{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T19:40:31Z","timestamp":1723146031307},"reference-count":58,"publisher":"MDPI AG","issue":"21","license":[{"start":{"date-parts":[[2022,10,31]],"date-time":"2022-10-31T00:00:00Z","timestamp":1667174400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100012190","name":"Ministry of Science and Higher Education of the Russian Federation","doi-asserted-by":"publisher","award":["075-GZ\/C3569\/278"],"id":[{"id":"10.13039\/501100012190","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"During emergency events, we could significantly depend on the stable operation of radio communication, navigation, and radars. The ionosphere, especially its auroral regions, significantly influences radio systems, which is why scientists and engineers create systems to monitor these regions. Using data from the global GNSS network, we analyzed the 10 strongest magnetic storms of solar cycle 24: five coronal mass ejection-driven (CME-driven) and five high-speed stream-driven (HSS-driven) storms. The analysis was based on the calculation of the standard deviation of the total electron content (TEC) derivative (rate of TEC index, ROTI). Under all the storms, the ROTI featured similar dynamics: the average ROTI reaches the highest values during the main phase, and the higher the intensity is, the more intense and equatorward the average ROTI registered. The highest cross-correlations are observed with a lag of 1 h, between the IMF z-component Bz and the magnetic latitude where the highest ROTI values appear. The auroral electrojet (SME index) shows the highest impact on the ROTI dynamics. An increase in the space weather indices (in absolute value) is accompanied by a decrease in the latitude where the maximal ROTI occurs. We found that the peculiarities of a storm affect the ROTI dynamics: all the CME-driven storms feature a high cross-correlation (>0.75) between the IMF z-component Bz and the magnetic latitude where the highest ROTI appears, while the HSS-driven storms feature a lower cross-correlation (<0.75) between them. The difference in duration of similar (by maximal values of geomagnetic indices) HSS- and CME-driven storms could produce differences in the highest ROTI values. Correlations show that compared to HSS-driven storms, CME-driven ones more directly impact the ROTI values and locations of regions with a high ROTI.<\/jats:p>","DOI":"10.3390\/rs14215486","type":"journal-article","created":{"date-parts":[[2022,11,1]],"date-time":"2022-11-01T10:01:28Z","timestamp":1667296888000},"page":"5486","source":"Crossref","is-referenced-by-count":3,"title":["Auroral Oval Boundary Dynamics on the Nature of Geomagnetic Storm"],"prefix":"10.3390","volume":"14","author":[{"given":"Ilya K.","family":"Edemskiy","sequence":"first","affiliation":[{"name":"Department of Near-Earth Space Physics, Institute of Solar-Terrestrial Physics SB RAS, Irkutsk 664033, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3098-224X","authenticated-orcid":false,"given":"Yury V.","family":"Yasyukevich","sequence":"additional","affiliation":[{"name":"Department of Near-Earth Space Physics, Institute of Solar-Terrestrial Physics SB RAS, Irkutsk 664033, Russia"}]}],"member":"1968","published-online":{"date-parts":[[2022,10,31]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1007\/s10712-007-9017-8","article-title":"A decade of the Super Dual Auroral Radar Network (SuperDARN): Scientific achievements, new techniques and future directions","volume":"28","author":"Chisham","year":"2007","journal-title":"Surv. Geophys."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"685","DOI":"10.1029\/2012JA018222","article-title":"The Heppner-Maynard Boundary measured by SuperDARN as a proxy for the latitude of the auroral oval","volume":"118","author":"Imber","year":"2013","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"2283","DOI":"10.1029\/97GL02273","article-title":"Monitoring of global ionospheric irregularities using the Worldwide GPS Network","volume":"24","author":"Pi","year":"1997","journal-title":"Geophys. Res. Lett."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"e2021JA029843","DOI":"10.1029\/2021JA029843","article-title":"Ionospheric disturbances and irregularities during the 25\u201326 August 2018 geomagnetic storm","volume":"127","author":"Astafyeva","year":"2022","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"535","DOI":"10.20965\/jdr.2018.p0535","article-title":"Total Electron Content Observations by Dense Regional and Worldwide International Networks of GNSS","volume":"13","author":"Tsugawa","year":"2018","journal-title":"J. Disaster Res."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1007\/s10291-020-00983-2","article-title":"SIMuRG: System for Ionosphere Monitoring and Research from GNSS","volume":"24","author":"Yasyukevich","year":"2020","journal-title":"GPS Solut."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1007\/s10291-018-0730-1","article-title":"ROTI Maps: A new IGS ionospheric product characterizing the ionospheric irregularities occurrence","volume":"22","author":"Cherniak","year":"2018","journal-title":"GPS Solut."},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Kotulak, K., Zakharenkova, I., Krankowski, A., Cherniak, I., Wang, N., and Fron, A. (2020). Climatology Characteristics of Ionospheric Irregularities Described with GNSS ROTI. Remote Sens., 12.","DOI":"10.3390\/rs12162634"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"e2020JA029010","DOI":"10.1029\/2020JA029010","article-title":"The occurrence feature of plasma bubbles in the equatorial to midlatitude ionosphere during geomagnetic storms using long-term GNSS-TEC data","volume":"126","author":"Sori","year":"2021","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2021RS007420","article-title":"Ionospheric scintillation monitoring with ROTI from geodetic receiver: Limitations and performance evaluation","volume":"57","author":"Li","year":"2022","journal-title":"Radio Sci."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"A5","DOI":"10.1051\/swsc\/2019001","article-title":"GNSS-based analysis of high latitude ionospheric response on a sequence of geomagnetic storms performed with ROTI and a new relative STEC indicator","volume":"9","author":"Sieradzki","year":"2019","journal-title":"J. Space Weather Space Clim."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"1947","DOI":"10.1016\/j.asr.2020.07.003","article-title":"Equatorial and low-latitude ionospheric TEC response to CIR-driven geomagnetic storms at different longitude sectors","volume":"66","author":"Dugassa","year":"2020","journal-title":"Adv. Space Res."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"5931","DOI":"10.1002\/jgra.50541","article-title":"Storm-induced plasma stream in the low-latitude to midlatitude ionosphere","volume":"118","author":"Maruyama","year":"2013","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1515\/jogs-2020-0123","article-title":"ROTI maps of Greenland using kriging","volume":"11","author":"Beeck","year":"2021","journal-title":"J. Geod. Sci."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"A02209","DOI":"10.1029\/2004JA010649","article-title":"Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data","volume":"110","author":"King","year":"2005","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"A09213","DOI":"10.1029\/2012JA017683","article-title":"The SuperMAG data processing technique","volume":"117","author":"Gjerloev","year":"2012","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_17","unstructured":"(2022, September 29). Space Weather Highlights by SWPC for Week 2385 (10\u201316 May 2021), Available online: ftp:\/\/ftp.swpc.noaa.gov\/pub\/warehouse\/2021\/WeeklyPDF\/prf3285.pdf."},{"key":"ref_18","unstructured":"(2022, September 29). Space Weather Highlights by SWPC for Week 2352 (21\u201327 September 2020), Available online: Ftp:\/\/ftp.swpc.noaa.gov\/pub\/warehouse\/2020\/2020_WeeklyPDF.tar.gz\/prf2352.pdf."},{"key":"ref_19","unstructured":"(2022, September 29). Space Weather Highlights by SWPC for Week 2281 (13\u201319 May 2019), Available online: Ftp:\/\/ftp.swpc.noaa.gov\/pub\/warehouse\/2019\/2019_WeeklyPDF.tar.gz\/prf2281.pdf."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1016\/j.asr.2020.03.037","article-title":"Ionospheric storm effects over the People\u2019s Republic of China on 14 May 2019: Results from multipath multi-frequency oblique radio sounding","volume":"66","author":"Chernogor","year":"2020","journal-title":"Adv. Space Res."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"657","DOI":"10.5194\/angeo-39-657-2021","article-title":"Dynamic processes in the magnetic field and in the ionosphere during the 30 August\u20132 September 2019 geospace storm: Influence on high frequency radio wave characteristics","volume":"39","author":"Luo","year":"2021","journal-title":"Ann. Geophys."},{"key":"ref_22","unstructured":"(2022, September 29). Space Weather Highlights by SWPC for Week (26 August\u20131 September 2019), Available online: Ftp:\/\/ftp.swpc.noaa.gov\/pub\/warehouse\/2019\/2019_WeeklyPDF.tar.gz\/prf2296.pdf."},{"key":"ref_23","first-page":"1357","article-title":"Analysis and characteristics of unpredictable G2\u2014Moderate geomagnetic storm on 20 April 2018 in solar cycle 24 minimum","volume":"71","author":"Velinov","year":"2018","journal-title":"C. R. Acad. Bulg. Sci."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"703","DOI":"10.5194\/angeo-38-703-2020","article-title":"From the Sun to Earth: Effects of the 25 August 2018 geomagnetic storm","volume":"38","author":"Piersanti","year":"2020","journal-title":"Ann. Geophys."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/j.asr.2018.07.016","article-title":"Impact of geomagnetic storm of 7\u20138 September 2017 on ionosphere and HF propagation: A multi-instrument study","volume":"63","author":"Blagoveshchensky","year":"2019","journal-title":"Adv. Space Res."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"e2019JA027261","DOI":"10.1029\/2019JA027261","article-title":"Unprecedented Hemispheric Asymmetries During a Surprise Ionospheric Storm: A Game of Drivers","volume":"125","author":"Astafyeva","year":"2020","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_27","unstructured":"(2022, September 29). Space Weather Highlights by SWPC for Week 2246 (10\u201316 September 2018), Available online: Ftp:\/\/ftp.swpc.noaa.gov\/pub\/warehouse\/2018\/2018_WeeklyPDF.tar.gz\/prf2246.pdf."},{"key":"ref_28","unstructured":"(2022, September 29). Space Weather Highlights by SWPC for Week 2178 (22\u201328 May 2017), Available online: Ftp:\/\/ftp.swpc.noaa.gov\/pub\/warehouse\/2017\/2017_WeeklyPDF.tar.gz\/prf2178.pdf."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"e2019SW002378","DOI":"10.1029\/2019SW002378","article-title":"Spatial and temporal evolution of different-scale ionospheric irregularities in Central and East Siberia during the 27\u201328 May 2017 geomagnetic storm","volume":"18","author":"Ovodenko","year":"2020","journal-title":"Space Weather"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1186\/s40623-019-1020-z","article-title":"Ionospheric irregularity behavior during the 6\u201310 September 2017 magnetic storm over Brazilian equatorial\u2013low latitudes","volume":"71","author":"Caton","year":"2019","journal-title":"Earth Planets Space"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1007\/s11207-021-01803-7","article-title":"September 2017 Space-Weather Events: A Study on Magnetic Reconnection and Geoeffectiveness","volume":"296","author":"Hajra","year":"2021","journal-title":"Sol. Phys."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"e2019JA026873","DOI":"10.1029\/2019JA026873","article-title":"Temporal and spatial variations of total electron content enhancements during a geomagnetic storm on 27 and 28 September 2017","volume":"125","author":"Shinbori","year":"2020","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1075","DOI":"10.1016\/j.asr.2009.10.026","article-title":"Auroral radio absorption: The prediction question","volume":"45","author":"Hargreaves","year":"2010","journal-title":"Adv. Space Res."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"e2021SW002901","DOI":"10.1029\/2021SW002901","article-title":"Impacts of auroral precipitation on HF propagation: A hypothetical over-the-horizon radar case study","volume":"19","author":"Ruck","year":"2021","journal-title":"Space Weather"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2007SW000349","article-title":"GPS scintillation in the high Arctic associated with an auroral arc","volume":"6","author":"Smith","year":"2008","journal-title":"Space Weather"},{"key":"ref_36","first-page":"10607","article-title":"Severe and localized GNSS scintillation at the poleward edge of the nightsideauroral oval during intense substorm aurora","volume":"120","author":"Oksavik","year":"2015","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"637","DOI":"10.5194\/angeo-33-637-2015","article-title":"GPS phase scintillation at high latitudes during geomagnetic storms of 7\u201317 March 2012\u2014Part 1: The North American sector","volume":"33","author":"Prikryl","year":"2015","journal-title":"Ann. Geophys."},{"key":"ref_38","first-page":"28","article-title":"Space weather: Risk factors for global navigation satellite systems","volume":"7","author":"Demyanov","year":"2021","journal-title":"Sol. -Terr. Phys."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"4229","DOI":"10.1029\/JA090iA05p04229","article-title":"A statistical model of auroral electron precipitation","volume":"90","author":"Hardy","year":"1985","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1002\/2014SW001056","article-title":"OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels","volume":"12","author":"Newell","year":"2014","journal-title":"Space Weather"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"ES6001","DOI":"10.2205\/2020ES000721","article-title":"Short-term forecast of the auroral oval position on the basis of the \u201cvirtual globe\u201d technology","volume":"20","author":"Vorobev","year":"2020","journal-title":"Russ. J. Earth Sci."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"A03216","DOI":"10.1029\/2009JA014805","article-title":"Seasonal variations in diffuse, monoenergetic, and broadband aurora","volume":"115","author":"Newell","year":"2010","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_43","first-page":"88","article-title":"Diagnostics of the auroral oval boundaries on the basis of the magnetogram inversion technique","volume":"5","author":"Lunyushkin","year":"2019","journal-title":"Sol. -Terr. Phys."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"105335","DOI":"10.1016\/j.jastp.2020.105335","article-title":"Detection of high-latitude ionospheric structures using GNSS","volume":"207","author":"Perevalova","year":"2020","journal-title":"J. Atmos. Sol. -Terr. Phys."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Yasyukevich, Y., Vasilyev, R., Ratovsky, K., Setov, A., Globa, M., Syrovatskii, S., Yasyukevich, A., Kiselev, A., and Vesnin, A. (2020). Small-Scale Ionospheric Irregularities of Auroral Origin at Mid-latitudes during the 22 June 2015 Magnetic Storm and Their Effect on GPS Positioning. Remote Sens., 12.","DOI":"10.3390\/rs12101579"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"11","DOI":"10.5194\/npg-27-11-2020","article-title":"Prediction and variation of the auroral oval boundary based on a deep learning model and space physical parameters","volume":"27","author":"Han","year":"2020","journal-title":"Nonlin. Process. Geophys."},{"key":"ref_47","first-page":"132","article-title":"Computer Vision for GNSS-based Detection of the Auroral Oval Boundary","volume":"19","author":"Vasiliev","year":"2021","journal-title":"Int. J. Artif. Intell."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"A07S08","DOI":"10.1029\/2005JA011447","article-title":"Differences between CME-driven storms and CIR-driven storms","volume":"111","author":"Borovsky","year":"2006","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"29788","DOI":"10.1109\/ACCESS.2019.2897793","article-title":"Analyzing Ionosphere TEC and ROTI Responses on 2010 August High Speed Solar Winds","volume":"7","author":"Liu","year":"2019","journal-title":"IEEE Access"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"1657","DOI":"10.1016\/0032-0633(69)90153-6","article-title":"The auroral orientation curves for the IQSY","volume":"17","author":"Gustafsson","year":"1969","journal-title":"Planet. Space Sci."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"2913","DOI":"10.5194\/angeo-27-2913-2009","article-title":"Influences on the radius of the auroral oval","volume":"27","author":"Milan","year":"2009","journal-title":"Ann. Geophys."},{"key":"ref_52","first-page":"72","article-title":"Orientation of extended auroral forms","volume":"7","author":"Starkov","year":"1967","journal-title":"Geomagn. Aeron."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1007\/s00190-016-0988-4","article-title":"Positive and negative ionospheric responses to the March 2015 geomagnetic storm from BDS observations","volume":"91","author":"Jin","year":"2017","journal-title":"J. Geod."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1425","DOI":"10.1002\/cjg2.969","article-title":"On the Asymmetry of the Storm-Time Current System in the Ionosphere Between Southern and Northern Hemispheres","volume":"49","author":"Shen","year":"2006","journal-title":"Chin. J. Geophys."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1007\/s00190-008-0300-3","article-title":"The International GNSS Service in a changing landscape of Global Navigation Satellite Systems","volume":"83","author":"Dow","year":"2009","journal-title":"J. Geod."},{"key":"ref_56","first-page":"63","article-title":"SibNet\u2013Siberian Global Navigation Satellite System Network: Current state","volume":"4","author":"Yasyukevich","year":"2018","journal-title":"Sol. -Terr. Phys."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"RS0A03","DOI":"10.1029\/2008RS004046","article-title":"Canadian High Arctic Ionospheric Network (CHAIN)","volume":"44","author":"Jayachandran","year":"2009","journal-title":"Radio Sci."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1007\/978-3-642-20338-1_4","article-title":"Enhancement of the EUREF Permanent Network Services and Products","volume":"136","author":"Bruyninx","year":"2012","journal-title":"Geod. Planet Earth IAG Symp."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/21\/5486\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T18:52:02Z","timestamp":1723143122000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/21\/5486"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,10,31]]},"references-count":58,"journal-issue":{"issue":"21","published-online":{"date-parts":[[2022,11]]}},"alternative-id":["rs14215486"],"URL":"https:\/\/doi.org\/10.3390\/rs14215486","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2022,10,31]]}}}