{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:08:18Z","timestamp":1735585698655},"reference-count":26,"publisher":"MDPI AG","issue":"17","license":[{"start":{"date-parts":[[2022,8,27]],"date-time":"2022-08-27T00:00:00Z","timestamp":1661558400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000104","name":"National Aeronautics and Space Administration","doi-asserted-by":"publisher","award":["80NM0018D0004"],"id":[{"id":"10.13039\/100000104","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The Cross-Calibrated Multi-Platform (CCMP) Ocean vector wind analysis is a level-4 product that uses a variational method to combine satellite retrievals of ocean winds with a background wind field from a numerical weather prediction (NWP) model. The result is a spatially complete estimate of global ocean vector winds on six-hour intervals that are closely tied to satellite measurements. The current versions of CCMP are fairly accurate at low to moderate wind speeds (<15 m\/s) but are systematically too low at high winds at locations\/times where a collocated satellite measurement is not available. This is mainly because the NWP winds tend to be lower than satellite winds, especially at high wind speed. The current long-term CCMP version, version 2.0, also shows spurious variations on interannual to decadal time scales caused by the interaction of satellite\/model bias with the varying amount of satellite measurements available as satellite missions begin and end. To alleviate these issues, here we explore methods to adjust the source datasets to more closely match each other before they are combined. The resultant new CCMP wind analysis agrees better with long-term trend estimates from satellite observations and reanalysis than previous versions.<\/jats:p>","DOI":"10.3390\/rs14174230","type":"journal-article","created":{"date-parts":[[2022,8,30]],"date-time":"2022-08-30T05:37:55Z","timestamp":1661837875000},"page":"4230","source":"Crossref","is-referenced-by-count":32,"title":["Improving the Accuracy of the Cross-Calibrated Multi-Platform (CCMP) Ocean Vector Winds"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6020-9354","authenticated-orcid":false,"given":"Carl","family":"Mears","sequence":"first","affiliation":[{"name":"Remote Sensing Systems, Santa Rosa, CA 95401, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9817-2908","authenticated-orcid":false,"given":"Tong","family":"Lee","sequence":"additional","affiliation":[{"name":"Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91125, USA"}]},{"given":"Lucrezia","family":"Ricciardulli","sequence":"additional","affiliation":[{"name":"Remote Sensing Systems, Santa Rosa, CA 95401, USA"}]},{"given":"Xiaochun","family":"Wang","sequence":"additional","affiliation":[{"name":"Joint Institude for Regional Earth System Science and Engineering, University of California, Los Angeles, CA 90095, USA"}]},{"given":"Frank","family":"Wentz","sequence":"additional","affiliation":[{"name":"Remote Sensing Systems, Santa Rosa, CA 95401, USA"}]}],"member":"1968","published-online":{"date-parts":[[2022,8,27]]},"reference":[{"key":"ref_1","unstructured":"Schuster, U., Monteiro, P.M.S., Tilbrook, B.D., Lenton, A.A., Sabine, C., Takahashi, T., Wanninkhof, H., Hood, M., Watson, A.J., and Olsen, A. (2010, January 31). Remotely Sensed Winds and Wind Stresses for Marine Forecasting and Ocean Modeling. Proceedings of the OceanObs\u201909: Sustained Ocean Observations and Information for Society, Venice, Italy. European Space Agency."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"978","DOI":"10.1126\/science.1091901","article-title":"Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds","volume":"303","author":"Chelton","year":"2004","journal-title":"Science"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"2165","DOI":"10.1109\/JSTARS.2016.2643641","article-title":"Evaluating and Extending the Ocean Wind Climate Data Record","volume":"10","author":"Wentz","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"2511","DOI":"10.1007\/s00382-010-0954-4","article-title":"An Assessment of Oceanic Variability in the NCEP Climate Forecast System Reanalysis","volume":"37","author":"Xue","year":"2011","journal-title":"Clim. Dyn."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1175\/2010BAMS2946.1","article-title":"A Cross-Calibrated, Multi-Platform Ocean Surface Wind Velocity Product for Meteorological and Oceanographic Applications","volume":"92","author":"Atlas","year":"2011","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.jmarsys.2017.01.003","article-title":"Two Decades [1992\u20132012] of Surface Wind Analyses Based on Satellite Scatterometer Observations","volume":"168","author":"Desbiolles","year":"2017","journal-title":"J. Mar. Syst."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"C11013","DOI":"10.1029\/2012JC008069","article-title":"Buoy Perspective of a High-Resolution Global Ocean Vector Wind Analysis Constructed from Passive Radiometers and Active Scatterometers (1987\u2013Present)","volume":"117","author":"Yu","year":"2012","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"6997","DOI":"10.1029\/2019JC015367","article-title":"A Near-Real-Time Version of the Cross-Calibrated Multiplatform (CCMP) Ocean Surface Wind Velocity Data Set","volume":"124","author":"Mears","year":"2019","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"2961","DOI":"10.1256\/qj.04.176","article-title":"The ERA-40 Re-Analysis","volume":"131","author":"Uppala","year":"2005","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1002\/qj.828","article-title":"The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System","volume":"137","author":"Dee","year":"2011","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1072","DOI":"10.1002\/2016JC012340","article-title":"Factors Influencing the Skill of Synthesized Satellite Wind Products in the Tropical Pacific","volume":"122","author":"McGregor","year":"2017","journal-title":"J. Geophys. Res. Ocean."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"1999","DOI":"10.1002\/qj.3803","article-title":"The ERA5 Global Reanalysis","volume":"146","author":"Hersbach","year":"2020","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1580","DOI":"10.1175\/1520-0485(1986)016<1580:IOSEOT>2.0.CO;2","article-title":"Incorporation of Stratification Effects on the Oceanic Roughness Length in the Derivation of the Neutral Drag Coefficient","volume":"16","author":"Geernaert","year":"1986","journal-title":"J. Phys. Oceanogr."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1829","DOI":"10.1175\/JTECH-D-15-0008.1","article-title":"A Scatterometer Geophysical Model Function for High Winds: QuikSCAT Ku-2011","volume":"32","author":"Ricciardulli","year":"2015","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Ricciardulli, L., and Manaster, A. (2021). Intercalibration of ASCAT Scatterometer Winds from MetOp-A, -B, and -C, for a Stable Climate Data Record. Remote Sens., 13.","DOI":"10.3390\/rs13183678"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"803","DOI":"10.1175\/JTECH-D-18-0116.1","article-title":"Validation of High Ocean Surface Winds from Satellites Using Oil Platform Anemometers","volume":"36","author":"Manaster","year":"2019","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1660","DOI":"10.1175\/BAMS-D-16-0052.1","article-title":"Capability of the SMAP Mission to Measure Ocean Surface Winds in Storms","volume":"98","author":"Meissner","year":"2017","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"4501","DOI":"10.1109\/TGRS.2016.2543502","article-title":"Application of AMSR-E and AMSR2 Low-Frequency Channel Brightness Temperature Data for Hurricane Wind Retrievals","volume":"54","author":"Mai","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"2347","DOI":"10.1109\/TGRS.2004.836867","article-title":"The WindSat Spaceborne Polarimetric Microwave Radiometer: Sensor Description and Early Orbit Performance","volume":"42","author":"Gaiser","year":"2004","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"6882","DOI":"10.1175\/JCLI-D-15-0155.1","article-title":"A 17-Year Climate Record of Environmental Parameters Derived from the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager","volume":"28","author":"Wentz","year":"2015","journal-title":"J. Clim."},{"key":"ref_21","first-page":"102924","article-title":"An Adversarial Learning Approach to Forecasted Wind Field Correction with an Application to Oil Spill Drift Prediction","volume":"112","author":"Li","year":"2022","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Gonzalez-Arceo, A., Zirion-Martinez de Musitu, M., Ulazia, A., del Rio, M., and Garcia, O. (2020). Calibration of Reanalysis Data against Wind Measurements for Energy Production Estimation of Building Integrated Savonius-Type Wind Turbine. Appl. Sci., 10.","DOI":"10.3390\/app10249017"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"2938","DOI":"10.1175\/1520-0485(2002)032<2938:DMAAOT>2.0.CO;2","article-title":"Diagnostic Model and Analysis of the Surface Currents in the Tropical Pacific Ocean","volume":"32","author":"Bonjean","year":"2002","journal-title":"J. Phys. Oceanogr."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"381","DOI":"10.1002\/2015RS005858","article-title":"Atmospheric Absorption Model for Dry Air and Water Vapor at Frequencies below 100 GHz Derived from Spaceborne Radiometer Observations","volume":"51","author":"Wentz","year":"2016","journal-title":"Radio Sci."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Wright, E.E., Bourassa, M.A., Stoffelen, A., and Bidlot, J.-R. (2021). Characterizing Buoy Wind Speed Error in High Winds and Varying Sea State with ASCAT and ERA5. Remote Sens., 13.","DOI":"10.3390\/rs13224558"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Ricciardulli, L., Foltz, G.R., Manaster, A., and Meissner, T. (2022). Assessment of Saildrone Extreme Wind Measurements in Hurricane Sam Using MW Satellite Sensors. Remote Sens., 14.","DOI":"10.3390\/rs14122726"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/17\/4230\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,4]],"date-time":"2024-08-04T15:19:20Z","timestamp":1722784760000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/17\/4230"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,8,27]]},"references-count":26,"journal-issue":{"issue":"17","published-online":{"date-parts":[[2022,9]]}},"alternative-id":["rs14174230"],"URL":"https:\/\/doi.org\/10.3390\/rs14174230","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2022,8,27]]}}}