{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,16]],"date-time":"2025-01-16T12:22:36Z","timestamp":1737030156836,"version":"3.33.0"},"reference-count":46,"publisher":"MDPI AG","issue":"1","license":[{"start":{"date-parts":[[2022,12,21]],"date-time":"2022-12-21T00:00:00Z","timestamp":1671580800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"crossref","award":["41906199"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"crossref"}]},{"name":"National Space Science Center of the Chinese Academy of Sciences","award":["EOPD40012S"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The Sentinel-6 Michael Freilich (S6-MF) satellite was launched on 21st November 2020. Poseidon-4, the main payload onboard S6-MF, is the first synthetic aperture radar (SAR) altimeter operating in an interleaved open burst mode. In this study, the sea surface height (SSH), significant wave height (SWH) and wind speed observations from the Poseidon-4 Level 2 altimetry products from November 2021 to October 2022 are assessed. The assessment contains synthetic aperture radar mode (SARM) as well as low-resolution mode (LRM) data. The SSH assessment is conducted using range noise, sea level anomaly (SLA) spectral analysis and crossover analysis, whereas the SWH and wind speed assessments are performed against NDBC buoy data and other satellite altimetry missions. The performance of the Sentinel-6 altimetry data is compared to those of Sentinel-3A\/B and Jason-3 altimetry data. The 20 Hz range noise is 3.07 cm for SARM and 6.40 cm for LRM when SWH is 2 m. The standard deviation (STD) of SSH differences at crossovers is 3.76 cm for SARM and 4.27 cm for LRM. Compared against the NDBC measurements, the Sentinel-6 SWH measurements have a root-mean-square error (RMSE) of 0.361 m for SARM and an RMSE of 0.225 m for LRM. The Sentinel-6 wind speed measurements show an RMSE of 1.216 m\/s for SARM and an RMSE of 1.323 m\/s for LRM. We also present the impacts of ocean waves on parameter retrievals from Sentinel-6 SARM data. The Sentinel-6 SARM data are sensitive to wave period and direction as well as vertical velocity. It should be paid attention to in the future.<\/jats:p>","DOI":"10.3390\/rs15010012","type":"journal-article","created":{"date-parts":[[2022,12,21]],"date-time":"2022-12-21T08:31:06Z","timestamp":1671611466000},"page":"12","source":"Crossref","is-referenced-by-count":0,"title":["Evaluation of Sentinel-6 Altimetry Data over Ocean"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4688-6260","authenticated-orcid":false,"given":"Maofei","family":"Jiang","sequence":"first","affiliation":[{"name":"The CAS Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences (CAS), Beijing 100190, China"}]},{"given":"Ke","family":"Xu","sequence":"additional","affiliation":[{"name":"The CAS Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences (CAS), Beijing 100190, China"}]},{"given":"Jiaming","family":"Wang","sequence":"additional","affiliation":[{"name":"The CAS Key Laboratory of Microwave Remote Sensing, National Space Science Center, Chinese Academy of Sciences (CAS), Beijing 100190, China"}]}],"member":"1968","published-online":{"date-parts":[[2022,12,21]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"281","DOI":"10.5194\/essd-10-281-2018","article-title":"An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative","volume":"10","author":"Legeais","year":"2018","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"963564","DOI":"10.3389\/fmars.2022.963564","article-title":"Barystatic and steric sea level variations in the Baltic Sea and implications of water exchange with the North Sea in the satellite era","volume":"9","author":"Karimi","year":"2022","journal-title":"Front. Mar. Sci."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Li, Z., Guo, J., Ji, B., Wan, X., and Zhang, S. (2022). A Review of Marine Gravity Field Recovery from Satellite Altimetry. Remote Sens., 14.","DOI":"10.3390\/rs14194790"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.geog.2019.11.003","article-title":"Using satellite altimetry leveling to assess the marine geoid","volume":"11","author":"Wang","year":"2020","journal-title":"Geod. Geodyn."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Fan, D., Li, S., Li, X., Yang, J., and Wan, X. (2021). Seafloor Topography Estimation from Gravity Anomaly and Vertical Gravity Gradient Using Nonlinear Iterative Least Square Method. Remote Sens., 13.","DOI":"10.3390\/rs13010064"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"615","DOI":"10.5194\/os-17-615-2021","article-title":"FES2014 global ocean tide atlas: Design and performance","volume":"17","author":"Lyard","year":"2021","journal-title":"Ocean Sci."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Quartly, G.D. (2019). Removal of Covariant Errors from Altimetric Wave Height Data. Remote Sens., 11.","DOI":"10.3390\/rs11192319"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Yu, F., Qi, J., Jia, Y., and Chen, G. (2022). Evaluation of HY-2 Series Satellites Mapping Capability on Mesoscale Eddies. Remote Sens., 14.","DOI":"10.3390\/rs14174262"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Jiang, L., Schneider, R., Andersen, O., and Bauer-Gottwein, P. (2017). CryoSat-2 Altimetry Applications over Rivers and Lakes. Water, 9.","DOI":"10.3390\/w9030211"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"111546","DOI":"10.1016\/j.rse.2019.111546","article-title":"Evaluation of Sentinel-3 SRAL SAR altimetry over Chinese rivers","volume":"237","author":"Jiang","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"109","DOI":"10.1016\/j.jhydrol.2016.11.024","article-title":"Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data","volume":"544","author":"Jiang","year":"2017","journal-title":"J. Hydrol."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"732","DOI":"10.1002\/grl.50193","article-title":"CryoSat-2 estimates of Arctic sea ice thickness and volume","volume":"40","author":"Laxon","year":"2013","journal-title":"Geophys. Res. Lett."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1016\/j.asr.2019.10.011","article-title":"Extending the Arctic sea ice freeboard and sea level record with the Sentinel-3 radar altimeters","volume":"68","author":"Lawrence","year":"2021","journal-title":"Adv. Space Res."},{"key":"ref_14","first-page":"20140157","article-title":"Variability of Arctic sea ice thickness and volume from CryoSat-2","volume":"373","author":"Kwok","year":"2015","journal-title":"Philos. Trans. A Math Phys. Eng. Sci."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1183","DOI":"10.1126\/science.1228102","article-title":"A Reconciled Estimate of Ice-Sheet Mass Balance","volume":"338","author":"Shepherd","year":"2012","journal-title":"Science"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"8174","DOI":"10.1029\/2019GL082182","article-title":"Trends in Antarctic Ice Sheet Elevation and Mass","volume":"46","author":"Shepherd","year":"2019","journal-title":"Geophys. Res. Lett."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.epsl.2015.04.016","article-title":"High resolution Greenland ice sheet inter-annual mass variations combining GRACE gravimetry and Envisat altimetry","volume":"422","author":"Su","year":"2015","journal-title":"Earth Planet. Sc. Lett."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1578","DOI":"10.1109\/36.718861","article-title":"The Delay\/Doppler Radar Altimeter","volume":"5","author":"Raney","year":"1998","journal-title":"IEEE T. Geosci. Remote"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"111548","DOI":"10.1016\/j.rse.2019.111548","article-title":"Validation of Sentinel-3A SAR mode sea level anomalies around the Australian coastal region","volume":"237","author":"Peng","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1109\/TGRS.2016.2601958","article-title":"CryoSat-2 SAR-Mode Over Oceans: Processing Methods, Global Assessment, and Benefits","volume":"55","author":"Boy","year":"2017","journal-title":"Ieee T. Geosci. Remote."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1564","DOI":"10.1016\/j.asr.2018.01.006","article-title":"From conventional to Delay Doppler altimetry: A demonstration of continuity and improvements with the Cryosat-2 mission","volume":"62","author":"Raynal","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"732","DOI":"10.1016\/j.asr.2020.02.001","article-title":"Toward improved sea ice freeboard observation with SAR altimetry using the physical retracker SAMOSA+","volume":"68","author":"Laforge","year":"2021","journal-title":"Adv. Space Res."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"709","DOI":"10.5194\/tc-13-709-2019","article-title":"Sentinel-3 Delay-Doppler altimetry over Antarctica","volume":"13","author":"McMillan","year":"2019","journal-title":"Cryosphere"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"112580","DOI":"10.1016\/j.rse.2021.112580","article-title":"Precise inland surface altimetry (PISA) with nadir specular echoes from Sentinel-3: Algorithm and performance assessment","volume":"264","author":"Abileah","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"841","DOI":"10.1016\/j.asr.2005.07.027","article-title":"CryoSat: A mission to determine the fluctuations in Earth\u2019s land and marine ice fields","volume":"37","author":"Wingham","year":"2006","journal-title":"Adv. Space Res."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.rse.2011.07.024","article-title":"The Global Monitoring for Environment and Security (GMES) Sentinel-3 mission","volume":"120","author":"Donlon","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"112395","DOI":"10.1016\/j.rse.2021.112395","article-title":"The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space","volume":"258","author":"Donlon","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Yang, J., and Zhang, J. (2019). Validation of Sentinel-3A\/3B Satellite Altimetry Wave Heights with Buoy and Jason-3 Data. Sensors, 19.","DOI":"10.3390\/s19132914"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"e2020JC016689","DOI":"10.1029\/2020JC016689","article-title":"Validation and Calibration of Nadir SWH Products From CFOSAT and HY-2B With Satellites and In Situ Observations","volume":"126","author":"Li","year":"2021","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"445","DOI":"10.1109\/JOE.1985.1145133","article-title":"A physical radar cross-section model for a wind-driven sea with swell","volume":"10","author":"Durden","year":"1985","journal-title":"Ieee J. Ocean. Eng."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1999","DOI":"10.1002\/qj.3803","article-title":"The ERA5 global reanalysis","volume":"146","author":"Hersbach","year":"2020","journal-title":"Q. J. Roy. Meteor. Soc."},{"key":"ref_32","unstructured":"Bignalet-Cazalet, F., Picot, N., Desai, S., Scharroo, R., and Egido, A. (2022, November 29). Jason-3 Products Handbook. Available online: https:\/\/www.aviso.altimetry.fr\/fileadmin\/documents\/data\/tools\/hdbk_j3.pdf."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.rse.2017.01.009","article-title":"Evaluation of new CryoSat-2 products over the ocean","volume":"191","author":"Calafat","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1331","DOI":"10.1175\/JTECH-D-17-0151.1","article-title":"Calibration and Validation of Reprocessed HY-2A Altimeter Wave Height Measurements Using Data from Buoys, Jason-2, Cryosat-2, and SARAL\/AltiKa","volume":"35","author":"Jiang","year":"2018","journal-title":"J. Atmos. Ocean. Tech."},{"key":"ref_35","unstructured":"Bronner, E., Picot, N., Carr\u00e8re, L., Desai, S., Desjonqu\u00e8res, J., and Tran, N. (2022, November 29). Jason-1 Products Handbook. Available online: https:\/\/www.aviso.altimetry.fr\/fileadmin\/documents\/data\/tools\/hdbk_j1_gdr.pdf."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Jia, Y., Yang, J., Lin, M., Zhang, Y., Ma, C., and Fan, C. (2020). Global Assessments of the HY-2B Measurements and Cross-Calibrations with Jason-3. Remote Sens., 12.","DOI":"10.3390\/rs12152470"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"1337","DOI":"10.1175\/JTECH-D-13-00081.1","article-title":"Investigating Short-Wavelength Correlated Errors on Low-Resolution Mode Altimetry","volume":"31","author":"Dibarboure","year":"2014","journal-title":"J. Atmos. Ocean. Tech."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1080\/01490419.2010.487805","article-title":"Jason-2 Global Statistical Assessment and Cross-Calibration with Jason-1","volume":"33","author":"Ablain","year":"2010","journal-title":"Mar. Geod."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1080\/714044519","article-title":"Comparison of the Ku-Band Range Noise Level and the Relative Sea-State Bias of the Jason-1, TOPEX, and Poseidon-1 Radar Altimeters","volume":"26","author":"Vincent","year":"2003","journal-title":"Mar. Geod."},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Yang, J., Zhang, J., Jia, Y., Fan, C., and Cui, W. (2020). Validation of Sentinel-3A\/3B and Jason-3 Altimeter Wind Speeds and Significant Wave Heights Using Buoy and ASCAT Data. Remote Sens., 12.","DOI":"10.3390\/rs12132079"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1434","DOI":"10.1016\/j.asr.2018.06.004","article-title":"Impact of long ocean waves on wave height retrieval from SAR altimetry data","volume":"62","author":"Moreau","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"7385","DOI":"10.1109\/TGRS.2016.2601242","article-title":"Dynamical Properties of Sea Surface Microwave Backscatter at Low-Incidence: Correlation Time and Doppler Shift","volume":"54","author":"Boisot","year":"2016","journal-title":"Ieee T. Geosci. Remote."},{"key":"ref_43","unstructured":"Egido, A., and Ray, C. (2022, November 29). Impact of the Ocean Waves Motion on the Delay-Doppler Altimeters Measurements. Available online: https:\/\/ostst.aviso.altimetry.fr\/fileadmin\/user_upload\/2019\/IPM_03_Egido20191022_-_OSTST_-_AEE.pdf."},{"key":"ref_44","unstructured":"Amarouche, L., Tran, N., and Boy, F. (2022, November 29). Impact of the Ocean Waves on the Delay\/Doppler Altimeters: Analysis Using Real Sentinel-3 Data. Available online: https:\/\/ostst.aviso.altimetry.fr\/fileadmin\/user_upload\/tx_ausyclsseminar\/files\/TranetAl_DopplerWaves_DataAnalysis_OSTST_2020.pdf."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"853","DOI":"10.1016\/j.asr.2020.07.015","article-title":"Impact of vertical water particle motions on focused SAR altimetry","volume":"68","author":"Buchhaupt","year":"2021","journal-title":"Adv. Space Res."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3389\/feart.2021.731610","article-title":"Investigation of the Anisotropic Patterns in the Altimeter Backscatter Measurements Over Ocean Wave Surfaces","volume":"9","author":"Xu","year":"2021","journal-title":"Front. Earth Sci."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/1\/12\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,15]],"date-time":"2025-01-15T07:39:32Z","timestamp":1736926772000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/15\/1\/12"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,12,21]]},"references-count":46,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,1]]}},"alternative-id":["rs15010012"],"URL":"https:\/\/doi.org\/10.3390\/rs15010012","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2022,12,21]]}}}