{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,18]],"date-time":"2025-01-18T05:28:57Z","timestamp":1737178137787,"version":"3.33.0"},"reference-count":61,"publisher":"MDPI AG","issue":"2","license":[{"start":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T00:00:00Z","timestamp":1673222400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Swiss Federal Commission for Scholarships for Foreign Students (FCS)","award":["ESKAS-Nr: 2020.0314"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Offshore wind is expected to play a key role in future energy systems. Wind energy resource studies often call for long-term and spatially consistent datasets to assess the wind potential. Despite the vast amount of available data sources, no current means can provide relevant sub-daily information at a fine spatial scale (~1 km). Synthetic aperture radar (SAR) delivers wind field estimates over the ocean at fine spatial resolution but suffers from partial coverage and irregular revisit times. Physical model outputs, which are the basis of reanalysis products, can be queried at any time step but lack fine-scale spatial variability. To combine the advantages of both, we use the framework of multiple-point geostatistics to realistically reconstruct wind speed patterns at time instances for which satellite information is absent. Synthetic fine-resolution wind speed images are generated conditioned to coregistered regional reanalysis information at a coarser scale. Available simultaneous data sources are used as training data to generate the synthetic image time series. The latter are then evaluated via cross validation and statistical comparison against reference satellite data. Multiple realizations are also generated to assess the uncertainty associated with the simulation outputs. Results show that the proposed methodology can realistically reproduce fine-scale spatiotemporal variability while honoring the wind speed patterns at the coarse scale and thus filling the satellite information gaps in space and time.<\/jats:p>","DOI":"10.3390\/rs15020409","type":"journal-article","created":{"date-parts":[[2023,1,10]],"date-time":"2023-01-10T06:57:48Z","timestamp":1673333868000},"page":"409","source":"Crossref","is-referenced-by-count":3,"title":["Gap-Filling Sentinel-1 Offshore Wind Speed Image Time Series Using Multiple-Point Geostatistical Simulation and Reanalysis Data"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8808-3319","authenticated-orcid":false,"given":"Stylianos","family":"Hadjipetrou","sequence":"first","affiliation":[{"name":"Department of Civil Engineering and Geomatics, Cyprus University of Technology, Limassol 3036, Cyprus"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8820-2808","authenticated-orcid":false,"given":"Gregoire","family":"Mariethoz","sequence":"additional","affiliation":[{"name":"Institute of Earth Surface Dynamics, University of Lausanne, 1015 Lausanne, Switzerland"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4222-8567","authenticated-orcid":false,"given":"Phaedon","family":"Kyriakidis","sequence":"additional","affiliation":[{"name":"Department of Civil Engineering and Geomatics, Cyprus University of Technology, Limassol 3036, Cyprus"}]}],"member":"1968","published-online":{"date-parts":[[2023,1,9]]},"reference":[{"key":"ref_1","unstructured":"(2021, September 24). GWEC Global Wind Report 2021|Global Wind Energy Council. Available online: https:\/\/gwec.net\/global-wind-report-2021\/."},{"key":"ref_2","unstructured":"WindEurope (2021). Offshore Wind in Europe\u2014Key Trends and Statistics 2020, WindEurope."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"3192","DOI":"10.1016\/j.rser.2010.07.001","article-title":"Review of the Use of Numerical Weather Prediction (NWP) Models for Wind Energy Assessment","volume":"14","author":"Charabi","year":"2010","journal-title":"Renew. Sustain. Energy Rev."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1127\/metz\/2019\/1002","article-title":"Investigating Predictability of Offshore Winds Using a Mesoscale Model Driven by Forecast and Reanalysis Data","volume":"29","author":"Gryning","year":"2020","journal-title":"Meteorol. Z."},{"key":"ref_5","unstructured":"Ng, C., and Ran, L. (2016). Wind Resources for Offshore Wind Farms: Characteristics and Assessment. Offshore Wind Farms: Technologies, Design and Operation, Woodhead Publishing."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"211","DOI":"10.5194\/wes-2-211-2017","article-title":"An Intercomparison of Mesoscale Models at Simple Sites for Wind Energy Applications","volume":"2","author":"Olsen","year":"2017","journal-title":"Wind Energ. Sci."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"104499","DOI":"10.1016\/j.jweia.2020.104499","article-title":"Increasing Spatial Resolution of Wind Resource Prediction Using NWP and RANS Simulation","volume":"210","author":"Castorrini","year":"2021","journal-title":"J. Wind Eng. Ind. Aerodyn."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"957","DOI":"10.1002\/we.2611","article-title":"Quantifying Sensitivity in Numerical Weather Prediction-Modeled Offshore Wind Speeds through an Ensemble Modeling Approach","volume":"24","author":"Optis","year":"2021","journal-title":"Wind Energy"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Karagali, I., Badger, M., and Hasager, C. (2021). Spaceborne Earth Observation for Offshore Wind Energy Applications, Institute of Electrical and Electronics Engineers (IEEE).","DOI":"10.1109\/IGARSS47720.2021.9553100"},{"key":"ref_10","unstructured":"Cameron, I., Lumsdon, P., Walker, N., and Woodhouse, I. (2006, January 23\u201326). Synthetic Aperture Radar for Offshore Wind Resource Assessment and Wind Farm Development in the UK. Proceedings of the SEASAR 2006: Advances in SAR Oceanography from ENVISAT and ERS Missions, Frascati, Italy."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1260\/030952403322770931","article-title":"Satellite-Based Wind Maps as Guidance for Siting Offshore Wind Farms","volume":"27","author":"Furevik","year":"2016","journal-title":"Wind Eng."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"573","DOI":"10.5194\/wes-3-573-2018","article-title":"Applications of Satellite Winds for the Offshore Wind Farm Site Anholt","volume":"3","author":"Ahsbahs","year":"2018","journal-title":"Wind Energy Sci."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1191","DOI":"10.5194\/wes-5-1191-2020","article-title":"US East Coast Synthetic Aperture Radar Wind Atlas for Offshore Wind Energy","volume":"5","author":"Ahsbahs","year":"2020","journal-title":"Wind Energy Sci."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Stoevesandt, B., Schepers, G., Fuglsang, P., and Yuping, S. (2021). Hereon SAR Observations of Offshore Windfarm Wakes. Handbook of Wind Energy Aerodynamics, Springer International Publishing.","DOI":"10.1007\/978-3-030-05455-7"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1521","DOI":"10.1109\/LGRS.2019.2905578","article-title":"A Geophysical Model Function for Wind Speed Retrieval from C-Band HH-Polarized Synthetic Aperture Radar","volume":"16","author":"Zhang","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.rse.2006.06.005","article-title":"Wind Resource Assessment from C-Band SAR","volume":"105","author":"Koch","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1109\/JSTARS.2008.2001760","article-title":"Regional Mapping of the Offshore Wind Resource: Towards a Significant Contribution from Space-Borne Synthetic Aperture Radars","volume":"1","author":"Beaucage","year":"2008","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1228","DOI":"10.1016\/j.renene.2021.10.100","article-title":"Evaluating the Suitability of Sentinel-1 SAR Data for Offshore Wind Resource Assessment around Cyprus","volume":"182","author":"Hadjipetrou","year":"2022","journal-title":"Renew. Energy"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1016\/j.renene.2020.03.148","article-title":"Wind Source Potential Assessment Using Sentinel 1 Satellite and a New Forecasting Model Based on Machine Learning: A Case Study Sardinia Islands","volume":"155","author":"Heydari","year":"2020","journal-title":"Renew. Energy"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1023","DOI":"10.5194\/wes-5-1023-2020","article-title":"Validation of Sentinel-1 Offshore Winds and Average Wind Power Estimation around Ireland","volume":"5","author":"Remmers","year":"2020","journal-title":"Wind Energy Sci."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"443","DOI":"10.3389\/fmars.2019.00443","article-title":"Remotely Sensed Winds and Wind Stresses for Marine Forecasting and Ocean Modeling","volume":"6","author":"Bourassa","year":"2019","journal-title":"Front. Mar. Sci."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1109\/LGRS.2018.2872354","article-title":"On the Estimation of Wind Speed Diurnal Cycles Using Simulated Measurements of CYGNSS and ASCAT","volume":"16","author":"Yi","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1007\/s10707-020-00426-7","article-title":"From Reanalysis to Satellite Observations: Gap-Filling with Imbalanced Learning","volume":"26","author":"Lu","year":"2021","journal-title":"Geoinformatica"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2012WR012115","article-title":"Spatiotemporal Reconstruction of Gaps in Multivariate Fields Using the Direct Sampling Approach","volume":"48","author":"Mariethoz","year":"2012","journal-title":"Water Resour. Res."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1029\/2012WR012602","article-title":"Demonstration of a Geostatistical Approach to Physically Consistent Downscaling of Climate Modeling Simulations","volume":"49","author":"Jha","year":"2013","journal-title":"Water Resour. Res."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"6244","DOI":"10.1002\/2014WR016729","article-title":"A Space and Time Scale-Dependent Nonlinear Geostatistical Approach for Downscaling Daily Precipitation and Temperature","volume":"51","author":"Jha","year":"2015","journal-title":"Water Resour. Res."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Yin, G., Mariethoz, G., and McCabe, M.F. (2017). Gap-Filling of Landsat 7 Imagery Using the Direct Sampling Method. Remote Sens., 9.","DOI":"10.3390\/rs9010012"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"8512","DOI":"10.1002\/2017WR020876","article-title":"Simulating Small-Scale Rainfall Fields Conditioned by Weather State and Elevation: A Data-Driven Approach Based on Rainfall Radar Images","volume":"53","author":"Oriani","year":"2017","journal-title":"Water Resour. Res."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"2611","DOI":"10.5194\/gmd-13-2611-2020","article-title":"QuickSampling v1.0: A Robust and Simplified Pixel-Based Multiple-Point Simulation Approach","volume":"13","author":"Gravey","year":"2020","journal-title":"Geosci. Model Dev."},{"key":"ref_30","unstructured":"(2022, February 22). European Commission Renewable Energy Statistics: Statistics Explained. Available online: https:\/\/ec.europa.eu\/eurostat\/statistics-explained\/index.php\/Renewable_energy_statistics%0Awww.irena.org\/Publications%0Ahttps:\/\/ec.europa.eu\/eurostat\/statistics-explained\/index.php\/Renewable_energy_statistics%0Awww.irena.org\/Publications."},{"key":"ref_31","unstructured":"(2021, December 16). Eurostat Electricity Price Statistics\u2014Statistics Explained. Available online: https:\/\/ec.europa.eu\/eurostat\/statistics-explained\/index.php\/Electricity_price_statistics."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"384","DOI":"10.1002\/joc.5182","article-title":"Offshore Wind Climate Analysis and Variability in the Mediterranean Sea","volume":"38","author":"Soukissian","year":"2018","journal-title":"Int. J. Climatol."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1615","DOI":"10.3389\/fmars.2021.760614","article-title":"Wind Waves in the Mediterranean Sea: An ERA5 Reanalysis Wind-Based Climatology","volume":"8","author":"Barbariol","year":"2021","journal-title":"Front. Mar. Sci."},{"key":"ref_34","unstructured":"Copernicus climate change service (C3S) (2022, February 21). Documentation of the RRA System: UERRA. Available online: https:\/\/cds.climate.copernicus.eu\/cdsapp#!\/dataset\/reanalysis-uerra-europe-complete?tab=doc."},{"key":"ref_35","unstructured":"(2021, December 22). ESA Sentinel-1\u2014Missions\u2014Sentinel Online. Available online: https:\/\/sentinel.esa.int\/web\/sentinel\/missions\/sentinel-1."},{"key":"ref_36","unstructured":"Mouche, A. (2022, October 14). Sentinel-1 Ocean Wind Fields (OWI) Algorithm Definition. Available online: https:\/\/sentinels.copernicus.eu\/documents\/247904\/3861173\/DI-MPC-IPF-OWI_2_1_OWIAlgorithmDefinition.pdf\/dc452ea7-cb37-c227-ac74-0c07a3fb714a?t=1644835258554."},{"key":"ref_37","first-page":"594","article-title":"Offshore Winds Mapped from Satellite Remote Sensing","volume":"3","author":"Hasager","year":"2014","journal-title":"Wiley Interdiscip. Rev. Energy Environ."},{"key":"ref_38","unstructured":"Vincent, P., Bourbigot, M., Johnsen, H., Piantanida, R., Poullaouec, J., and Hajduch, G. (2022, February 22). Sentinel-1 ESA Unclassified for Official Use Sentinel-1 Product Specification. Available online: https:\/\/sentinel.esa.int\/documents\/247904\/1877131\/Sentinel-1-Product-Specification."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"777","DOI":"10.1109\/JSTARS.2017.2787650","article-title":"Methods to Remove the Border Noise from Sentinel-1 Synthetic Aperture Radar Data: Implications and Importance for Time-Series Analysis","volume":"11","author":"Ali","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_40","unstructured":"Copernicus climate change service (C3S) (2021, December 14). UERRA Data User Guide. Available online: https:\/\/cds.climate.copernicus.eu\/cdsapp#!\/dataset\/reanalysis-uerra-europe-complete?tab=doc."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Chil\u00e8s, J.P., and Delfiner, P. (2012). Geostatistics: Modeling Spatial Uncertainty: Second Edition, Wiley-Blackwell.","DOI":"10.1002\/9781118136188"},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Atkinson, P.M., and Lloyd, C.D. (2014). Geostatistical Models and Spatial Interpolation. Handb. Reg. Sci., 1461\u20131476.","DOI":"10.1007\/978-3-642-23430-9_75"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"065002","DOI":"10.1088\/1742-2132\/11\/6\/065002","article-title":"Two-Point versus Multiple-Point Geostatistics: The Ability of Geostatistical Methods to Capture Complex Geobodies and Their Facies Associations\u2014An Application to a Channelized Carbonate Reservoir, Southwest Iran","volume":"11","author":"Hashemi","year":"2014","journal-title":"J. Geophys. Eng."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Daya Sagar, B.S., Cheng, Q., and Agterberg, F. (2018). Multiple Point Statistics: A Review. Handbook of Mathematical Geosciences: Fifty Years of IAMG, Springer International Publishing.","DOI":"10.1007\/978-3-319-78999-6"},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Journel, A.G. (2004). Beyond Covariance: The Advent of Multiple-Point Geostatistics. Geostatistics Banff 2004, Springer.","DOI":"10.1007\/978-1-4020-3610-1_23"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1007\/978-94-011-1739-5_12","article-title":"Multivariate Geostatistics: Beyond Bivariate Moments","volume":"Volume 1","author":"Guardiano","year":"1993","journal-title":"Geostatistics Troia \u201992"},{"key":"ref_47","first-page":"1","article-title":"Multiple-Point Geostatistics: From Theory to Practice","volume":"2012","author":"Strebelle","year":"2012","journal-title":"Proc. Geostats"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2008WR006993","article-title":"Multiple-Point Geostatistics for Modeling Subsurface Heterogeneity: A Comprehensive Review","volume":"44","author":"Hu","year":"2008","journal-title":"Water Resour. Res."},{"key":"ref_49","unstructured":"Lorenz, E. (2022, April 14). Atmospheric Predictability as Revealed by Naturally Occurring Analogues. Available online: https:\/\/www.semanticscholar.org\/paper\/Atmospheric-Predictability-as-Revealed-by-Naturally-Lorenz\/515deec4e011ebeb02c3f356380dbbc010417b30."},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Mariethoz, G., and Caers, J. (2014). Multiple-Point Geostatistics: Stochastic Modeling with Training Images, John Wiley & Sons.","DOI":"10.1002\/9781118662953"},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Grana, D., and Azevedo, L. (2021). Subsurface Geostatistical Modeling, Elsevier Inc.. [2nd ed.].","DOI":"10.1016\/B978-0-12-409548-9.11852-4"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1023\/A:1014009426274","article-title":"Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics","volume":"34","author":"Strebelle","year":"2002","journal-title":"Math. Geol."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1007\/s11004-011-9328-7","article-title":"An Improved Parallel Multiple-Point Algorithm Using a List Approach","volume":"43","author":"Straubhaar","year":"2011","journal-title":"Math. Geosci."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2008WR007621","article-title":"The Direct Sampling Method to Perform Multiple-Point Geostatistical Simulations","volume":"46","author":"Mariethoz","year":"2010","journal-title":"Water Resour. Res."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/j.cageo.2012.09.019","article-title":"A Practical Guide to Performing Multiple-Point Statistical Simulations with the Direct Sampling Algorithm","volume":"52","author":"Meerschman","year":"2013","journal-title":"Comput. Geosci."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"4356","DOI":"10.1175\/JCLI4253.1","article-title":"Evaluation of the AR4 Climate Models\u2019 Simulated Daily Maximum Temperature, Minimum Temperature, and Precipitation over Australia Using Probability Density Functions","volume":"20","author":"Perkins","year":"2007","journal-title":"J. Clim."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"100445","DOI":"10.1016\/j.spasta.2020.100445","article-title":"Semi-Parametric Resampling with Extremes","volume":"42","author":"Opitz","year":"2021","journal-title":"Spat. Stat."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1016\/B0-12-176480-X\/00335-1","article-title":"Wind Resource Base","volume":"6","author":"Elliott","year":"2004","journal-title":"Encycl. Energy"},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"975","DOI":"10.1175\/JAMC-D-15-0197.1","article-title":"Extrapolating Satellite Winds to Turbine Operating Heights","volume":"55","author":"Badger","year":"2016","journal-title":"J. Appl. Meteorol. Climatol."},{"key":"ref_60","unstructured":"Diaz, P., Erlend, R., and Bay, C. (2012, January 6\u201319). Bringing Satellite Winds to Hub-Height. Proceedings of the EWEA 2012\u2014European Wind Energy Conference & Exhibition, Copenhagen, Denmark."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"935","DOI":"10.5194\/wes-6-935-2021","article-title":"New Methods to Improve the Vertical Extrapolation of Near-Surface Offshore Wind Speeds","volume":"6","author":"Optis","year":"2021","journal-title":"Wind Energy Sci."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/2\/409\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,17]],"date-time":"2025-01-17T23:37:58Z","timestamp":1737157078000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/2\/409"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,9]]},"references-count":61,"journal-issue":{"issue":"2","published-online":{"date-parts":[[2023,1]]}},"alternative-id":["rs15020409"],"URL":"https:\/\/doi.org\/10.3390\/rs15020409","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2023,1,9]]}}}