{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,17]],"date-time":"2025-01-17T22:10:26Z","timestamp":1737151826464,"version":"3.33.0"},"reference-count":99,"publisher":"MDPI AG","issue":"19","license":[{"start":{"date-parts":[[2022,9,22]],"date-time":"2022-09-22T00:00:00Z","timestamp":1663804800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000844","name":"European Space Agency (ESA)","doi-asserted-by":"crossref","award":["969830"],"id":[{"id":"10.13039\/501100000844","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The relatively stable conditions of the sea ice cover in the Antarctic, observed for almost 40 years, seem to be changing recently. Therefore, it is essential to provide sea ice thickness (SIT) and volume (SIV) estimates in order to anticipate potential multi-scale changes in the Antarctic sea ice. For that purpose, the main objectives of this work are: (1) to assess a new sea ice freeboard, thickness and volume altimetry dataset over 2003\u20132020 and (2) to identify first order impacts of the sea ice recent conditions. To produce these series, we use a neuronal network to calibrate Envisat radar freeboards onto CryoSat-2 (CS2). This method addresses the impacts of surface roughness on Low Resolution Mode (LRM) measurements. During the 2011 common flight period, we found a mean deviation between Envisat and CryoSat-2 radar freeboards by about 0.5 cm. Using the Advanced Microwave Scanning Radiometer (AMSR) and the dual-frequency Altimetric Snow Depth (ASD) data, our solutions are compared with the Upward looking sonar (ULS) draft data, some in-situ measurement of the SIMBA campaign, the total freeboards of 6 Operation Ice Bridge (OIB) missions and ICESat-2 total freeboards. Over 2003\u20132020, the global mean radar freeboard decreased by about \u221214% per decade and the SIT and SIV by about \u221210% per decade (considering a snow depth climatology). This is marked by a slight increase through 2015, which is directly followed by a strong decrease in 2016. Thereafter, freeboards generally remained low and even continued to decrease in some regions such as the Weddell sea. Considering the 2013\u20132020 period, for which the ASD data are available, radar freeboards and SIT decreased by about \u221240% per decade. The SIV decreased by about \u221260% per decade. After 2016, the low SIT values contrast with the sea ice extent that has rather increased again, reaching near-average values in winter 2020. The regional analysis underlines that such thinning (from 2016) occurs in all regions except the Amundsen-Bellingshausen sea sector. Meanwhile, we observed a reversal of the main regional trends from 2016, which may be the signature of significant ongoing changes in the Antarctic sea ice.<\/jats:p>","DOI":"10.3390\/rs14194741","type":"journal-article","created":{"date-parts":[[2022,9,23]],"date-time":"2022-09-23T03:07:55Z","timestamp":1663902475000},"page":"4741","source":"Crossref","is-referenced-by-count":4,"title":["Latest Altimetry-Based Sea Ice Freeboard and Volume Inter-Annual Variability in the Antarctic over 2003\u20132020"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-2663-8769","authenticated-orcid":false,"given":"Florent","family":"Garnier","sequence":"first","affiliation":[{"name":"Laboratoire d\u2019Etudes en G\u00e9ophysique et Oc\u00e9anographie Spatiales (LEGOS), CNRS\/UMR5566, Universit\u00e9 Paul Sabbatier, 31400 Toulouse, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8390-3974","authenticated-orcid":false,"given":"Marion","family":"Bocquet","sequence":"additional","affiliation":[{"name":"Laboratoire d\u2019Etudes en G\u00e9ophysique et Oc\u00e9anographie Spatiales (LEGOS), CNRS\/UMR5566, Universit\u00e9 Paul Sabbatier, 31400 Toulouse, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3751-1387","authenticated-orcid":false,"given":"Sara","family":"Fleury","sequence":"additional","affiliation":[{"name":"Laboratoire d\u2019Etudes en G\u00e9ophysique et Oc\u00e9anographie Spatiales (LEGOS), CNRS\/UMR5566, Universit\u00e9 Paul Sabbatier, 31400 Toulouse, France"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-3534-4554","authenticated-orcid":false,"given":"J\u00e9r\u00f4me","family":"Bouffard","sequence":"additional","affiliation":[{"name":"European Space Agency (ESA), Earth Observation Directorate, Via Galileo Galilei, 2-00044 Frascati, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7034-5360","authenticated-orcid":false,"given":"Michel","family":"Tsamados","sequence":"additional","affiliation":[{"name":"Centre for Polar Observation and Modelling, Department of Earth Sciences, University College London, London WC1E 6BT, UK"}]},{"given":"Fr\u00e9d\u00e9rique","family":"Remy","sequence":"additional","affiliation":[{"name":"Laboratoire d\u2019Etudes en G\u00e9ophysique et Oc\u00e9anographie Spatiales (LEGOS), CNRS\/UMR5566, Universit\u00e9 Paul Sabbatier, 31400 Toulouse, France"}]},{"given":"Gilles","family":"Garric","sequence":"additional","affiliation":[{"name":"Mercator Ocean, 31520 Ramonville Saint Agne, France"}]},{"given":"Aliette","family":"Chenal","sequence":"additional","affiliation":[{"name":"Mercator Ocean, 31520 Ramonville Saint Agne, France"}]}],"member":"1968","published-online":{"date-parts":[[2022,9,22]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1110","DOI":"10.1029\/2002GL016406","article-title":"A record minimum arctic sea ice extent and area in 2002","volume":"30","author":"Serreze","year":"2003","journal-title":"Geophys. Res. Lett."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"L22502","DOI":"10.1029\/2008GL035710","article-title":"Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum","volume":"35","author":"Giles","year":"2008","journal-title":"Geophys. Res. Lett."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"20140157","DOI":"10.1098\/rsta.2014.0157","article-title":"Variability of Arctic sea ice thickness and volume from CryoSat-2","volume":"373","author":"Kwok","year":"2015","journal-title":"Phil. Trans. R. Soc. A"},{"key":"ref_4","unstructured":"Hvidegaard, S.M., Forsberg, R., Skourup, H., Kristensen, M.L., Olesen, A.V., Olesen, A.F., and Shepherd, A. (2020). ESA CryoVEx\/KAREN and EU ICE-ARC 2017\u2014Arctic Field Campaign with Combined Airborne Ku\/Ka-Band Radar and Laser Altimeters, together with Extensive In Situ Measurements over Sea- and Land Ice, National Space Institute, Danish Technical University (DTU Space). Technical Report."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"L01703","DOI":"10.1029\/2007GL031972","article-title":"Accelerated decline in the Arctic sea ice cover","volume":"35","author":"Comiso","year":"2008","journal-title":"Geophys. Res. Lett."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"105005","DOI":"10.1088\/1748-9326\/aae3ec","article-title":"Arctic sea ice thickness, volume, and multiyear ice coverage: Losses and coupled variability (1958\u20132018)","volume":"13","author":"Kwok","year":"2018","journal-title":"Environ. Res. Lett."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"1005","DOI":"10.1007\/s10584-011-0101-1","article-title":"The Arctic\u2019s rapidly shrinking sea ice cover: A research synthesis","volume":"110","author":"Stroeve","year":"2012","journal-title":"Clim. Chang."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"034015","DOI":"10.1088\/1748-9326\/abdb5f","article-title":"Accelerated decline of summer Arctic sea ice during 1850\u20132017 and the amplified Arctic warming during the recent decades","volume":"16","author":"Cai","year":"2021","journal-title":"Environ. Res. Lett."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1386","DOI":"10.1002\/grl.50191","article-title":"Arctic climate warming and sea ice declines lead to increased storm surge activity","volume":"40","author":"Vermaire","year":"2013","journal-title":"Geophys. Res. Lett."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1002\/2013RG000431","article-title":"Arctic sea ice in transformation: A review of recent observed changes and impacts on biology and human activity","volume":"52","author":"Meier","year":"2014","journal-title":"Rev. Geophys."},{"key":"ref_11","unstructured":"Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin, A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-Thomas, J., and Muelbert, M. (2019). Polar Regions. Chapter 3, IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Cambridge University Press."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"e2019GL086682","DOI":"10.1029\/2019GL086682","article-title":"Intensification of the Atlantic Water supply to the Arctic Ocean through Fram Strait induced by Arctic sea ice decline","volume":"47","author":"Wang","year":"2020","journal-title":"Geophys. Res. Lett."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.gloplacha.2016.06.008","article-title":"A review of recent changes in Southern Ocean sea ice, their drivers and forcings","volume":"143","author":"Hobbs","year":"2016","journal-title":"Glob. Planet. Chang."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"112753","DOI":"10.1016\/j.rse.2021.112753","article-title":"Sea ice extents continue to set new records: Arctic, Antarctic, and global results","volume":"267","author":"Parkinson","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"14414","DOI":"10.1073\/pnas.1906556116","article-title":"A 40-year record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic","volume":"116","author":"Parkinson","year":"2019","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"6633","DOI":"10.1175\/JCLI-D-12-00813.1","article-title":"The influence of the Amundsen\u2013Bellingshausen Seas low on the climate of West Antarctica and its representation in coupled climate model simulations","volume":"26","author":"Hosking","year":"2013","journal-title":"J. Clim."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1175\/BAMS-D-14-00018.1","article-title":"The Amundsen sea low: Variability, change, and impact on Antarctic climate","volume":"97","author":"Raphael","year":"2016","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/ncomms9656","article-title":"Sources of heterogeneous variability and trends in Antarctic sea-ice","volume":"6","author":"Matear","year":"2015","journal-title":"Nat. Commun."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1038\/s41561-021-00697-1","article-title":"Multi-decadal trends in Antarctic sea-ice extent driven by ENSO\u2013SAM over the last 2000 years","volume":"14","author":"Crosta","year":"2021","journal-title":"Nat. Geosci."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"590","DOI":"10.1038\/ngeo2751","article-title":"Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability","volume":"9","author":"Meehl","year":"2016","journal-title":"Nat. Geosci."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"376","DOI":"10.1038\/ngeo1767","article-title":"Important role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion","volume":"6","author":"Bintanja","year":"2013","journal-title":"Nat. Geosci."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"L08502","DOI":"10.1029\/2009GL037524","article-title":"Non-annular atmospheric circulation change induced by stratospheric ozone depletion and its role in the recent increase of Antarctic sea ice extent","volume":"36","author":"Turner","year":"2009","journal-title":"Geophys. Res. Lett."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"4328","DOI":"10.1002\/grl.50820","article-title":"The influence of recent Antarctic ice sheet retreat on simulated sea ice area trends","volume":"40","author":"Swart","year":"2013","journal-title":"Geophys. Res. Lett."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"L20705","DOI":"10.1029\/2012GL053393","article-title":"Antarctic climate response to stratospheric ozone depletion in a fine resolution ocean climate model","volume":"39","author":"Bitz","year":"2012","journal-title":"Geophys. Res. Lett."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"460","DOI":"10.1038\/s41561-021-00768-3","article-title":"Rapid decline in Antarctic sea ice in recent years hints at future change","volume":"14","author":"Eayrs","year":"2021","journal-title":"Nat. Geosci."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"9008","DOI":"10.1002\/2017GL074691","article-title":"Conditions leading to the unprecedented low Antarctic sea ice extent during the 2016 austral spring season","volume":"44","author":"Stuecker","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1103","DOI":"10.5194\/tc-12-1103-2018","article-title":"Atmospheric influences on the anomalous 2016 Antarctic sea ice decay","volume":"12","author":"Schlosser","year":"2018","journal-title":"Cryosphere"},{"key":"ref_28","first-page":"1","article-title":"Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016","volume":"10","author":"Wang","year":"2019","journal-title":"Nat. Commun."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-018-07865-9","article-title":"Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016","volume":"10","author":"Meehl","year":"2019","journal-title":"Nat. Commun."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"084020","DOI":"10.1088\/1748-9326\/aad624","article-title":"An ocean-sea ice model study of the unprecedented Antarctic sea ice minimum in 2016","volume":"13","author":"Kusahara","year":"2018","journal-title":"Environ. Res. Lett."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1019","DOI":"10.1016\/j.dsr2.2010.10.027","article-title":"Sea ice and snow cover characteristics during the winter\u2013spring transition in the Bellingshausen Sea: An overview of SIMBA 2007","volume":"58","author":"Lewis","year":"2011","journal-title":"Deep Sea Res. Part II Top. Stud. Oceanogr."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"288","DOI":"10.3189\/172756406781811268","article-title":"ARISE (Antarctic Remote Ice Sensing Experiment) in the East 2003: Validation of satellite-derived sea-ice data products","volume":"44","author":"Massom","year":"2006","journal-title":"Ann. Glaciol."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"C05S94","DOI":"10.1029\/2007JC004181","article-title":"Evaluation of AMSR-E snow depth product over East Antarctic sea ice using in situ measurements and aerial photography","volume":"113","author":"Worby","year":"2008","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"9057","DOI":"10.1029\/1999JC000027","article-title":"Sea ice transports in the Weddell Sea","volume":"106","author":"Harms","year":"2001","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"209","DOI":"10.5194\/essd-5-209-2013","article-title":"Sea ice draft in the Weddell Sea, measured by upward looking sonars","volume":"5","author":"Behrendt","year":"2013","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"3807","DOI":"10.1002\/jgrc.20252","article-title":"Sea ice thickness retrieval algorithms based on in situ surface elevation and thickness values for application to altimetry","volume":"118","author":"Ackley","year":"2013","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0165-232X(97)00019-0","article-title":"Evaluation of ship-based electromagnetic-inductive thickness measurements of summer sea-ice in the Bellingshausen and Amundsen Seas, Antarctica","volume":"27","author":"Haas","year":"1998","journal-title":"Cold Reg. Sci. Technol."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"194","DOI":"10.3189\/172756401781818356","article-title":"Indirect measurements of the mass balance of summer Arctic sea ice with an electromagnetic induction technique","volume":"33","author":"Eicken","year":"2001","journal-title":"Ann. Glaciol."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"963","DOI":"10.1016\/j.dsr2.2007.12.020","article-title":"Sea ice and snow thickness and physical properties of an ice floe in the western Weddell Sea and their changes during spring warming","volume":"55","author":"Haas","year":"2008","journal-title":"Deep Sea Res. Part II Top. Stud. Oceanogr."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"C05S92","DOI":"10.1029\/2007JC004254","article-title":"Thickness distribution of Antarctic sea ice","volume":"113","author":"Worby","year":"2008","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Giles, K.A., Laxon, S.W., and Worby, A.P. (2008). Antarctic sea ice elevation from satellite radar altimetry. Geophys. Res. Lett., 35.","DOI":"10.1029\/2007GL031572"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1035","DOI":"10.5194\/tc-7-1035-2013","article-title":"Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data","volume":"7","author":"Kurtz","year":"2013","journal-title":"Cryosphere"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"4141","DOI":"10.1002\/2014JC009943","article-title":"Snow depth of the weddell and bellingshausen sea ice covers from ice bridge surveys in 2010 and 2011: An examination","volume":"119","author":"Kwok","year":"2014","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_44","unstructured":"Hvidegaard, S., Forsberg, R., Skourup, H., Kristensen, M., Olesen, A., Olesen, A., Coccia, A., Macedo, K., Helm, V., and Ladkin, R. (2020). ESA CryoVEx\/KAREN Antarctica 2017-18, DTU Technical University of Denmark. Technical Report."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"285","DOI":"10.3189\/2015JoG14J157","article-title":"Evaluation of CryoSat-2 derived sea-ice freeboard over fast ice in McMurdo Sound, Antarctica","volume":"61","author":"Price","year":"2015","journal-title":"J. Glaciol."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"1415","DOI":"10.5194\/tc-10-1415-2016","article-title":"About the consistency between Envisat and CryoSat-2 radar freeboard retrieval over Antarctic sea ice","volume":"10","author":"Schwegmann","year":"2016","journal-title":"Cryosphere"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"2437","DOI":"10.5194\/tc-12-2437-2018","article-title":"Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: Progress in the ESA Climate Change Initiative","volume":"12","author":"Paul","year":"2018","journal-title":"Cryosphere"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"C02S15","DOI":"10.1029\/2007JC004284","article-title":"ICESat measurements of sea ice freeboard and estimates of sea ice thickness in the Weddell Sea","volume":"113","author":"Zwally","year":"2008","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"43","DOI":"10.3189\/172756411795931480","article-title":"ICESat observations of seasonal and interannual variations of sea-ice freeboard and estimated thickness in the Weddell Sea, Antarctica (2003\u20132009)","volume":"52","author":"Yi","year":"2011","journal-title":"Ann. Glaciol."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"242","DOI":"10.3189\/172756411795931570","article-title":"Freeboard, snow depth and sea-ice roughness in East Antarctica from in situ and multiple satellite data","volume":"52","author":"Markus","year":"2011","journal-title":"Ann. Glaciol."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"C08025","DOI":"10.1029\/2012JC008141","article-title":"Satellite observations of Antarctic sea ice thickness and volume","volume":"117","author":"Kurtz","year":"2012","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Kern, S., Ozsoy-\u00c7i\u00e7ek, B., and Worby, A.P. (2016). Antarctic sea-ice thickness retrieval from ICESat: Inter-comparison of different approaches. Remote Sens., 8.","DOI":"10.3390\/rs8070538"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"2789","DOI":"10.5194\/tc-12-2789-2018","article-title":"Three years of sea ice freeboard, snow depth, and ice thickness of the Weddell Sea from Operation IceBridge and CryoSat-2","volume":"12","author":"Kwok","year":"2018","journal-title":"Cryosphere"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"4453","DOI":"10.5194\/tc-14-4453-2020","article-title":"The Antarctic sea ice cover from ICESat-2 and CryoSat-2: Freeboard, snow depth, and ice thickness","volume":"14","author":"Kacimi","year":"2020","journal-title":"Cryosphere"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"e2021GL093425","DOI":"10.1029\/2021GL093425","article-title":"Deriving Antarctic Sea-Ice Thickness From Satellite Altimetry and Estimating Consistency for NASA\u2019s ICESat\/ICESat-2 Missions","volume":"48","author":"Xu","year":"2021","journal-title":"Geophys. Res. Lett."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"2059","DOI":"10.5194\/tc-11-2059-2017","article-title":"Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: Toward an improved Envisat freeboard retrieval","volume":"11","author":"Guerreiro","year":"2017","journal-title":"Cryosphere"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"1889","DOI":"10.5194\/tc-14-1889-2020","article-title":"CryoSat Ice Baseline-D validation and evolutions","volume":"14","author":"Meloni","year":"2020","journal-title":"Cryosphere"},{"key":"ref_58","unstructured":"Dinardo, S., Restano, M., Ambr\u00f3zio, A., and Benveniste, J. (2016, January 15\u201317). SAR altimetry processing on demand service for CryoSat-2 and Sentinel-3 at ESA G-POD. Proceedings of the 2016 Conference on Big Data from Space (BiDS\u201916), Santa Cruz de Tenerife, Spain."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"732","DOI":"10.1016\/j.asr.2020.02.001","article-title":"Toward improved sea ice freeboard observation with SAR altimetry using the physical retracker SAMOSA+","volume":"68","author":"Laforge","year":"2020","journal-title":"Adv. Space Res."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"5483","DOI":"10.5194\/tc-15-5483-2021","article-title":"Advances in altimetric snow depth estimates using bi-frequency SARAL and CryoSat-2 Ka\u2013Ku measurements","volume":"15","author":"Garnier","year":"2021","journal-title":"Cryosphere"},{"key":"ref_61","unstructured":"Meier, W., Markus, T., and Comiso, J. (2018). AMSR-E\/AMSR2 Unified L3 Daily 12.5 km Brightness Temperatures, Sea Ice Concentration, Motion and Snow Depth Polar Grids, Version 1, NASA National Snow and Ice Data Center Distributed Archive Center."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1016\/j.rse.2016.12.029","article-title":"The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation","volume":"190","author":"Markus","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"11228","DOI":"10.1029\/2019GL084976","article-title":"ICESat-2 surface height and sea ice freeboard assessed with ATM lidar acquisitions from Operation IceBridge","volume":"46","author":"Kwok","year":"2019","journal-title":"Geophys. Res. Lett."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"e2019JC015764","DOI":"10.1029\/2019JC015764","article-title":"Winter Arctic sea ice thickness from ICESat-2 freeboards","volume":"125","author":"Petty","year":"2020","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_65","unstructured":"Kwok, R., Cunningham, G., Markus, T., Hancock, D., Morison, J., Palm, S., Farrell, S., and Ivanoff, A. (2020). ATLAS\/ICESat-2 L3A Sea Ice Freeboard, Version 3, NSIDC: National Snow and Ice Data Center."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"2270","DOI":"10.1002\/2014JC010408","article-title":"Thermodynamic sea ice growth in the central W eddell S ea, observed in upward-looking sonar data","volume":"120","author":"Behrendt","year":"2015","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_67","unstructured":"Studinger, M. (2014). IceBridge Narrow Swath ATM L1B Elevation and Return Strength, Version 2, National Snow and Ice Data Center Distributed Active Archive Center."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"C02018","DOI":"10.1029\/2011JC007654","article-title":"Arctic sea ice freeboard from IceBridge acquisitions in 2009: Estimates and comparisons with ICESat","volume":"117","author":"Kwok","year":"2012","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_69","unstructured":"Fetterer, F., Knowles, K., Meier, W., Savoie, M., and Windnagel, A. (2017). Sea Ice Index, Version 3, National Snow and Ice Data Center Distributed Active Archive Center."},{"key":"ref_70","unstructured":"Meier, W., Stewart, J., Wilcox, H., Hardman, M., and Scott, D. (2021). Near-Real-Time DMSP SSMIS Daily Polar Gridded Sea Ice Concentrations, Version 2, National Snow and Ice Data Center Distributed Active Archive Center."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"1607","DOI":"10.5194\/tc-8-1607-2014","article-title":"Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation","volume":"8","author":"Ricker","year":"2014","journal-title":"Cryosphere"},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"L17502","DOI":"10.1029\/2011GL048668","article-title":"Sea ice production and export from coastal polynyas in the Weddell and Ross Seas","volume":"38","author":"Drucker","year":"2011","journal-title":"Geophys. Res. Lett."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"2027","DOI":"10.5194\/tc-9-2027-2015","article-title":"Long-term coastal-polynya dynamics in the southern Weddell Sea from MODIS thermal-infrared imagery","volume":"9","author":"Paul","year":"2015","journal-title":"Cryosphere"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"e2019JC015820","DOI":"10.1029\/2019JC015820","article-title":"Sea ice roughness overlooked as a key source of uncertainty in CryoSat-2 ice freeboard retrievals","volume":"125","author":"Landy","year":"2020","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"6868","DOI":"10.1002\/2017GL073656","article-title":"Unprecedented springtime retreat of Antarctic sea ice in 2016","volume":"44","author":"Turner","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_76","doi-asserted-by":"crossref","unstructured":"Bocquet, M., Fleury, S., Moreau, T., Frederique, R., and Garnier, F. (2022). Arctic sea ice radar freeboard retrieval from ERS-2 using altimetry: Toward sea ice thickness observation from 1995 to 2021. EGUsphere, 1\u201333.","DOI":"10.5194\/egusphere-2022-214"},{"key":"ref_77","first-page":"273","article-title":"Ice formation in coastal polynyas in the Weddell Sea and their impact on oceanic salinity","volume":"74","author":"Markus","year":"1998","journal-title":"Antarct. Sea Ice Phys. Process. Interact. Var."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"16-1","DOI":"10.1029\/2000JC000720","article-title":"Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget","volume":"107","author":"Renfrew","year":"2002","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"2438","DOI":"10.1002\/jgrc.20179","article-title":"Sea ice thickness estimations from ICESat Altimetry over the Bellingshausen and Amundsen Seas, 2003\u20132009","volume":"118","author":"Xie","year":"2013","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"1082","DOI":"10.1109\/JSTARS.2020.2966432","article-title":"Snow Property Controls on Modeled Ku-Band Altimeter Estimates of First-Year Sea Ice Thickness: Case Studies From the Canadian and Norwegian Arctic","volume":"13","author":"Nandan","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1109\/TGRS.2009.2028237","article-title":"Field investigations of Ku-band radar penetration into snow cover on Antarctic sea ice","volume":"48","author":"Willatt","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"92","DOI":"10.3189\/S0260305500007023","article-title":"Development of sea ice in the Weddell Sea","volume":"12","author":"Lange","year":"1989","journal-title":"Ann. Glaciol."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"871","DOI":"10.5194\/tc-6-871-2012","article-title":"Antarctic sea ice variability and trends, 1979\u20132010","volume":"6","author":"Parkinson","year":"2012","journal-title":"Cryosphere"},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"e984","DOI":"10.1002\/asl.984","article-title":"Twenty first century changes in Antarctic and Southern Ocean surface climate in CMIP6","volume":"21","author":"Bracegirdle","year":"2020","journal-title":"Atmos. Sci. Lett."},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"e2020GL091733","DOI":"10.1029\/2020GL091733","article-title":"Surface melt and runoff on Antarctic ice shelves at 1.5 C, 2 C, and 4 C of future warming","volume":"48","author":"Gilbert","year":"2021","journal-title":"Geophys. Res. Lett."},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"014029","DOI":"10.1088\/1748-9326\/ac43e2","article-title":"Future projections of temperature and precipitation for Antarctica","volume":"17","author":"Tewari","year":"2022","journal-title":"Environ. Res. Lett."},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"947","DOI":"10.1038\/nature02050","article-title":"High interannual variability of sea ice thickness in the Arctic region","volume":"425","author":"Laxon","year":"2003","journal-title":"Nature"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"1203","DOI":"10.1016\/j.asr.2017.10.051","article-title":"Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data","volume":"62","author":"Tilling","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"711","DOI":"10.1016\/j.asr.2019.10.011","article-title":"Extending the Arctic sea ice freeboard and sea level record with the Sentinel-3 radar altimeters","volume":"68","author":"Lawrence","year":"2019","journal-title":"Adv. Space Res."},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"1539","DOI":"10.5194\/tc-8-1539-2014","article-title":"Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2","volume":"8","author":"Helm","year":"2014","journal-title":"Cryosphere"},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"1371","DOI":"10.1016\/j.asr.2017.12.018","article-title":"Coastal sar and plrm altimetry in german bight and west baltic sea","volume":"62","author":"Dinardo","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_92","doi-asserted-by":"crossref","unstructured":"Ricker, R., Hendricks, S., and Beckers, J.F. (2016). The impact of geophysical corrections on sea-ice freeboard retrieved from satellite altimetry. Remote Sens., 8.","DOI":"10.3390\/rs8040317"},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"C11018","DOI":"10.1029\/2011JC007371","article-title":"Airborne surveys of snow depth over Arctic sea ice","volume":"116","author":"Kwok","year":"2011","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"251","DOI":"10.5194\/tc-14-251-2020","article-title":"Brief communication: Conventional assumptions involving the speed of radar waves in snow introduce systematic underestimates to sea ice thickness and seasonal growth rate estimates","volume":"14","author":"Mallett","year":"2020","journal-title":"Cryosphere"},{"key":"ref_95","unstructured":"Ulaby, F., Moore, R.K., and Fung, A.K. (1986). Microwave Remote Sensing: Active and Passive. Volume 3-From Theory to Applications, University Ann Arbor."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1029\/2000RG000085","article-title":"Snow on Antarctic sea ice","volume":"39","author":"Massom","year":"2001","journal-title":"Rev. Geophys."},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"20325","DOI":"10.1029\/92JC02014","article-title":"Relationship between sea ice freeboard and draft in the Arctic Basin, and implications for ice thickness monitoring","volume":"97","author":"Wadhams","year":"1992","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"373","DOI":"10.5194\/tc-4-373-2010","article-title":"The relation between sea ice thickness and freeboard in the Arctic","volume":"4","author":"Alexandrov","year":"2010","journal-title":"Cryosphere"},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"C02S12","DOI":"10.1029\/2006JC004085","article-title":"Antarctic sea ice thickness and snow-to-ice conversion from atmospheric reanalysis and passive microwave snow depth","volume":"113","author":"Maksym","year":"2008","journal-title":"J. Geophys. Res. Ocean."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/19\/4741\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,17]],"date-time":"2025-01-17T21:37:29Z","timestamp":1737149849000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/19\/4741"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,9,22]]},"references-count":99,"journal-issue":{"issue":"19","published-online":{"date-parts":[[2022,10]]}},"alternative-id":["rs14194741"],"URL":"https:\/\/doi.org\/10.3390\/rs14194741","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2022,9,22]]}}}