{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T16:16:40Z","timestamp":1740154600009,"version":"3.37.3"},"reference-count":138,"publisher":"MDPI AG","issue":"1","license":[{"start":{"date-parts":[[2022,12,23]],"date-time":"2022-12-23T00:00:00Z","timestamp":1671753600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["62275096"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"crossref","award":["HUST: YCJJ202201004"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"crossref"}]},{"name":"NSFC-RS Exchange Programme","award":["62111530153"]},{"name":"Science Fund for Creative Research Groups of the Nature Science Foundation of Hubei","award":["2021CFA033"]},{"name":"Royal Society International Exchanges 2020 Cost Share of United Kingdom","award":["IEC\\NSFC\\201015"]},{"name":"Science, Technology and Innovation Commission of Shenzhen Municipality","award":["2021Szvup089"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Light-induced thermoelastic spectroscopy (LITES) is a promising optical approach for gas sensing, which uses a quartz tuning fork (QTF) as a photothermal detector, instead of a commercial photodetector. Since the QTF has the advantages of low cost, small size, high resonance frequency, high-quality factor (Q-factor), and a wide spectral response range, and the LITES sensor has received extensive attention and obtained great development. This review paper summarizes and discusses the advances of the QTF-based, state-of-the-art LITES gas sensing technique in recent years and presents the development prospects of LITES sensor in the future.<\/jats:p>","DOI":"10.3390\/rs15010069","type":"journal-article","created":{"date-parts":[[2022,12,23]],"date-time":"2022-12-23T08:26:25Z","timestamp":1671783985000},"page":"69","source":"Crossref","is-referenced-by-count":13,"title":["Recent Advances in Light-Induced Thermoelastic Spectroscopy for Gas Sensing: A Review"],"prefix":"10.3390","volume":"15","author":[{"given":"Yufeng","family":"Pan","sequence":"first","affiliation":[{"name":"Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access-System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China"},{"name":"Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China"}]},{"given":"Jinbiao","family":"Zhao","sequence":"additional","affiliation":[{"name":"Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access-System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China"},{"name":"Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8431-1444","authenticated-orcid":false,"given":"Ping","family":"Lu","sequence":"additional","affiliation":[{"name":"Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access-System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China"},{"name":"Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China"},{"name":"Wuhan OV Optical Networking Technology Co., Ltd., Wuhan 430074, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6374-8719","authenticated-orcid":false,"given":"Chaotan","family":"Sima","sequence":"additional","affiliation":[{"name":"Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access-System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China"},{"name":"Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China"},{"name":"Wuhan OV Optical Networking Technology Co., Ltd., Wuhan 430074, China"}]},{"given":"Deming","family":"Liu","sequence":"additional","affiliation":[{"name":"Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access-System, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China"},{"name":"Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen 518000, China"},{"name":"Wuhan OV Optical Networking Technology Co., Ltd., Wuhan 430074, China"}]}],"member":"1968","published-online":{"date-parts":[[2022,12,23]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"012004","DOI":"10.1088\/0957-0233\/24\/1\/012004","article-title":"Optical gas sensing: A review","volume":"24","author":"Hodgkinson","year":"2013","journal-title":"Meas. Sci. Technol."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"e2105063118","DOI":"10.1073\/pnas.2105063118","article-title":"Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics","volume":"118","author":"Liang","year":"2021","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1016\/j.snb.2015.05.136","article-title":"Highly sensitive detection of methane by near-infrared laser absorption spectroscopy using a compact dense-pattern multipass cell","volume":"220","author":"Liu","year":"2015","journal-title":"Sens. Actuators B Chem."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1062","DOI":"10.1016\/j.snb.2015.07.078","article-title":"Sensitive detection of formaldehyde using an interband cascade laser near 3.6 \u03bcm","volume":"221","author":"Ren","year":"2015","journal-title":"Sens. Actuators B Chem."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Li, J., Yu, Z., Du, Z., Ji, Y., and Liu, C. (2020). Standoff Chemical Detection Using Laser Absorption Spectroscopy: A Review. Remote Sens., 12.","DOI":"10.3390\/rs12172771"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1020376","DOI":"10.3389\/fphy.2022.1020376","article-title":"Correcting the light extinction effect of fly ash particles on the measurement of NO by TDLAS","volume":"10","author":"Guo","year":"2022","journal-title":"Front. Phys."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"106906","DOI":"10.1016\/j.optlaseng.2021.106906","article-title":"Modified laser scanning technique in wavelength modulation spectroscopy for advanced TDLAS gas sensing","volume":"151","author":"Deng","year":"2022","journal-title":"Opt. Lasers Eng."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/j.snb.2015.11.037","article-title":"Development and measurement of a near-infrared CH4 detection system using 1.654\u03bcm wavelength-modulated diode laser and open reflective gas sensing probe","volume":"225","author":"Li","year":"2016","journal-title":"Sens. Actuators B Chem."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"2100556","DOI":"10.1002\/lpor.202100556","article-title":"Direct Absorption and Photoacoustic Spectroscopy for Gas Sensing and Analysis: A Critical Review","volume":"16","author":"Fathy","year":"2022","journal-title":"Laser Photon. Rev."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"220901","DOI":"10.1063\/5.0091263","article-title":"Spectroscopic trace gas detection in air-based gas mixtures: Some methods and applications for breath analysis and environmental monitoring","volume":"131","author":"Xia","year":"2022","journal-title":"J. Appl. Phys."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"5245","DOI":"10.1038\/s41467-020-19085-1","article-title":"Non-dispersive infrared multi-gas sensing via nanoantenna integrated narrowband detectors","volume":"11","author":"Tan","year":"2020","journal-title":"Nat. Commun."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1364\/PRJ.411870","article-title":"Ultra-wide-dynamic-range gas sensing by optical pathlength multiplexed absorption spectroscopy","volume":"9","author":"Lou","year":"2021","journal-title":"Photon. Res."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1322","DOI":"10.1364\/OPTICA.4.001322","article-title":"Methane absorption spectroscopy on a silicon photonic chip","volume":"4","author":"Tombez","year":"2017","journal-title":"Optica"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"107638","DOI":"10.1016\/j.optlastec.2021.107638","article-title":"Sub parts-per-billion detection of ethane in a 30-meters long mid-IR Antiresonant Hollow-Core Fiber","volume":"147","author":"Jaworski","year":"2022","journal-title":"Opt. Laser Technol."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1685","DOI":"10.1021\/acssensors.2c00373","article-title":"Mobile vehicle measurement of urban atmospheric CH4\/C2H6 using a mid-infrared dual-gas sensor system based on interband cascade laser absorption spectroscopy","volume":"7","author":"Zheng","year":"2022","journal-title":"ACS Sens."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"2215","DOI":"10.1007\/s10765-014-1586-4","article-title":"Cavity-Enhanced Absorption Spectroscopy and Photoacoustic Spectroscopy for Human Breath Analysis","volume":"35","author":"Wojtas","year":"2014","journal-title":"Int. J. Thermophys."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"3109","DOI":"10.1364\/OL.42.003109","article-title":"Whispering-gallery-mode laser-based noise-immune cavity-enhanced optical heterodyne molecular spectrometry","volume":"42","author":"Zhao","year":"2017","journal-title":"Opt. Lett."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"378","DOI":"10.1080\/05704928.2021.1894438","article-title":"Application of frequency-locking cavity-enhanced spectroscopy for highly sensitive gas sensing: A review","volume":"57","author":"Hu","year":"2021","journal-title":"Appl. Spectrosc. Rev."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"1595","DOI":"10.1126\/science.1123921","article-title":"Broadband Cavity Ringdown Spectroscopy for Sensitive and Rapid Molecular Detection","volume":"311","author":"Thorpe","year":"2006","journal-title":"Science"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1021\/acs.analchem.0c04329","article-title":"Cavity Ring-Down Spectroscopy: Recent Technological Advancements, Techniques, and Applications","volume":"93","author":"Maity","year":"2021","journal-title":"Anal. Chem."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"847","DOI":"10.1038\/s41467-020-14707-0","article-title":"Mode-phase-difference photothermal spectroscopy for gas detection with an anti-resonant hollow-core optical fiber","volume":"11","author":"Zhao","year":"2020","journal-title":"Nat. Commun."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"130528","DOI":"10.1016\/j.snb.2021.130528","article-title":"Heterodyne interferometric photothermal spectroscopy for gas detection in a hollow-core fiber","volume":"346","author":"Yao","year":"2021","journal-title":"Sens. Actuators B Chem."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"2181","DOI":"10.1038\/s41467-022-29865-6","article-title":"Dual-comb photothermal spectroscopy","volume":"13","author":"Wang","year":"2022","journal-title":"Nat. Commun."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Pan, Y., Dong, L., Yin, X., and Wu, H. (2020). Compact and Highly Sensitive NO2 Photoacoustic Sensor for Environmental Monitoring. Molecules, 25.","DOI":"10.3390\/molecules25051201"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"A224","DOI":"10.1364\/OE.27.00A224","article-title":"Highly sensitive photoacoustic multicomponent gas sensor for SF6 decomposition online monitoring","volume":"27","author":"Yin","year":"2019","journal-title":"Opt. Express"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"100382","DOI":"10.1016\/j.pacs.2022.100382","article-title":"Small-volume highly-sensitive all-optical gas sensor using non-resonant photoacoustic spectroscopy with dual silicon cantilever optical microphones","volume":"27","author":"Fu","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"12092","DOI":"10.3390\/s150512092","article-title":"LED-Absorption-QEPAS Sensor for Biogas Plants","volume":"15","author":"Willer","year":"2015","journal-title":"Sensors"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"126753","DOI":"10.1016\/j.snb.2019.126753","article-title":"Atmospheric CH4 measurement near a landfill using an ICL-based QEPAS sensor with V-T relaxation self-calibration","volume":"297","author":"Wu","year":"2019","journal-title":"Sens. Actuators B Chem."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"100363","DOI":"10.1016\/j.pacs.2022.100363","article-title":"Quartz-enhanced photoacoustic NH3 sensor exploiting a large-prong-spacing quartz tuning fork and an optical fiber amplifier for biomedical applications","volume":"26","author":"Shang","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1902","DOI":"10.1364\/OL.27.001902","article-title":"Quartz-enhanced photoacoustic spectroscopy","volume":"27","author":"Kosterev","year":"2002","journal-title":"Opt. Lett."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"043105","DOI":"10.1063\/1.1884196","article-title":"Applications of quartz tuning forks in spectroscopic gas sensing","volume":"76","author":"Kosterev","year":"2005","journal-title":"Rev. Sci. Instrum."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1119\/1.2711826","article-title":"Introduction to the quartz tuning fork","volume":"75","author":"Friedt","year":"2007","journal-title":"Am. J. Phys."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1594","DOI":"10.1364\/OL.34.001594","article-title":"Off-beam quartz-enhanced photoacoustic spectroscopy","volume":"34","author":"Liu","year":"2009","journal-title":"Opt. Lett."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1007\/s00340-017-6640-z","article-title":"Theoretical analysis of a resonant quartz-enhanced photoacoustic spectroscopy sensor","volume":"123","author":"Aoust","year":"2017","journal-title":"Appl. Phys. B"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"15331","DOI":"10.1038\/ncomms15331","article-title":"Beat frequency quartz-enhanced photoacoustic spectroscopy for fast and calibration-free continuous trace-gas monitoring","volume":"8","author":"Wu","year":"2017","journal-title":"Nat. Commun."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"011106","DOI":"10.1063\/1.5013612","article-title":"Recent advances in quartz enhanced photoacoustic sensing","volume":"5","author":"Patimisco","year":"2018","journal-title":"Appl. Phys. Rev."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1016\/j.cplett.2017.12.006","article-title":"Application of acoustic micro-resonators in quartz-enhanced photoacoustic spectroscopy for trace gas analysis","volume":"691","author":"Zheng","year":"2018","journal-title":"Chem. Phys. Lett."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"5834","DOI":"10.1021\/acs.analchem.9b00182","article-title":"Ppb-Level Quartz-Enhanced Photoacoustic Detection of Carbon Monoxide Exploiting a Surface Grooved Tuning Fork","volume":"91","author":"Li","year":"2019","journal-title":"Anal. Chem."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"268","DOI":"10.3389\/fphy.2020.00268","article-title":"Recent Advances in QEPAS and QEPTS Based Trace Gas Sensing: A Review","volume":"8","author":"Ma","year":"2020","journal-title":"Front. Phys."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"100169","DOI":"10.1016\/j.pacs.2020.100169","article-title":"Towards low-cost QEPAS sensors for nitrogen dioxide detection","volume":"18","author":"Breitegger","year":"2020","journal-title":"Photoacoustics"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"3917","DOI":"10.1364\/OL.432308","article-title":"Radial-cavity quartz-enhanced photoacoustic spectroscopy","volume":"46","author":"Lv","year":"2021","journal-title":"Opt. Lett."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"100332","DOI":"10.1016\/j.pacs.2022.100332","article-title":"Integrated near-infrared QEPAS sensor based on a 28 kHz quartz tuning fork for online monitoring of CO2 in the greenhouse","volume":"25","author":"Liu","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"100387","DOI":"10.1016\/j.pacs.2022.100387","article-title":"Doubly resonant sub-ppt photoacoustic gas detection with eight decades dynamic range","volume":"27","author":"Wang","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"100403","DOI":"10.1016\/j.pacs.2022.100403","article-title":"Dual-comb quartz-enhanced photoacoustic spectroscopy","volume":"28","author":"Ren","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1937","DOI":"10.1063\/1.1353198","article-title":"Application of acoustic resonators in photoacoustic trace gas analysis and metrology","volume":"72","author":"Hess","year":"2001","journal-title":"Rev. Sci. Instrum."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.snb.2018.11.163","article-title":"Parts-per-billion-level detection of hydrogen sulfide based on near-infrared all-optical photoacoustic spectroscopy","volume":"283","author":"Chen","year":"2019","journal-title":"Sens. Actuators B Chem."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"1905","DOI":"10.5194\/amt-12-1905-2019","article-title":"Cavity-enhanced photoacoustic sensor based on a whispering-gallery-mode diode laser","volume":"12","author":"Pan","year":"2019","journal-title":"Atmos. Meas. Tech."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1021\/acssensors.9b02448","article-title":"ppb-Level SO2 Photoacoustic Sensors with a Suppressed Absorption\u2013Desorption Effect by Using a 7.41 \u03bcm External-Cavity Quantum Cascade Laser","volume":"5","author":"Yin","year":"2020","journal-title":"ACS Sens."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"100216","DOI":"10.1016\/j.pacs.2020.100216","article-title":"Ppb-level detection of methane based on an optimized T-type photoacoustic cell and a NIR diode laser","volume":"21","author":"Gong","year":"2021","journal-title":"Photoacoustics"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"100229","DOI":"10.1016\/j.pacs.2020.100229","article-title":"Development of a 443 nm diode laser-based differential photoacoustic spectrometer for simultaneous measurements of aerosol absorption and NO2","volume":"21","author":"Cao","year":"2021","journal-title":"Photoacoustics"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"100353","DOI":"10.1016\/j.pacs.2022.100353","article-title":"Ultra-sensitive ppb-level methane detection based on NIR all-optical photoacoustic spectroscopy by using differential fiber-optic microphones with gold-chromium composite nanomembrane","volume":"26","author":"Xiao","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"34258","DOI":"10.1364\/OE.441698","article-title":"Near-infrared laser photoacoustic gas sensor for simultaneous detection of CO and H2S","volume":"29","author":"Yin","year":"2022","journal-title":"Opt. Express"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"108211","DOI":"10.1016\/j.optlastec.2022.108211","article-title":"The effect of the photoacoustic Field-Photoacoustic cell coupling term on the performance of the gas detection system","volume":"153","author":"Cheng","year":"2022","journal-title":"Opt. Laser Technol."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"627","DOI":"10.1007\/s00340-010-4072-0","article-title":"QEPAS spectrophones: Design, optimization, and performance","volume":"100","author":"Dong","year":"2010","journal-title":"Appl. Phys. B Laser Opt."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"9302","DOI":"10.1364\/OE.27.009302","article-title":"Compact and sensitive mid-infrared all-fiber quartz-enhanced photoacoustic spectroscopy sensor for carbon monoxide detection","volume":"27","author":"Ma","year":"2019","journal-title":"Opt. Express"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"2502","DOI":"10.1364\/OL.37.002502","article-title":"Quartz enhanced photoacoustic spectroscopy with a 338 \u03bcm antimonide distributed feedback laser","volume":"37","author":"Jahjah","year":"2012","journal-title":"Opt. Lett."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"666","DOI":"10.1016\/j.snb.2015.06.049","article-title":"Enhanced near-infrared QEPAS sensor for sub-ppm level H2S detection by means of a fiber amplified 1582 nm DFB laser","volume":"221","author":"Wu","year":"2015","journal-title":"Sens. Actuators B Chem."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"147","DOI":"10.1007\/s00340-016-6435-7","article-title":"Optical fiber tip-based quartz-enhanced photoacoustic sensor for trace gas detection","volume":"122","author":"Li","year":"2016","journal-title":"Appl. Phys. B"},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"241102","DOI":"10.1063\/1.5003121","article-title":"Long distance, distributed gas sensing based on micro-nano fiber evanescent wave quartz-enhanced photoacoustic spectroscopy","volume":"111","author":"He","year":"2017","journal-title":"Appl. Phys. Lett."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.snb.2014.11.015","article-title":"Ppb-level QEPAS NO2 sensor by use of electrical modulation cancellation method with a high power blue LED","volume":"208","author":"Zheng","year":"2015","journal-title":"Sens. Actuators B Chem."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"121104","DOI":"10.1063\/1.4979085","article-title":"Simultaneous dual-gas QEPAS detection based on a fundamental and overtone combined vibration of quartz tuning fork","volume":"110","author":"Wu","year":"2017","journal-title":"Appl. Phys. Lett."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"091114","DOI":"10.1063\/1.4867268","article-title":"Intracavity quartz-enhanced photoacoustic sensor","volume":"104","author":"Borri","year":"2014","journal-title":"Appl. Phys. Lett."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"161101","DOI":"10.1063\/5.0047963","article-title":"Multiple-sound-source-excitation quartz-enhanced photoacoustic spectroscopy based on a single-line spot pattern multi-pass cell","volume":"118","author":"Cui","year":"2021","journal-title":"Appl. Phys. Lett."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"131510","DOI":"10.1016\/j.snb.2022.131510","article-title":"Calibration-free mid-infrared exhaled breath sensor based on BF-QEPAS for real-time ammonia measurements at ppb level","volume":"358","author":"Li","year":"2022","journal-title":"Sens. Actuators B Chem."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"100319","DOI":"10.1016\/j.pacs.2021.100319","article-title":"Compact QEPAS humidity sensor in SF6 buffer gas for high-voltage gas power systems","volume":"25","author":"Yin","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"32103","DOI":"10.1364\/OE.26.032103","article-title":"Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection","volume":"26","author":"Ma","year":"2018","journal-title":"Opt. Express"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"1904","DOI":"10.1364\/OL.44.001904","article-title":"Ultra-high sensitive light-induced thermoelastic spectroscopy sensor with a high Q-factor quartz tuning fork and a multipass cell","volume":"44","author":"He","year":"2019","journal-title":"Opt. Lett."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"011103","DOI":"10.1063\/1.5129014","article-title":"Ultra-high sensitive trace gas detection based on light-induced thermoelastic spectroscopy and a custom quartz tuning fork","volume":"116","author":"Ma","year":"2020","journal-title":"Appl. Phys. Lett."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"1894","DOI":"10.1364\/OL.388754","article-title":"Compact all-fiber light-induced thermoelastic spectroscopy for gas sensing","volume":"45","author":"Hu","year":"2020","journal-title":"Opt. Lett."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"041409","DOI":"10.1063\/5.0062415","article-title":"High and flat spectral responsivity of quartz tuning fork used as infrared photodetector in tunable diode laser spectroscopy","volume":"8","author":"Wei","year":"2021","journal-title":"Appl. Phys. Rev."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"104322","DOI":"10.1016\/j.infrared.2022.104322","article-title":"Miniature quartz tuning fork-based broad spectral coverage and high detectivity infrared spectroscopy","volume":"126","author":"Lou","year":"2022","journal-title":"Infrared Phys. Technol."},{"key":"ref_72","first-page":"B119","article-title":"Resonant tuning fork detector for electromagnetic radiation","volume":"48","author":"Willer","year":"2008","journal-title":"Appl. Opt."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"14069","DOI":"10.1364\/OE.17.014069","article-title":"Resonant tuning fork detector for THz radiation","volume":"17","author":"Willer","year":"2009","journal-title":"Opt. Express"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"234102","DOI":"10.1063\/1.2945288","article-title":"Standoff photoacoustic spectroscopy","volume":"92","author":"Senesac","year":"2008","journal-title":"Appl. Phys. Lett."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"1952","DOI":"10.1021\/ac802364e","article-title":"Standoff Spectroscopy of Surface Adsorbed Chemicals","volume":"81","author":"Senesac","year":"2009","journal-title":"Anal. Chem."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"201111","DOI":"10.1063\/1.4830417","article-title":"Thermoelastic investigation of a quartz tuning fork used in infrared spectroscopy","volume":"103","author":"Spajer","year":"2013","journal-title":"Appl. Phys. Lett."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"085701","DOI":"10.1088\/1612-202X\/aac356","article-title":"Standoff detection of VOCs using external cavity quantum cascade laser spectroscopy","volume":"15","author":"Liu","year":"2018","journal-title":"Laser Phys. Lett."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"15053","DOI":"10.1038\/s41598-020-71937-4","article-title":"Standoff pump-probe photothermal detection of hazardous chemicals","volume":"10","author":"Sharma","year":"2020","journal-title":"Sci. Rep."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1016\/j.snb.2010.06.045","article-title":"Quartz crystal tuning fork photoacoustic point sensing","volume":"150","author":"Senesac","year":"2010","journal-title":"Sens. Actuators B Chem."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"123101","DOI":"10.1063\/1.4968041","article-title":"Mid-infrared gas absorption sensor based on a broadband external cavity quantum cascade laser","volume":"87","author":"Sun","year":"2016","journal-title":"Rev. Sci. Instrum."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"1592","DOI":"10.1109\/LPT.2019.2939046","article-title":"Application of Quartz Tuning Fork in Photodetector Based on Photothermal Effect","volume":"31","author":"Zhang","year":"2019","journal-title":"IEEE Photo. Technol. Lett."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.optlastec.2018.12.037","article-title":"Realization of a infrared detector free of bandwidth limit based on quartz crystal tuning fork","volume":"113","author":"Zhou","year":"2019","journal-title":"Opt. Laser Technol."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.optlaseng.2018.11.020","article-title":"Piezoelectric effect-based detector for spectroscopic application","volume":"115","author":"Li","year":"2019","journal-title":"Opt. Lasers Eng."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"1875","DOI":"10.1364\/OL.452984","article-title":"Ultra-broadband optical detection from the visible to the terahertz range using a miniature quartz tuning fork","volume":"47","author":"Lou","year":"2022","journal-title":"Opt. Lett."},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"12357","DOI":"10.1364\/OE.423217","article-title":"Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector","volume":"29","author":"Wei","year":"2021","journal-title":"Opt. Express"},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"14153","DOI":"10.1021\/acs.analchem.0c03233","article-title":"Multigas Sensing Technique Based on Quartz Crystal Tuning Fork-Enhanced Laser Spectroscopy","volume":"92","author":"Xu","year":"2020","journal-title":"Anal. Chem."},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"1304","DOI":"10.1364\/OE.446294","article-title":"Highly sensitive methane detection based on light-induced thermoelastic spectroscopy with a 2.33 \u00b5m diode laser and adaptive Savitzky-Golay filtering","volume":"30","author":"Liu","year":"2022","journal-title":"Opt. Express"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"23213","DOI":"10.1364\/OE.430745","article-title":"Light-induced off-axis cavity-enhanced thermoelastic spectroscopy in the near-infrared for trace gas sensing","volume":"29","author":"Zheng","year":"2021","journal-title":"Opt. Express"},{"key":"ref_89","doi-asserted-by":"crossref","unstructured":"Mi, Y., and Ma, Y. (2021). Ultra-Highly Sensitive Ammonia Detection Based on Light-Induced Thermoelastic Spectroscopy. Sensors, 21.","DOI":"10.3390\/s21134548"},{"key":"ref_90","doi-asserted-by":"crossref","unstructured":"Ma, Y., Lang, Z., He, Y., Qiao, S., and Li, Y. (2021). Ultra-Highly Sensitive Hydrogen Chloride Detection Based on Quartz-Enhanced Photothermal Spectroscopy. Sensors, 21.","DOI":"10.3390\/s21103563"},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"5648","DOI":"10.1364\/OE.386205","article-title":"Dual-frequency modulation quartz crystal tuning fork\u2013enhanced laser spectroscopy","volume":"28","author":"Xu","year":"2020","journal-title":"Opt. Express"},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1007\/s00340-018-6950-9","article-title":"Quartz tuning fork-based photodetector for mid-infrared laser spectroscopy","volume":"124","author":"Ding","year":"2018","journal-title":"Appl. Phys. B"},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"107601","DOI":"10.1016\/j.measurement.2020.107601","article-title":"Long-path quartz tuning fork enhanced photothermal spectroscopy gas sensor using a high power Q-switched fiber laser","volume":"156","author":"Zhang","year":"2020","journal-title":"Measurement"},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"582503","DOI":"10.3389\/fphy.2020.582503","article-title":"Quartz-Tuning-Fork-Enhanced Spectroscopy Based on Fast Fourier Transform Algorithm","volume":"8","author":"Yang","year":"2020","journal-title":"Front. Phys."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"120608","DOI":"10.1016\/j.saa.2021.120608","article-title":"Quartz crystal tuning fork based 2f\/1f wavelength modulation spectroscopy","volume":"267","author":"Xu","year":"2021","journal-title":"Spectrochim. Acta Part A Mol. Biomol. Spectrosc."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"132429","DOI":"10.1016\/j.snb.2022.132429","article-title":"High-robustness near-infrared methane sensor system using self-correlated heterodyne-based light-induced thermoelastic spectroscopy","volume":"370","author":"Ma","year":"2022","journal-title":"Sens. Actuators B Chem."},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"104091","DOI":"10.1016\/j.infrared.2022.104091","article-title":"Long-distance free space gas detection system based on QEPTS technique for CH4 leakage monitoring","volume":"122","author":"Zhang","year":"2022","journal-title":"Infrared Phys. Technol."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"100422","DOI":"10.1016\/j.pacs.2022.100422","article-title":"Highly sensitive HF detection based on absorption enhanced light-induced thermoelastic spectroscopy with a quartz tuning fork of receive and shallow neural network fitting","volume":"28","author":"Liu","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.infrared.2016.01.006","article-title":"A near-infrared acetylene detection system based on a 1.534 \u03bcm tunable diode laser and a miniature gas chamber","volume":"75","author":"He","year":"2016","journal-title":"Infrared Phys. Technol."},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"031107","DOI":"10.1063\/1.4974483","article-title":"Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork","volume":"110","author":"Ma","year":"2017","journal-title":"Appl. Phys. Lett."},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"13034","DOI":"10.1021\/acs.analchem.0c01931","article-title":"Three-Dimensional Printed Miniature Fiber-Coupled Multipass Cells with Dense Spot Patterns for ppb-Level Methane Detection Using a Near-IR Diode Laser","volume":"92","author":"Cui","year":"2020","journal-title":"Anal. Chem."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"5121","DOI":"10.1364\/OE.418256","article-title":"Quartz-enhanced photoacoustic-photothermal spectroscopy for trace gas sensing","volume":"29","author":"Hu","year":"2021","journal-title":"Opt. Express"},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"111873","DOI":"10.1016\/j.sna.2020.111873","article-title":"Dual-spectroscopy technique based on quartz crystal tuning fork detector","volume":"304","author":"Xu","year":"2020","journal-title":"Sens. Actuators A Phys."},{"key":"ref_104","doi-asserted-by":"crossref","unstructured":"Zheng, H., Lin, H., Dong, L., Huang, Z., Gu, X., Tang, J., Dong, L., Zhu, W., Yu, J., and Chen, Z. (2019). Quartz-Enhanced Photothermal-Acoustic Spectroscopy for Trace Gas Analysis. Appl. Sci., 9.","DOI":"10.3390\/app9194021"},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"2449","DOI":"10.1364\/OL.423801","article-title":"Trace gas sensing based on single-quartz-enhanced photoacoustic\u2013photothermal dual spectroscopy","volume":"46","author":"Qiao","year":"2021","journal-title":"Opt. Lett."},{"key":"ref_106","doi-asserted-by":"crossref","first-page":"107483","DOI":"10.1016\/j.optlastec.2021.107483","article-title":"A comprehensive dual-spectroscopy detection technique based on TDLAS and QEPAS using a quartz tuning fork","volume":"145","author":"Wang","year":"2022","journal-title":"Opt. Laser Technol."},{"key":"ref_107","doi-asserted-by":"crossref","unstructured":"Liang, T., Qiao, S., Lang, Z., and Ma, Y. (2022). Highly Sensitive Trace Gas Detection Based on In-Plane Single-Quartz-Enhanced Dual Spectroscopy. Sensors, 22.","DOI":"10.3390\/s22031035"},{"key":"ref_108","doi-asserted-by":"crossref","first-page":"111629","DOI":"10.1016\/j.sna.2019.111629","article-title":"Quartz tuning fork enhanced photothermal spectroscopy gas detection system with a novel QTF-self-difference technique","volume":"209","author":"Zhang","year":"2019","journal-title":"Sens. Actuators A Phys."},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"100272","DOI":"10.1016\/j.pacs.2021.100272","article-title":"Quartz tuning fork-based demodulation of an acoustic signal induced by photo-thermo-elastic energy conversion","volume":"22","author":"Lang","year":"2021","journal-title":"Photoacoustics"},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"100329","DOI":"10.1016\/j.pacs.2022.100329","article-title":"Quartz tuning forks resonance frequency matching for laser spectroscopy sensing","volume":"25","author":"Ma","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"021106","DOI":"10.1063\/1.4927057","article-title":"Multi-quartz-enhanced photoacoustic spectroscopy","volume":"107","author":"Ma","year":"2015","journal-title":"Appl. Phys. Lett."},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"100206","DOI":"10.1016\/j.pacs.2020.100206","article-title":"Trace gas sensing based on multi-quartz-enhanced photothermal spectroscopy","volume":"20","author":"Ma","year":"2020","journal-title":"Photoacoustics"},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"128951","DOI":"10.1016\/j.snb.2020.128951","article-title":"Absorption spectroscopy gas sensor using a low-cost quartz crystal tuning fork with an ultrathin iron doped cobaltous oxide coating","volume":"326","author":"Zhou","year":"2021","journal-title":"Sens. Actuators B Chem."},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"9819","DOI":"10.1109\/JSEN.2021.3059905","article-title":"Graphene-Enhanced Quartz Tuning Fork for Laser-Induced Thermoelastic Spectroscopy","volume":"21","author":"Lou","year":"2021","journal-title":"IEEE Sens. J."},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"12195","DOI":"10.1364\/OE.421356","article-title":"Polymer-coated quartz tuning fork for enhancing the sensitivity of laser-induced thermoelastic spectroscopy","volume":"29","author":"Lou","year":"2021","journal-title":"Opt. Express"},{"key":"ref_116","doi-asserted-by":"crossref","first-page":"20190","DOI":"10.1364\/OE.428003","article-title":"Graphene oxide and polydimethylsiloxane coated quartz tuning fork for improved sensitive near- and mid-infrared detection","volume":"29","author":"Lou","year":"2021","journal-title":"Opt. Express"},{"key":"ref_117","doi-asserted-by":"crossref","first-page":"496","DOI":"10.1364\/OL.406103","article-title":"Ultrathin two-dimensional Fe-doped cobaltous oxide as a piezoelectric enhancement mechanism in quartz crystal tuning fork (QCTF) photodetectors","volume":"46","author":"Zhou","year":"2021","journal-title":"Opt. Lett."},{"key":"ref_118","first-page":"1","article-title":"Carbon-based light-induced thermoelastic spectroscopy for ammonia gas sensing","volume":"2022","author":"Wang","year":"2022","journal-title":"Microw. Opt. Technol. Lett."},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"10459","DOI":"10.1109\/JSEN.2022.3171607","article-title":"Reduced Graphene Oxide\/Polydimethylsiloxane as an Over-Coating Layer on Quartz Tuning Fork for Sensitive Light-Induced Thermoelastic Spectroscopy","volume":"22","author":"Lou","year":"2022","journal-title":"IEEE Sens. J."},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"2079","DOI":"10.1039\/C3AN01219K","article-title":"A quartz enhanced photo-acoustic gas sensor based on a custom tuning fork and a terahertz quantum cascade laser","volume":"139","author":"Patimisco","year":"2014","journal-title":"Analyst"},{"key":"ref_121","doi-asserted-by":"crossref","unstructured":"Duquesnoy, M., Aoust, G., Melkonian, J.-M., L\u00e9vy, R., Raybaut, M., and Godard, A. (2019). Quartz Enhanced Photoacoustic Spectroscopy Based on a Custom Quartz Tuning Fork. Sensors, 19.","DOI":"10.3390\/s19061362"},{"key":"ref_122","doi-asserted-by":"crossref","first-page":"13922","DOI":"10.1021\/acs.analchem.0c02772","article-title":"Mid-Infrared Quartz-Enhanced Photoacoustic Sensor for ppb-Level CO Detection in a SF6 Gas Matrix Exploiting a T-Grooved Quartz Tuning Fork","volume":"92","author":"Sun","year":"2020","journal-title":"Anal. Chem."},{"key":"ref_123","doi-asserted-by":"crossref","first-page":"100227","DOI":"10.1016\/j.pacs.2020.100227","article-title":"Quartz-enhanced photoacoustic spectroscopy exploiting low-frequency tuning forks as a tool to measure the vibrational relaxation rate in gas species","volume":"21","author":"Russo","year":"2021","journal-title":"Photoacoustics"},{"key":"ref_124","doi-asserted-by":"crossref","first-page":"338894","DOI":"10.1016\/j.aca.2021.338894","article-title":"Quartz-enhanced photoacoustic spectroscopy for multi-gas detection: A review","volume":"1202","author":"Sampaolo","year":"2022","journal-title":"Anal. Chim. Acta"},{"key":"ref_125","doi-asserted-by":"crossref","first-page":"100325","DOI":"10.1016\/j.pacs.2021.100325","article-title":"Compact quartz-enhanced photoacoustic sensor for ppb-level ambient NO2 detection by use of a high-power laser diode and a grooved tuning fork","volume":"25","author":"Li","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_126","doi-asserted-by":"crossref","first-page":"100330","DOI":"10.1016\/j.pacs.2022.100330","article-title":"Mid-infrared intracavity quartz-enhanced photoacoustic spectroscopy with pptv\u2013Level sensitivity using a T-shaped custom tuning fork","volume":"25","author":"Hayden","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_127","doi-asserted-by":"crossref","first-page":"19074","DOI":"10.1364\/OE.393292","article-title":"Light-induced thermo-elastic effect in quartz tuning forks exploited as a photodetector in gas absorption spectroscopy","volume":"28","author":"Russo","year":"2020","journal-title":"Opt. Express"},{"key":"ref_128","doi-asserted-by":"crossref","first-page":"25100","DOI":"10.1364\/OE.434128","article-title":"Ppt level carbon monoxide detection based on light-induced thermoelastic spectroscopy exploring custom quartz tuning forks and a mid-infrared QCL","volume":"29","author":"Qiao","year":"2021","journal-title":"Opt. Express"},{"key":"ref_129","doi-asserted-by":"crossref","first-page":"100381","DOI":"10.1016\/j.pacs.2022.100381","article-title":"Ultra-highly sensitive HCl-LITES sensor based on a low-frequency quartz tuning fork and a fiber-coupled multi-pass cell","volume":"27","author":"Qiao","year":"2022","journal-title":"Photoacoustics"},{"key":"ref_130","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1016\/j.snb.2015.12.096","article-title":"Analysis of the electro-elastic properties of custom quartz tuning forks for optoacoustic gas sensing","volume":"227","author":"Patimisco","year":"2016","journal-title":"Sens. Actuators B Chem."},{"key":"ref_131","doi-asserted-by":"crossref","first-page":"1401","DOI":"10.1364\/OE.27.001401","article-title":"Tuning forks with optimized geometries for quartz-enhanced photoacoustic spectroscopy","volume":"27","author":"Patimisco","year":"2019","journal-title":"Opt. Express"},{"key":"ref_132","doi-asserted-by":"crossref","first-page":"4271","DOI":"10.1364\/OE.27.004271","article-title":"Quartz-enhanced photoacoustic sensor for ethylene detection implementing optimized custom tuning fork-based spectrophone","volume":"27","author":"Giglio","year":"2019","journal-title":"Opt. Express"},{"key":"ref_133","doi-asserted-by":"crossref","first-page":"18836","DOI":"10.1364\/OE.460134","article-title":"Hollow-core anti-resonant fiber based light-induced thermoelastic spectroscopy for gas sensing","volume":"30","author":"Ma","year":"2022","journal-title":"Opt. Express"},{"key":"ref_134","doi-asserted-by":"crossref","unstructured":"Boj\u0119\u015b, P., Pokryszka, P., Jaworski, P., Yu, F., Wu, D., and Krzempek, K. (2022). Quartz-Enhanced Photothermal Spectroscopy-Based Methane Detection in an Anti-Resonant Hollow-Core Fiber. Sensors, 22.","DOI":"10.3390\/s22155504"},{"key":"ref_135","doi-asserted-by":"crossref","first-page":"100230","DOI":"10.1016\/j.pacs.2020.100230","article-title":"Long-distance in-situ methane detection using near-infrared light-induced thermo-elastic spectroscopy","volume":"21","author":"Hu","year":"2021","journal-title":"Photoacoustics"},{"key":"ref_136","doi-asserted-by":"crossref","first-page":"9510409","DOI":"10.1109\/TIM.2021.3088478","article-title":"Near-Infrared Fiber-Coupled Off-Axis Cavity-Enhanced Thermoelastic Spectroscopic Sensor System for In Situ Multipoint Ammonia Leak Monitoring","volume":"70","author":"Zheng","year":"2021","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_137","doi-asserted-by":"crossref","first-page":"031201","DOI":"10.3788\/COL202220.031201","article-title":"Sensitive carbon monoxide detection based on light-induced thermoelastic spectroscopy with a fiber-coupled multipass cell","volume":"20","author":"Liu","year":"2022","journal-title":"Chin. Opt. Lett."},{"key":"ref_138","doi-asserted-by":"crossref","first-page":"100389","DOI":"10.1016\/j.pacs.2022.100389","article-title":"All-optical light-induced thermoacoustic spectroscopy for remote and non-contact gas sensing","volume":"27","author":"Pan","year":"2022","journal-title":"Photoacoustics"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/1\/69\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,15]],"date-time":"2025-01-15T08:04:54Z","timestamp":1736928294000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/1\/69"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12,23]]},"references-count":138,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,1]]}},"alternative-id":["rs15010069"],"URL":"https:\/\/doi.org\/10.3390\/rs15010069","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2022,12,23]]}}}