, Long-lived, Jupiter Mesoscale Wave Observed at Visible Wavelengths","volume":"156","author":"Simon","year":"2018","journal-title":"Astron. J."},{"key":"ref_138","doi-asserted-by":"crossref","first-page":"67","DOI":"10.3847\/1538-3881\/aace02","article-title":"Jupiter\u2019s Mesoscale Waves Observed at 5 \u03bcm by Ground-based Observations and Juno JIRAM","volume":"156","author":"Fletcher","year":"2018","journal-title":"Astron. J."},{"key":"ref_139","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1006\/icar.1998.5898","article-title":"Interpretation of Galileo Probe Data and Implications for Jupiter\u2019s Dry Downdrafts","volume":"132","author":"Showman","year":"1998","journal-title":"Icarus"},{"key":"ref_140","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.icarus.2004.10.004","article-title":"Dynamical implications of Jupiter\u2019s tropospheric ammonia abundance","volume":"174","author":"Showman","year":"2005","journal-title":"Icarus"},{"key":"ref_141","doi-asserted-by":"crossref","first-page":"23051","DOI":"10.1029\/98JE00696","article-title":"Evolution and persistence of 5-\u03bcm hot spots at the Galileo probe entry latitude","volume":"103","author":"Ortiz","year":"1998","journal-title":"J. Geophys. Res."},{"key":"ref_142","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.icarus.2018.11.024","article-title":"Jupiter\u2019s ammonia distribution derived from VLA maps at 3\u201337 GHz","volume":"322","author":"Sault","year":"2019","journal-title":"Icarus"},{"key":"ref_143","doi-asserted-by":"crossref","first-page":"e06399","DOI":"10.1029\/2020JE006399","article-title":"Jupiter\u2019s Equatorial Plumes and Hot Spots: Spectral Mapping from Gemini\/TEXES and Juno\/MWR","volume":"125","author":"Fletcher","year":"2020","journal-title":"J. Geophys. Res. Planets"},{"key":"ref_144","doi-asserted-by":"crossref","first-page":"306","DOI":"10.1016\/j.icarus.2010.01.005","article-title":"Thermal structure and composition of Jupiter\u2019s Great Red Spot from high-resolution thermal imaging","volume":"208","author":"Fletcher","year":"2010","journal-title":"Icarus"},{"key":"ref_145","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1006\/icar.2002.6867","article-title":"New Observational Results Concerning Jupiter\u2019s Great Red Spot","volume":"158","author":"Gierasch","year":"2002","journal-title":"Icarus"},{"key":"ref_146","doi-asserted-by":"crossref","first-page":"625","DOI":"10.1126\/science.265.5172.625","article-title":"Spatial Organization and Time Dependence of Jupiter\u2019s Tropospheric Temperatures, 1980-1993","volume":"265","author":"Orton","year":"1994","journal-title":"Science"},{"key":"ref_147","doi-asserted-by":"crossref","first-page":"316","DOI":"10.1016\/j.icarus.2009.02.002","article-title":"A new model of the hydrogen and helium-broadened microwave opacity of ammonia based on extensive laboratory measurements","volume":"202","author":"Hanley","year":"2009","journal-title":"Icarus"},{"key":"ref_148","doi-asserted-by":"crossref","first-page":"4615","DOI":"10.1002\/2017GL072841","article-title":"Preliminary results on the composition of Jupiter\u2019s troposphere in hot spot regions from the JIRAM\/Juno instrument","volume":"44","author":"Grassi","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_149","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1002\/2017GL075221","article-title":"Ammonia in Jupiter\u2019s Troposphere From High-Resolution 5 \u03bcm Spectroscopy","volume":"44","author":"Giles","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_150","doi-asserted-by":"crossref","first-page":"22911","DOI":"10.1029\/98JE00060","article-title":"The Galileo probe Doppler wind experiment: Measurement of the deep zonal winds on Jupiter","volume":"103","author":"Atkinson","year":"1998","journal-title":"J. Geophys. Res."},{"key":"ref_151","doi-asserted-by":"crossref","first-page":"544","DOI":"10.1038\/s41550-018-0442-z","article-title":"Discovery of rapid whistlers close to Jupiter implying lightning rates similar to those on Earth","volume":"2","author":"Imai","year":"2018","journal-title":"Nat. Astron."},{"key":"ref_152","doi-asserted-by":"crossref","first-page":"1935","DOI":"10.1088\/0034-4885\/68\/8\/R06","article-title":"Jovian atmospheric dynamics: An update after Galileo and Cassini","volume":"68","author":"Vasavada","year":"2005","journal-title":"Rep. Prog. Phys."},{"key":"ref_153","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.icarus.2005.12.020","article-title":"Cassini CIRS retrievals of ammonia in Jupiter\u2019s upper troposphere","volume":"182","author":"Achterberg","year":"2006","journal-title":"Icarus"},{"key":"ref_154","unstructured":"Hodges, A.L., Steffes, P.G., Gladstone, R., Folkner, W.M., Buccino, D., Bolton, S.J., and Levin, S. (2020, January 1\u201317). Simulations of Potential Radio Occultation Studies of Jupiter\u2019s Atmosphere using the Juno Spacecraft. Proceedings of the AGU Fall Meeting, Online. Available online: https:\/\/ui.adsabs.harvard.edu\/abs\/2020AGUFMP012...07H."},{"key":"ref_155","doi-asserted-by":"crossref","first-page":"1675","DOI":"10.1126\/science.167.3926.1675","article-title":"The Atmosphere of Jupiter","volume":"167","author":"Owen","year":"1970","journal-title":"Science"},{"key":"ref_156","doi-asserted-by":"crossref","first-page":"185","DOI":"10.3847\/PSJ\/ac7ec8","article-title":"Juno Spacecraft Measurements of Jupiter\u2019s Gravity Imply a Dilute Core","volume":"3","author":"Militzer","year":"2022","journal-title":"Planet. Sci. J."},{"key":"ref_157","doi-asserted-by":"crossref","first-page":"114937","DOI":"10.1016\/j.icarus.2022.114937","article-title":"Revelations on Jupiter\u2019s formation, evolution and interior: Challenges from Juno results","volume":"378","author":"Helled","year":"2022","journal-title":"Icarus"},{"key":"ref_158","doi-asserted-by":"crossref","unstructured":"Miguel, Y., Bazot, M., Guillot, T., Howard, S., Galanti, E., Kaspi, Y., Hubbard, W.B., Militzer, B., Helled, R., and Atreya, S.K. (2022). Jupiter\u2019s inhomogeneous envelope. Astron. Astrophys., 662.","DOI":"10.1051\/0004-6361\/202243207"},{"key":"ref_159","doi-asserted-by":"crossref","first-page":"23001","DOI":"10.1029\/98JE00948","article-title":"Cloud structure and atmospheric composition of Jupiter retrieved from Galileo near-infrared mapping spectrometer real-time spectra","volume":"103","author":"Irwin","year":"1998","journal-title":"J. Geophys. Res. Planets"},{"key":"ref_160","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.icarus.2005.02.004","article-title":"Methane absorption in the atmosphere of Jupiter from 1800 to 9500 cm\u22121 and implications for vertical cloud structure","volume":"176","author":"Irwin","year":"2005","journal-title":"Icarus"},{"key":"ref_161","doi-asserted-by":"crossref","first-page":"432","DOI":"10.1016\/j.icarus.2005.06.020","article-title":"The cloud structure of the jovian atmosphere as seen by the Cassini\/CIRS experiment","volume":"179","author":"Matcheva","year":"2005","journal-title":"Icarus"},{"key":"ref_162","unstructured":"Alexander, C., and Irwin, P.G.J. (2022, January 12\u201316). Predetermining Parameters of Jupiter\u2019s Atmosphere in Order to Simplify Cloud Structure. Proceedings of the AGU Fall Meeting, Chicago, IL, USA. Available online: https:\/\/agu.confex.com\/agu\/fm22\/meetingapp.cgi\/Paper\/1085758."},{"key":"ref_163","unstructured":"Romani, P.N., de Pater, I., Dunn, D., Zahnle, K., and Washington, B. (2000, January 9\u201313). Adsorption of Ammonia onto Ammonium Hydrosulfide Cloud Particles in Jupiter\u2019s Atmosphere. Proceedings of the AAS\/Division for Planetary Sciences Meeting, Pasadena, CA, USA. Available online: https:\/\/ui.adsabs.harvard.edu\/abs\/2000DPS....32.0405R."},{"key":"ref_164","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1016\/0019-1035(69)90091-8","article-title":"The clouds of Jupiter and the NH3-H2O and NH 3-H 2S systems","volume":"10","author":"Lewis","year":"1969","journal-title":"Icarus"},{"key":"ref_165","unstructured":"Kasper, T., Wong, M.H., Marschall, J., de Pater, I., Romani, P.N., and Kalogerakis, K.S. (2011, January 2\u20137). Uptake of ammonia gas by Jovian ices. Proceedings of the EPSC-DPS Joint Meeting, Nantes, France. Available online: https:\/\/ui.adsabs.harvard.edu\/abs\/2011epsc.conf..352K."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/3\/702\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,17]],"date-time":"2025-01-17T23:45:35Z","timestamp":1737157535000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/3\/702"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,25]]},"references-count":165,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2023,2]]}},"alternative-id":["rs15030702"],"URL":"https:\/\/doi.org\/10.3390\/rs15030702","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2023,1,25]]}}}