{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T00:14:29Z","timestamp":1723162469969},"reference-count":171,"publisher":"MDPI AG","issue":"21","license":[{"start":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T00:00:00Z","timestamp":1667260800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["42101302"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2021M703470"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"name":"2022 Special Regional Collaborative Innovation in Xinjiang Uygur Autonomous Region","award":["2022E01014"]},{"name":"Strategic Priority Research Program of the Chinese Academy of Sciences","award":["XDA2006030201"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The uncertainties in soil erosion (SE) are further intensified by various factors, such as global warming, regional warming and humidification, and vegetation cover changes. Moreover, quantitative evaluations of SE in major basins of Central Asia (CA) under changing environments have rarely been conducted. This study conducted quantitative evaluation of SE in four major basins (Syr Darya Basin (SDB), Amu Darya Basin (ADB), Ili River Basin (IRB) and Tarim River Basin (TRB) using the Revised Universal Soil Loss Equation (RUSLE) and analyzed the main driving factors. SE quantities in the basins presented relatively consistent upward fluctuating trends from 1982 to 2017. Vegetation cover variation fluctuated significantly from 1982 to 2017. Specifically, vegetation cover decreased continuously in SDB, ADB, and IRB, but increased gradually in TRB. Pixels with positive spatial variation of vegetation mainly occurred around lakes and oases near rivers. The Normalized Difference Vegetation Index (NDVI) showed higher correlation with precipitation (80.5%) than with temperature (48.3%). During the study period, the area of arable land (AL) exhibited the largest change among all land use types in CA. Under long-term human activities, the proportion of NDVI of other land types converting to AL was the highest. In the structural equation model (SEM), precipitation, temperature, Shannon Diversity Index (SHDI), and NDVI strongly influenced SE. Overall, the major basins in CA were jointly affected by climate, human activities, and vegetation. Specifically, climatic factors exerted the strongest influence, followed by SHDI (human activities). SE was found to be relatively serious in ADB, SDB, and IRB, with SE in SDB even approaching that in the Loess Plateau. Under the background of global changes, appropriate water and land resource management and optimization configurations should be implemented in CA with reference to TRB in order to relieve local SE problems.<\/jats:p>","DOI":"10.3390\/rs14215507","type":"journal-article","created":{"date-parts":[[2022,11,2]],"date-time":"2022-11-02T07:36:44Z","timestamp":1667374604000},"page":"5507","source":"Crossref","is-referenced-by-count":8,"title":["Effects of Vegetation Change on Soil Erosion by Water in Major Basins, Central Asia"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0484-2435","authenticated-orcid":false,"given":"Kaixuan","family":"Qian","sequence":"first","affiliation":[{"name":"Xinjiang Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China"},{"name":"College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9456-0065","authenticated-orcid":false,"given":"Xiaofei","family":"Ma","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China"},{"name":"Research Centre for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China"}]},{"given":"Yonghui","family":"Wang","sequence":"additional","affiliation":[{"name":"Xinjiang Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China"},{"name":"College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China"}]},{"given":"Xiuliang","family":"Yuan","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China"},{"name":"Research Centre for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1391-1252","authenticated-orcid":false,"given":"Wei","family":"Yan","sequence":"additional","affiliation":[{"name":"School of Geographic Sciences, Xinyang Normal University, Xinyang 464000, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1477-7393","authenticated-orcid":false,"given":"Yuan","family":"Liu","sequence":"additional","affiliation":[{"name":"College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2463-6225","authenticated-orcid":false,"given":"Xiuyun","family":"Yang","sequence":"additional","affiliation":[{"name":"Xinjiang Laboratory of Lake Environment and Resources in Arid Zone, Urumqi 830054, China"},{"name":"College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi 830054, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6202-6722","authenticated-orcid":false,"given":"Jiaxin","family":"Li","sequence":"additional","affiliation":[{"name":"College of Geography and Remote Sensing Sciences, Xinjiang University, Urumqi 830046, China"}]}],"member":"1968","published-online":{"date-parts":[[2022,11,1]]},"reference":[{"key":"ref_1","unstructured":"Pachauri, R.K., Allen, M.R., Barros, V.R., Broome, J., Cramer, W., Christ, R., Church, J.A., Clarke, L., Dahe, Q., and Dasgupta, P. (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1922","DOI":"10.1111\/gcb.14619","article-title":"Plant phenology and global climate change: Current progresses and challenges","volume":"25","author":"Piao","year":"2019","journal-title":"Glob. Chang. Biol."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.jhydrol.2017.11.004","article-title":"Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology","volume":"556","author":"Shen","year":"2018","journal-title":"J. Hydrol."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"588","DOI":"10.1016\/j.tplants.2021.02.011","article-title":"Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster","volume":"26","author":"Zandalinas","year":"2021","journal-title":"Trends Plant Sci."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"186","DOI":"10.1016\/j.aquabot.2008.01.009","article-title":"Faunal impact on vegetation structure and ecosystem function in mangrove forests: A review","volume":"89","author":"Cannicci","year":"2008","journal-title":"Aquat. Bot."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Cramer, W.P., and Leemans, R. (1993). Assessing impacts of climate change on vegetation using climate classification systems. Vegetation Dynamics & Global Change, Springer.","DOI":"10.1007\/978-1-4615-2816-6_10"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1038\/nclimate1329","article-title":"Continent-wide response of mountain vegetation to climate change","volume":"2","author":"Gottfried","year":"2012","journal-title":"Nat. Clim. Chang."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1038\/s41893-019-0220-7","article-title":"China and India lead in greening of the world through land-use management","volume":"2","author":"Chen","year":"2019","journal-title":"Nat. Sustain."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1017","DOI":"10.1029\/2018EF000890","article-title":"Satellite-observed major greening and biomass increase in south China karst during recent decade","volume":"6","author":"Brandt","year":"2018","journal-title":"Earth\u2019s Future"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1038\/s43017-019-0001-x","article-title":"Characteristics, drivers and feedbacks of global greening","volume":"1","author":"Piao","year":"2020","journal-title":"Nat. Rev. Earth Environ."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"3702","DOI":"10.1111\/gcb.13311","article-title":"Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology","volume":"22","author":"Liu","year":"2016","journal-title":"Glob. Chang. Biol."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Karkauskaite, P., Tagesson, T., and Fensholt, R. (2017). Evaluation of the plant phenology index (PPI), NDVI and EVI for start-of-season trend analysis of the Northern Hemisphere boreal zone. Remote Sens., 9.","DOI":"10.3390\/rs9050485"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"2541","DOI":"10.1029\/2018JG004443","article-title":"Identifying critical climate periods for vegetation growth in the Northern Hemisphere","volume":"123","author":"Chen","year":"2018","journal-title":"J. Geophys. Res. Biogeosci."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1658\/1100-9233(2004)015[0219:VIASVI]2.0.CO;2","article-title":"Variation in a satellite-based vegetation index in relation to climate in China","volume":"15","author":"Piao","year":"2004","journal-title":"J. Veg. Sci."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/j.ecolind.2018.04.047","article-title":"Quantifying the relative impacts of climate and human activities on vegetation changes at the regional scale","volume":"93","author":"Liu","year":"2018","journal-title":"Ecol. Indic."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.iswcr.2017.04.001","article-title":"Natural and anthropogenic rates of soil erosion","volume":"5","author":"Nearing","year":"2017","journal-title":"Int. Soil Water Conserv. Res."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"108571","DOI":"10.1016\/j.biocon.2020.108571","article-title":"Impacts of the coronavirus pandemic on biodiversity conservation","volume":"246","author":"Corlett","year":"2020","journal-title":"Biol. Conserv."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"6235","DOI":"10.1126\/science.1261071","article-title":"Soil and human security in the 21st century","volume":"348","author":"Amundson","year":"2015","journal-title":"Science"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1002\/ldr.2879","article-title":"Cost of agricultural productivity loss due to soil erosion in the European Union: From direct cost evaluation approaches to the use of macroeconomic models","volume":"29","author":"Panagos","year":"2018","journal-title":"Land Degrad. Dev."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1590\/S0100-06832011000200001","article-title":"The costs of soil erosion","volume":"35","author":"Telles","year":"2011","journal-title":"Rev. Bras. Ci\u00eancia Solo"},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Lal, R. (2017). Soil erosion by wind and water: Problems and prospects. Soil Erosion Research Methods, Routledge.","DOI":"10.1201\/9780203739358-1"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1016\/S0301-4797(03)00082-3","article-title":"Soil erosion in developing countries: A socio-economic appraisal","volume":"68","author":"Ananda","year":"2003","journal-title":"J. Environ. Manag."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1016\/j.earscirev.2016.10.004","article-title":"Impacts of climate change on water erosion: A review","volume":"163","author":"Li","year":"2016","journal-title":"Earth Sci. Rev."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1016\/j.catena.2016.07.003","article-title":"Soil erosion risk associated with climate change at Mantaro River basin, Peruvian Andes","volume":"147","author":"Correa","year":"2016","journal-title":"Catena"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"21994","DOI":"10.1073\/pnas.2001403117","article-title":"Land use and climate change impacts on global soil erosion by water (2015\u20132070)","volume":"117","author":"Borrelli","year":"2020","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.jaridenv.2015.06.002","article-title":"Land use and climate change effects on soil erosion in a semi-arid mountainous watershed (High Atlas, Morocco)","volume":"122","author":"Simonneaux","year":"2015","journal-title":"J. Arid. Environ."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/0341-8162(89)90017-9","article-title":"Geomorphological processes and climatic change","volume":"16","author":"Eybergen","year":"1989","journal-title":"Catena"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"321","DOI":"10.1016\/0341-8162(89)90018-0","article-title":"A model to estimate the impact of climatic change on hillslope and regolith form","volume":"16","author":"Kirkby","year":"1989","journal-title":"Catena"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.catena.2015.01.016","article-title":"Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area","volume":"128","author":"Zhang","year":"2015","journal-title":"Catena"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"420","DOI":"10.1016\/S1002-0160(06)60071-4","article-title":"Effect of vegetation changes on soil erosion on the Loess Plateau","volume":"16","author":"Zheng","year":"2006","journal-title":"Pedosphere"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1016\/S1001-6279(12)60021-3","article-title":"Effects of the grain-for-green program on soil erosion in China","volume":"27","author":"Lei","year":"2012","journal-title":"Int. J. Sediment Res."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.catena.2015.08.015","article-title":"Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China","volume":"137","author":"Zhou","year":"2016","journal-title":"Catena"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"543","DOI":"10.1007\/s00382-019-05014-6","article-title":"Observationally constrained projection of the reduced intensification of extreme climate events in Central Asia from 0.5 \u00b0C less global warming","volume":"54","author":"Peng","year":"2020","journal-title":"Clim. Dyn."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1007\/s11707-009-0013-9","article-title":"Rapid warming in mid-latitude central Asia for the past 100 years","volume":"3","author":"Chen","year":"2009","journal-title":"Front. Earth Sci. China"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.aeolia.2012.08.002","article-title":"Spatial and temporal distribution of the dust deposition in Central Asia\u2013results from a long term monitoring program","volume":"9","author":"Groll","year":"2013","journal-title":"Aeolian Res."},{"key":"ref_36","first-page":"1647","article-title":"Characteristics and spatial differences of precipitation in arid region of Central Asia under the background of global warming","volume":"41","author":"Chen","year":"2012","journal-title":"Chin. Sci. Earth Sci."},{"key":"ref_37","first-page":"22","article-title":"Spatial distribution of precipitation stable isotopes in the alpine zones in Central Asia","volume":"36","author":"Sun","year":"2019","journal-title":"Arid Zone Res."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"13","DOI":"10.17521\/cjpe.2015.0236","article-title":"Vegetation change and its response to climate change in Central Asia from 1982 to 2012","volume":"40","author":"Zhang","year":"2016","journal-title":"Chin. J. Plant Ecol."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.atmosres.2017.12.007","article-title":"Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia","volume":"203","author":"Xu","year":"2018","journal-title":"Atmos. Res."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1002\/esp.1560","article-title":"Spatial and temporal variations in soil erosion and deposition due to land-levelling in a semi-arid area of Basilicata (Southern Italy)","volume":"33","author":"Capolongo","year":"2008","journal-title":"Earth Surf. Processes Landf. J. Br. Geomorphol. Res. Group"},{"key":"ref_41","unstructured":"Wang, N., and Yang, X. (2019). The Nexus among the Changes in Glacier, Human Activities and Rump Lake in the Arid Central Asia: A Case Study in the Aral Sea Basin, AGU Fall Meeting Abstracts."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"109731","DOI":"10.1016\/j.palaeo.2020.109731","article-title":"Holocene dust deposition in the Ili Basin and its implications for climate variations in Westerlies-dominated Central Asia","volume":"550","author":"Sun","year":"2020","journal-title":"Palaeogeogr. Palaeoclimatol. Palaeoecol."},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Gong, Z., Peng, D., Wen, J., Cai, Z., Wang, T., Hu, Y., Ma, Y., and Xu, J. (2017). Research on trend of warm-humid climate in Central Asia. IOP Conference Series: Earth and Environmental Science, 2017, IOP Publishing.","DOI":"10.1088\/1755-1315\/74\/1\/012017"},{"key":"ref_44","first-page":"125","article-title":"Hydrology and erosion risk parameters for grasslands in Central Asia","volume":"Volume 17","author":"Spaeth","year":"2020","journal-title":"Landscape Dynamics of Drylands across Greater Central Asia: People, Societies and Ecosystems"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"114533","DOI":"10.1016\/j.geoderma.2020.114533","article-title":"Assessment of soil conservation services of four river basins in Central Asia under global warming scenarios","volume":"375","author":"Ma","year":"2020","journal-title":"Geoderma"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"136060","DOI":"10.1016\/j.scitotenv.2019.136060","article-title":"Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century","volume":"709","author":"Li","year":"2020","journal-title":"Sci. Total Environ."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.quaint.2016.12.024","article-title":"Changes of precipitation extremes in arid Central Asia","volume":"436","author":"Zhang","year":"2017","journal-title":"Quat. Int."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"L01705","DOI":"10.1029\/2011GL050202","article-title":"The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years","volume":"39","author":"Cheng","year":"2012","journal-title":"Geophys. Res. Lett."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.gloplacha.2013.05.008","article-title":"Dynamical downscaling of climate change in Central Asia","volume":"110","author":"Mannig","year":"2013","journal-title":"Glob. Planet. Chang."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1002\/joc.4988","article-title":"Variations and changes of annual precipitation in Central Asia over the last century","volume":"37","author":"Hu","year":"2017","journal-title":"Int. J. Climatol."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1080\/07900627.2012.684309","article-title":"The major Central Asian river basins: An assessment of vulnerability","volume":"28","author":"Varis","year":"2012","journal-title":"Int. J. Water Resour. Dev."},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Issanova, G., and Abuduwaili, J. (2017). Aeolian Processes as Dust Storms in the Deserts of Central Asia and Kazakhstan, Springer.","DOI":"10.1007\/978-981-10-3190-8"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"5267","DOI":"10.1007\/s11269-014-0716-x","article-title":"The impact of climate change on the water resources of the Amu Darya Basin in Central Asia","volume":"28","author":"White","year":"2014","journal-title":"Water Resour. Manag."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1016\/j.envsci.2013.11.003","article-title":"Coping with changing water resources: The case of the Syr Darya river basin in Central Asia","volume":"43","author":"Sorg","year":"2014","journal-title":"Environ. Sci. Policy"},{"key":"ref_55","first-page":"14","article-title":"Ice melt, sea level rise and superstorms: Evidence from paleoclimate data, climate modeling, and modern observations that 2 \u00b0C global warming is highly dangerous","volume":"15","author":"Hansen","year":"2015","journal-title":"Atmos. Chem. Phys. Discuss."},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Karthe, D., Abdullaev, I., Boldgiv, B., Borchardt, D., Chalov, S., Jarsj\u00f6, J., Li, L., and Nittrouer, J.A. (2017). Water in Central Asia: An Integrated Assessment for Science-Based Management, Springer.","DOI":"10.1007\/s12665-017-6994-x"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"104566","DOI":"10.1016\/j.catena.2020.104566","article-title":"Changes in area and water volume of the Aral Sea in the arid Central Asia over the period of 1960\u20132018 and their causes","volume":"191","author":"Yang","year":"2020","journal-title":"Catena"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"121614","DOI":"10.1016\/j.jclepro.2020.121614","article-title":"Sustainable water management for cross-border resources: The Balkhash Lake Basin of Central Asia, 1931\u20132015","volume":"263","author":"Duan","year":"2020","journal-title":"J. Clean. Prod."},{"key":"ref_59","doi-asserted-by":"crossref","unstructured":"Yapiyev, V., Sagintayev, Z., Inglezakis, V.J., Samarkhanov, K., and Verhoef, A. (2017). Essentials of endorheic basins and lakes: A review in the context of current and future water resource management and mitigation activities in Central Asia. Water, 9.","DOI":"10.3390\/w9100798"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"107235","DOI":"10.1016\/j.quascirev.2021.107235","article-title":"Late Holocene Mongolian climate and environment reconstructions from brGDGTs, NPPs and pollen transfer functions for Lake Ayrag: Paleoclimate implications for Arid Central Asia","volume":"273","author":"Dugerdil","year":"2021","journal-title":"Quat. Sci. Rev."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1016\/j.jaridenv.2004.11.005","article-title":"Impacts of climate and land-cover changes in arid lands of Central Asia","volume":"62","author":"Lioubimtseva","year":"2005","journal-title":"J. Arid Environ."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.jaridenv.2017.02.005","article-title":"Rainfall validates MODIS-derived NDVI as an index of spatio-temporal variation in green biomass across non-montane semi-arid and arid Central Asia","volume":"142","author":"Formica","year":"2017","journal-title":"J. Arid Environ."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1002\/joc.5510","article-title":"Evaluation of three global gridded precipitation data sets in central Asia based on rain gauge observations","volume":"38","author":"Hu","year":"2018","journal-title":"Int. J. Climatol."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.ecoleng.2019.03.005","article-title":"High accuracy of precipitation reanalyses resulted in good river discharge simulations in a semi-arid basin","volume":"131","author":"Eini","year":"2019","journal-title":"Ecol. Eng."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1038\/s41586-018-0399-1","article-title":"Ecosystem warming extends vegetation activity but heightens vulnerability to cold temperatures","volume":"560","author":"Richardson","year":"2018","journal-title":"Nature"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1016\/j.isprsjprs.2019.11.018","article-title":"Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review","volume":"159","author":"Gao","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1002\/ldr.2852","article-title":"When and where did the Loess Plateau turn \u201cgreen\u201d? Analysis of the tendency and breakpoints of the normalized difference vegetation index","volume":"29","author":"Cao","year":"2018","journal-title":"Land Degrad. Dev."},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Cai, Z., J\u00f6nsson, P., Jin, H., and Eklundh, L. (2017). Performance of smoothing methods for reconstructing NDVI time-series and estimating vegetation phenology from MODIS data. Remote Sens., 9.","DOI":"10.3390\/rs9121271"},{"key":"ref_69","first-page":"154","article-title":"Estimating the fractional cover of photosynthetic vegetation, non-photosynthetic vegetation and bare soil from MODIS data: Assessing the applicability of the NDVI-DFI model in the typical Xilingol grasslands","volume":"76","author":"Wang","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.rse.2011.12.015","article-title":"Evaluation of earth observation based global long term vegetation trends\u2014Comparing GIMMS and MODIS global NDVI time series","volume":"119","author":"Fensholt","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1016\/j.rse.2015.03.031","article-title":"Evaluating temporal consistency of long-term global NDVI datasets for trend analysis","volume":"163","author":"Tian","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.rse.2016.12.018","article-title":"Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening?","volume":"191","author":"Zhang","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"219","DOI":"10.5194\/essd-10-219-2018","article-title":"Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992\u20132015)","volume":"10","author":"Li","year":"2018","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.apgeog.2019.03.010","article-title":"Insights on the historical and emerging global land cover changes: The case of ESA-CCI-LC datasets","volume":"106","author":"Mousivand","year":"2019","journal-title":"Appl. Geogr."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1007\/s12145-020-00541-x","article-title":"Predicting and mapping land cover\/land use changes in Erbil\/Iraq using CA-Markov synergy model","volume":"14","author":"Khwarahm","year":"2021","journal-title":"Earth Sci. Inform."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"146777","DOI":"10.1016\/j.scitotenv.2021.146777","article-title":"Projections of desertification trends in Central Asia under global warming scenarios","volume":"781","author":"Ma","year":"2021","journal-title":"Sci. Total Environ."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"689","DOI":"10.1007\/s12524-019-01097-0","article-title":"A review of RUSLE model","volume":"48","author":"Ghosal","year":"2020","journal-title":"J. Indian Soc. Remote Sens."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"2893","DOI":"10.5194\/gmd-8-2893-2015","article-title":"Improving the global applicability of the RUSLE model\u2013adjustment of the topographical and rainfall erosivity factors","volume":"8","author":"Naipal","year":"2015","journal-title":"Geosci. Model Dev."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/S0167-8809(03)00011-2","article-title":"Soil erosion prediction using RUSLE for central Kenyan highland conditions","volume":"97","author":"Angima","year":"2003","journal-title":"Agric. Ecosyst. Environ."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"582","DOI":"10.1002\/ldr.2239","article-title":"Effect of rainfall intensity, slope, land use and antecedent soil moisture on soil erosion in an arid environment","volume":"24","author":"Ziadat","year":"2013","journal-title":"Land Degrad. Dev."},{"key":"ref_81","unstructured":"Wischmeier, W.H., and Smith, D.D. (1978). Predicting Rainfall Erosion Losses: A Guide to Conservation Planning."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1016\/j.scitotenv.2016.01.182","article-title":"Effects of soil management techniques on soil water erosion in apricot orchards","volume":"551","author":"Keesstra","year":"2016","journal-title":"Sci. Total Environ."},{"key":"ref_83","first-page":"381","article-title":"Using soil erosion models for global change studies","volume":"51","author":"Williams","year":"1996","journal-title":"J. Soil Water Conserv."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"5","DOI":"10.13031\/2013.31192","article-title":"Revised Slope Length Factor for the Universal Soil Loss Equation","volume":"32","author":"McCool","year":"1989","journal-title":"Trans. ASAE"},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.landusepol.2015.05.021","article-title":"Estimating the soil erosion cover-management factor at the European scale","volume":"48","author":"Panagos","year":"2015","journal-title":"Land Use Policy"},{"key":"ref_86","first-page":"19","article-title":"Study of applying USLE and geographical information system IDRISI to predict soil erosion in small watershed","volume":"14","author":"Cai","year":"2000","journal-title":"J. Soil Water Conserv."},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.envsci.2015.03.012","article-title":"Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale","volume":"51","author":"Panagos","year":"2015","journal-title":"Environ. Sci. Policy"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1002\/ldr.2219","article-title":"Spatial estimation of soil erosion risk by land-cover change in the Andes of southern Ecuador","volume":"26","author":"Fries","year":"2015","journal-title":"Land Degrad. Dev."},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1002\/ldr.646","article-title":"Assessment of soil erosion at large watershed scale using RUSLE and GIS: A case study in the Loess Plateau of China","volume":"16","author":"Fu","year":"2005","journal-title":"Land Degrad. Dev."},{"key":"ref_90","first-page":"213","article-title":"RUSLE revisited: Status, questions, answers, and the future","volume":"49","author":"Renard","year":"1994","journal-title":"J. Soil Water Conserv."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"13233","DOI":"10.3390\/rs71013233","article-title":"Spatial and temporal patterns of global NDVI trends: Correlations with climate and human factors","volume":"7","author":"Liu","year":"2015","journal-title":"Remote Sens."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"967","DOI":"10.1016\/j.scitotenv.2017.05.012","article-title":"Vegetation dynamics and responses to climate change and human activities in Central Asia","volume":"599","author":"Jiang","year":"2017","journal-title":"Sci. Total Environ."},{"key":"ref_93","first-page":"4549756","article-title":"Tree species richness, diversity, and vegetation index for federal capital territory, Abuja, Nigeria","volume":"2017","author":"Agbelade","year":"2017","journal-title":"Int. J. For. Res."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1038\/nature10915","article-title":"Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation","volume":"484","author":"Shakun","year":"2012","journal-title":"Nature"},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"61A","DOI":"10.2489\/jswc.71.3.61A","article-title":"Impact of soil erosion on soil organic carbon stocks","volume":"71","author":"Olson","year":"2016","journal-title":"J. Soil Water Conserv."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"105129","DOI":"10.1016\/j.catena.2020.105129","article-title":"Aggravated risk of soil erosion with global warming\u2014A global meta-analysis","volume":"200","author":"Ma","year":"2021","journal-title":"Catena"},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1146\/annurev-earth-082517-010018","article-title":"Role of soil erosion in biogeochemical cycling of essential elements: Carbon, nitrogen, and phosphorus","volume":"46","author":"Berhe","year":"2018","journal-title":"Annu. Rev. Earth Planet. Sci."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"639","DOI":"10.1038\/s41586-018-0411-9","article-title":"Global land change from 1982 to 2016","volume":"560","author":"Song","year":"2018","journal-title":"Nature"},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"1441","DOI":"10.1111\/jbi.12974","article-title":"Patterns and dynamics of European vegetation change over the last 15,000 years","volume":"44","author":"Giesecke","year":"2017","journal-title":"J. Biogeogr."},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1038\/s41467-017-02810-8","article-title":"The mark of vegetation change on Earth\u2019s surface energy balance","volume":"9","author":"Duveiller","year":"2018","journal-title":"Nat. Commun."},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"3960","DOI":"10.1016\/j.quascirev.2011.10.016","article-title":"Vegetation and climate changes in the South Eastern Mediterranean during the Last Glacial-Interglacial cycle (86 ka): New marine pollen record","volume":"30","author":"Langgut","year":"2011","journal-title":"Quat. Sci. Rev."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"2051","DOI":"10.1016\/j.scitotenv.2018.09.115","article-title":"NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015","volume":"650","author":"Chu","year":"2019","journal-title":"Sci. Total Environ."},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"1266","DOI":"10.3732\/ajb.1200469","article-title":"Disequilibrium vegetation dynamics under future climate change","volume":"100","author":"Svenning","year":"2013","journal-title":"Am. J. Bot."},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"108197","DOI":"10.1016\/j.agrformet.2020.108197","article-title":"Impact of recent vegetation greening on temperature and precipitation over China","volume":"295","author":"Yu","year":"2020","journal-title":"Agric. For. Meteorol."},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.ecolind.2015.05.036","article-title":"Vegetation dynamics and responses to recent climate change in Xinjiang using leaf area index as an indicator","volume":"58","author":"Liang","year":"2015","journal-title":"Ecol. Indic."},{"key":"ref_106","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1029\/2004GB002274","article-title":"Changes in vegetation net primary productivity from 1982 to 1999 in China","volume":"19","author":"Piao","year":"2005","journal-title":"Glob. Biogeochem. Cycles"},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"149055","DOI":"10.1016\/j.scitotenv.2021.149055","article-title":"Impacts of climate change on vegetation phenology and net primary productivity in arid Central Asia","volume":"796","author":"Wu","year":"2021","journal-title":"Sci. Total Environ."},{"key":"ref_108","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1038\/s41467-017-02690-y","article-title":"Extension of the growing season increases vegetation exposure to frost","volume":"9","author":"Liu","year":"2018","journal-title":"Nat. Commun."},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.ecolind.2018.04.033","article-title":"Spatiotemporal variation in vegetation coverage and its response to climatic factors in the Red River Basin, China","volume":"93","author":"Gu","year":"2018","journal-title":"Ecol. Indic."},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"107520","DOI":"10.1016\/j.soilbio.2019.107520","article-title":"Vegetation biomass and soil moisture coregulate bacterial community succession under altered precipitation regimes in a desert steppe in northwestern China","volume":"136","author":"Na","year":"2019","journal-title":"Soil Biol. Biochem."},{"key":"ref_111","doi-asserted-by":"crossref","unstructured":"Huang, K., Zhang, Y., Zhu, J., Liu, Y., Zu, J., and Zhang, J. (2016). The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote Sens., 8.","DOI":"10.3390\/rs8100876"},{"key":"ref_112","first-page":"3149","article-title":"Spatial-temporal variation of vegetation and its correlation with climate change in Central Asia during the period of 1982\u20132012","volume":"37","author":"Yin","year":"2017","journal-title":"Acta Ecol. Sin."},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"927","DOI":"10.1002\/eco.1255","article-title":"Vegetation dynamics and their response to hydroclimatic factors in the Tarim River Basin, China","volume":"6","author":"Wang","year":"2013","journal-title":"Ecohydrology"},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.ecolmodel.2011.08.020","article-title":"Space versus place in complex human\u2013natural systems: Spatial and multi-level models of tropical land use and cover change (LUCC) in Guatemala","volume":"229","author":"Davis","year":"2012","journal-title":"Ecol. Model."},{"key":"ref_115","first-page":"1040","article-title":"A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human\u2013environment interactions","volume":"107","author":"Li","year":"2017","journal-title":"Ann. Am. Assoc. Geogr."},{"key":"ref_116","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1016\/j.ecoleng.2015.04.022","article-title":"Impacts of climate change and human activities on vegetation cover in hilly southern China","volume":"81","author":"Wang","year":"2015","journal-title":"Ecol. Eng."},{"key":"ref_117","doi-asserted-by":"crossref","first-page":"7473","DOI":"10.1007\/s10661-011-2514-8","article-title":"Vegetation dynamics, and land use and land cover change in the Bale Mountains, Ethiopia","volume":"184","author":"Kidane","year":"2012","journal-title":"Environ. Monit. Assess."},{"key":"ref_118","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.apgeog.2012.06.016","article-title":"Regional land cover mapping and change detection in Central Asia using MODIS time-series","volume":"35","author":"Klein","year":"2012","journal-title":"Appl. Geogr."},{"key":"ref_119","unstructured":"Maimaitiaili, A. (2016). Multi Satellites Monitoring of Land Use\/Cover Change and Its Driving Forces in Kashgar Region, Central Asia, AGU Fall Meeting Abstracts."},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"844","DOI":"10.1007\/s12665-016-5614-5","article-title":"The future Aral Sea: Hope and despair","volume":"75","author":"Micklin","year":"2016","journal-title":"Environ. Earth Sci."},{"key":"ref_121","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.gloplacha.2013.05.006","article-title":"History of Aral Sea level variability and current scientific debates","volume":"110","author":"Cretaux","year":"2013","journal-title":"Glob. Planet. Chang."},{"key":"ref_122","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/j.jglr.2014.12.007","article-title":"Aral Sea syndrome desiccates Lake Urmia: Call for action","volume":"41","author":"AghaKouchak","year":"2015","journal-title":"J. Great Lakes Res."},{"key":"ref_123","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.wre.2015.08.003","article-title":"Optimizing irrigation efficiency improvements in the Aral Sea Basin","volume":"13","author":"Bekchanov","year":"2016","journal-title":"Water Resour. Econ."},{"key":"ref_124","unstructured":"Micklin, P., Aladin, N.V., and Plotnikov, I. (2016). Aral Sea, Springer."},{"key":"ref_125","doi-asserted-by":"crossref","first-page":"105125","DOI":"10.1016\/j.atmosres.2020.105125","article-title":"The impact of climate change and human activities on the Aral Sea Basin over the past 50 years","volume":"245","author":"Wang","year":"2020","journal-title":"Atmos. Res."},{"key":"ref_126","doi-asserted-by":"crossref","first-page":"285","DOI":"10.1007\/s13201-012-0048-z","article-title":"Changes in water volume of the Aral Sea after 1960","volume":"2","author":"Gaybullaev","year":"2012","journal-title":"Appl. Water Sci."},{"key":"ref_127","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1007\/s41748-021-00224-7","article-title":"Climatic Change and Human Activities Link to Vegetation Dynamics in the Aral Sea Basin Using NDVI","volume":"5","author":"Berdimbetov","year":"2021","journal-title":"Earth Syst. Environ."},{"key":"ref_128","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.euras.2012.10.003","article-title":"Nature\u2013society linkages in the Aral Sea region","volume":"4","author":"White","year":"2013","journal-title":"J. Eurasian Stud."},{"key":"ref_129","doi-asserted-by":"crossref","first-page":"719","DOI":"10.1007\/s12665-014-3104-1","article-title":"A multi-scale assessment of human vulnerability to climate change in the Aral Sea basin","volume":"73","author":"Lioubimtseva","year":"2015","journal-title":"Environ. Earth Sci."},{"key":"ref_130","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1111\/j.1440-1770.2012.00492.x","article-title":"Changes in the Aral Sea ichthyofauna and fishery during the period of ecological crisis","volume":"17","author":"Ermakhanov","year":"2012","journal-title":"Lakes Reserv. Res. Manag."},{"key":"ref_131","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1007\/s00704-014-1234-8","article-title":"Assessment of drought vulnerability of the Tarim River basin, Xinjiang, China","volume":"121","author":"Zhang","year":"2015","journal-title":"Theor. Appl. Climatol."},{"key":"ref_132","doi-asserted-by":"crossref","first-page":"876","DOI":"10.1016\/j.scitotenv.2018.08.321","article-title":"Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China","volume":"649","author":"Xue","year":"2019","journal-title":"Sci. Total Environ."},{"key":"ref_133","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.ecolind.2016.11.007","article-title":"Assessing the effect of EWDP on vegetation restoration by remote sensing in the lower reaches of Tarim River","volume":"74","author":"Bao","year":"2017","journal-title":"Ecol. Indic."},{"key":"ref_134","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1016\/j.scitotenv.2017.03.268","article-title":"Monitoring the spatio-temporal changes of terrestrial water storage using GRACE data in the Tarim River basin between 2002 and 2015","volume":"595","author":"Yang","year":"2017","journal-title":"Sci. Total Environ."},{"key":"ref_135","doi-asserted-by":"crossref","first-page":"8254","DOI":"10.1038\/s41598-017-09215-z","article-title":"Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China","volume":"7","author":"Xue","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_136","doi-asserted-by":"crossref","first-page":"11163","DOI":"10.3390\/rs70911163","article-title":"NDVI-based analysis on the influence of climate change and human activities on vegetation restoration in the Shaanxi-Gansu-Ningxia Region, Central China","volume":"7","author":"Li","year":"2015","journal-title":"Remote Sens."},{"key":"ref_137","doi-asserted-by":"crossref","unstructured":"Jiang, M., Tian, S., Zheng, Z., Zhan, Q., and He, Y. (2017). Human activity influences on vegetation cover changes in Beijing, China, from 2000 to 2015. Remote Sens., 9.","DOI":"10.3390\/rs9030271"},{"key":"ref_138","doi-asserted-by":"crossref","first-page":"1179","DOI":"10.1007\/s00704-018-2437-1","article-title":"Assessing vegetation response to climatic variations and human activities: Spatiotemporal NDVI variations in the Hexi Corridor and surrounding areas from 2000 to 2010","volume":"135","author":"Guan","year":"2019","journal-title":"Theor. Appl. Climatol."},{"key":"ref_139","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.geoderma.2018.09.009","article-title":"Seasonality, altitude and human activities control soil quality in a national park surrounded by an urban area","volume":"337","author":"Memoli","year":"2019","journal-title":"Geoderma"},{"key":"ref_140","doi-asserted-by":"crossref","first-page":"2013","DOI":"10.1038\/s41467-017-02142-7","article-title":"An assessment of the global impact of 21st century land use change on soil erosion","volume":"8","author":"Borrelli","year":"2017","journal-title":"Nat. Commun."},{"key":"ref_141","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1080\/01431161.2011.616238","article-title":"Mapping seasonal trends in vegetation using AVHRR-NDVI time series in the Yucat\u00e1n Peninsula, Mexico","volume":"3","author":"Neeti","year":"2012","journal-title":"Remote Sens. Lett."},{"key":"ref_142","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.techfore.2018.03.015","article-title":"Analyzing the green efficiency of arable land use in China","volume":"133","author":"Xie","year":"2018","journal-title":"Technol. Forecast. Soc. Chang."},{"key":"ref_143","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1007\/s10661-019-7911-4","article-title":"Quantitative assessment of the ecological effects of land use\/cover change in the arid region of Northwest China","volume":"191","author":"Li","year":"2019","journal-title":"Environ. Monit. Assess."},{"key":"ref_144","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.catena.2010.07.006","article-title":"Stratified vegetation cover index: A new way to assess vegetation impact on soil erosion","volume":"83","author":"Zhongming","year":"2010","journal-title":"Catena"},{"key":"ref_145","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.chnaes.2009.05.001","article-title":"Research progress on the effects of soil erosion on vegetation","volume":"29","author":"Jiao","year":"2009","journal-title":"Acta Ecol. Sin."},{"key":"ref_146","doi-asserted-by":"crossref","first-page":"319","DOI":"10.1016\/j.catena.2008.07.010","article-title":"Effect of vegetation cover on soil erosion in a mountainous watershed","volume":"75","author":"Zhou","year":"2008","journal-title":"Catena"},{"key":"ref_147","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.catena.2005.03.007","article-title":"Modeling response of soil erosion and runoff to changes in precipitation and cover","volume":"61","author":"Nearing","year":"2005","journal-title":"Catena"},{"key":"ref_148","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.geoderma.2018.05.007","article-title":"Assessment of soil erosion characteristics in response to temperature and precipitation in a freeze-thaw watershed","volume":"328","author":"Wu","year":"2018","journal-title":"Geoderma"},{"key":"ref_149","doi-asserted-by":"crossref","first-page":"631","DOI":"10.1016\/S1364-8152(01)00038-X","article-title":"Modeling the possible impact of increased CO2 and temperature on soil water balance, crop yield and soil erosion","volume":"16","author":"Savabi","year":"2001","journal-title":"Environ. Model. Softw."},{"key":"ref_150","doi-asserted-by":"crossref","first-page":"135389","DOI":"10.1016\/j.scitotenv.2019.135389","article-title":"Climate and land use change effects on soil erosion in two small agricultural catchment systems Fugnitz\u2013Austria, Can Revull\u2013Spain","volume":"704","author":"Luetzenburg","year":"2020","journal-title":"Sci. Total Environ."},{"key":"ref_151","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1016\/j.scitotenv.2018.04.146","article-title":"Current and future assessments of soil erosion by water on the Tibetan Plateau based on RUSLE and CMIP5 climate models","volume":"635","author":"Teng","year":"2018","journal-title":"Sci. Total Environ."},{"key":"ref_152","doi-asserted-by":"crossref","first-page":"1568","DOI":"10.1007\/s11431-010-4276-x","article-title":"Soil particle size distribution and its relationship with soil water and salt under mulched drip irrigation in Xinjiang of China","volume":"54","author":"Hu","year":"2011","journal-title":"Sci. China Technol. Sci."},{"key":"ref_153","doi-asserted-by":"crossref","first-page":"1899","DOI":"10.1007\/s12145-021-00655-w","article-title":"What are the dominant influencing factors on the soil erosion evolution process in the Yellow River Basin?","volume":"14","author":"Wu","year":"2021","journal-title":"Earth Sci. Inform."},{"key":"ref_154","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.catena.2018.06.006","article-title":"Effects of vegetation and rainfall types on surface runoff and soil erosion on steep slopes on the Loess Plateau, China","volume":"170","author":"Chen","year":"2018","journal-title":"Catena"},{"key":"ref_155","doi-asserted-by":"crossref","unstructured":"Zou, S., Jilili, A., Duan, W., Maeyer, P.D., and de Voorde, T.V. (2019). Human and natural impacts on the water resources in the Syr Darya River Basin, Central Asia. Sustainability, 11.","DOI":"10.3390\/su11113084"},{"key":"ref_156","doi-asserted-by":"crossref","unstructured":"Wang, F., Chen, Y., Li, Z., Fang, G., Li, Y., and Xia, Z. (2019). Assessment of the irrigation water requirement and water supply risk in the Tarim River Basin, Northwest China. Sustainability, 11.","DOI":"10.3390\/su11184941"},{"key":"ref_157","doi-asserted-by":"crossref","first-page":"106958","DOI":"10.1016\/j.geomorph.2019.106958","article-title":"Effects of riparian plant roots on the unconsolidated bank stability of meandering channels in the Tarim River, China","volume":"351","author":"Yu","year":"2020","journal-title":"Geomorphology"},{"key":"ref_158","first-page":"102238","article-title":"Global trends in vegetation seasonality in the GIMMS NDVI3g and their robustness","volume":"94","author":"Ye","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_159","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.gloplacha.2018.06.005","article-title":"Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g","volume":"169","author":"Liu","year":"2018","journal-title":"Glob. Planet. Chang."},{"key":"ref_160","doi-asserted-by":"crossref","first-page":"106056","DOI":"10.1016\/j.catena.2022.106056","article-title":"Risk assessment of soil erosion in Central Asia under global warming","volume":"212","author":"Dou","year":"2022","journal-title":"Catena"},{"key":"ref_161","doi-asserted-by":"crossref","first-page":"134164","DOI":"10.1016\/j.scitotenv.2019.134164","article-title":"Impacts of forest restoration on soil erosion in the Three Gorges Reservoir area, China","volume":"697","author":"Teng","year":"2019","journal-title":"Sci. Total Environ."},{"key":"ref_162","doi-asserted-by":"crossref","first-page":"107047","DOI":"10.1016\/j.agee.2020.107047","article-title":"Agricultural land use and management weaken the soil erosion induced by extreme rainstorms","volume":"301","author":"Han","year":"2020","journal-title":"Agric. Ecosyst. Environ."},{"key":"ref_163","doi-asserted-by":"crossref","first-page":"875","DOI":"10.1111\/1365-2664.13597","article-title":"Trade-off between vegetation type, soil erosion control and surface water in global semi-arid regions: A meta-analysis","volume":"57","author":"Wu","year":"2020","journal-title":"J. Appl. Ecol."},{"key":"ref_164","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1007\/s13369-015-1742-6","article-title":"Spatial\u2013temporal evolution of soil erosion in a typical mountainous karst basin in SW China, based on GIS and RUSLE","volume":"41","author":"Li","year":"2016","journal-title":"Arab. J. Sci. Eng."},{"key":"ref_165","doi-asserted-by":"crossref","first-page":"284","DOI":"10.1016\/j.ecocom.2011.07.003","article-title":"Assessing the soil erosion control service of ecosystems change in the Loess Plateau of China","volume":"8","author":"Fu","year":"2011","journal-title":"Ecol. Complex."},{"key":"ref_166","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.iswcr.2015.06.002","article-title":"Characteristics of water erosion and conservation practice in arid regions of Central Asia: Xinjiang, China as an example","volume":"3","author":"Zhang","year":"2015","journal-title":"Int. Soil Water Conserv. Res."},{"key":"ref_167","doi-asserted-by":"crossref","first-page":"865","DOI":"10.1007\/s40333-020-0075-9","article-title":"Assessing the effects of vegetation and precipitation on soil erosion in the Three-River Headwaters Region of the Qinghai-Tibet Plateau, China","volume":"12","author":"He","year":"2020","journal-title":"J. Arid Land"},{"key":"ref_168","doi-asserted-by":"crossref","first-page":"438","DOI":"10.1016\/j.envsci.2015.08.012","article-title":"The new assessment of soil loss by water erosion in Europe","volume":"54","author":"Panagos","year":"2015","journal-title":"Environ. Sci. Policy"},{"key":"ref_169","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1007\/s10661-020-8239-9","article-title":"Assessment of rainfall erosivity (R-factor) during 1986\u20132015 across Nepal: A step towards soil loss estimation","volume":"192","author":"Talchabhadel","year":"2020","journal-title":"Environ. Monit. Assess."},{"key":"ref_170","doi-asserted-by":"crossref","first-page":"806","DOI":"10.1080\/02626667.2021.2020277","article-title":"Global-scale application of the RUSLE model: A comprehensive review","volume":"67","author":"Kumar","year":"2022","journal-title":"Hydrol. Sci. J."},{"key":"ref_171","doi-asserted-by":"crossref","unstructured":"Wang, H., and Zhao, H. (2020). Dynamic changes of soil erosion in the Taohe River Basin using the RUSLE Model and Google Earth Engine. Water, 12.","DOI":"10.3390\/w12051293"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/21\/5507\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T21:32:03Z","timestamp":1723152723000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/21\/5507"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,1]]},"references-count":171,"journal-issue":{"issue":"21","published-online":{"date-parts":[[2022,11]]}},"alternative-id":["rs14215507"],"URL":"https:\/\/doi.org\/10.3390\/rs14215507","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2022,11,1]]}}}