{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,9]],"date-time":"2024-09-09T11:22:26Z","timestamp":1725880946527},"reference-count":51,"publisher":"MDPI AG","issue":"14","license":[{"start":{"date-parts":[[2022,7,8]],"date-time":"2022-07-08T00:00:00Z","timestamp":1657238400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000192","name":"University of Maryland\/ESSIC","doi-asserted-by":"publisher","award":["NA19NES4320002"],"id":[{"id":"10.13039\/100000192","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"In recent years, Global Navigation Satellite System (GNSS) radio occultation (RO) has become a critical observation system for global operational numerical weather prediction. Constellation Observing System for Meteorology, Ionosphere, Climate (COSMIC) 2 (COSMIC-2) has been a backbone RO mission for NOAA. NOAA also began to purchase RO data from commercial sources in 2020. To ensure the consistent quality of RO data from different sources, NOAA Center for Satellite Applications and Research (STAR) has developed capabilities to process all available RO data from different missions. This paper describes the STAR RO processing systems which convert the pseudo-range and carrier phase observations to excess phases and bending angles (BAs). We compared our COSMIC-2 data products with those processed by the University Corporation for Atmospheric Research (UCAR) COSMIC Data Analysis and Archive Center (CDAAC). We processed more than twelve thousand COSMIC-2 occultation profiles. Our results show that the excess phase difference between UCAR and STAR is within a few centimeters at high altitudes, although the difference increases towards the lower atmosphere. The BA profiles derived from the excess phase are consistent with UCAR. The mean relative BA differences at impact height from 10 to 30 km are less than 0.1% for GLObal NAvigation Satellite System (GLONASS) L2C signals and Global Positioning System (GPS) L2C and L2P signals. The standard deviations are 1.15%, 1.15%, and 1.32% for GLONASS L2C signal and for GPS L2C and L2P signals, respectively. The BA profiles agree with those derived from European Center for Medium-range Weather Forecast (ECMWF) reanalysis version 5 (ERA5). The Signal-to-Noise-Ratio (SNR) plays an essential role in the processing. The STAR BA profiles with higher L1 SNRs (L1 at 80 km) tend to yield more consistent results than those from UCAR, with a negligible difference and a smaller deviation than lower SNR profiles. Profiles with lower SNR values tend to show a more significant standard deviation towards the surface during the open-loop stage in the lower troposphere than those of higher SNR. We also found that the different COSMIC-2 clock solutions could contribute to the significant relative BA difference at high altitudes; however, it has little effect on the lower troposphere comparisons given larger BA values.<\/jats:p>","DOI":"10.3390\/rs14143288","type":"journal-article","created":{"date-parts":[[2022,7,11]],"date-time":"2022-07-11T04:06:21Z","timestamp":1657512381000},"page":"3288","source":"Crossref","is-referenced-by-count":9,"title":["Verification and Validation of the COSMIC-2 Excess Phase and Bending Angle Algorithms for Data Quality Assurance at STAR"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2551-7367","authenticated-orcid":false,"given":"Bin","family":"Zhang","sequence":"first","affiliation":[{"name":"CISESS, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3010-8544","authenticated-orcid":false,"given":"Shu-peng","family":"Ho","sequence":"additional","affiliation":[{"name":"Center for Satellite Applications & Research (STAR), NESDIS\/NOAA, College Park, MD 20740, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3572-6525","authenticated-orcid":false,"given":"Changyong","family":"Cao","sequence":"additional","affiliation":[{"name":"Center for Satellite Applications & Research (STAR), NESDIS\/NOAA, College Park, MD 20740, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1589-7098","authenticated-orcid":false,"given":"Xi","family":"Shao","sequence":"additional","affiliation":[{"name":"CISESS, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA"}]},{"given":"Jun","family":"Dong","sequence":"additional","affiliation":[{"name":"CISESS, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0279-9405","authenticated-orcid":false,"given":"Yong","family":"Chen","sequence":"additional","affiliation":[{"name":"Center for Satellite Applications & Research (STAR), NESDIS\/NOAA, College Park, MD 20740, USA"}]}],"member":"1968","published-online":{"date-parts":[[2022,7,8]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Ho, S.-P., Zhou, X., Shao, X., Zhang, B., Adhikari, L., Kireev, S., He, Y., Yoe, J.G., Xia-Serafino, W., and Lynch, E. (2020). Initial Assessment of the COSMIC-2\/FORMOSAT-7 Neutral Atmosphere Data Quality in NESDIS\/STAR Using In Situ and Satellite Data. Remote Sens., 12.","DOI":"10.3390\/rs12244099"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"e2019GL086841","DOI":"10.1029\/2019GL086841","article-title":"COSMIC-2 Radio Occultation Constellation: First Results","volume":"47","author":"Schreiner","year":"2020","journal-title":"Geophys. Res. Lett."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"ES18","DOI":"10.1175\/BAMS-D-13-00035.1","article-title":"Applications of COSMIC Radio Occultation Data from the Troposphere to Ionosphere and Potential Impacts of COSMIC-2 Data","volume":"95","author":"Ho","year":"2014","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"2856","DOI":"10.1175\/JCLI-D-14-00238.1","article-title":"Marine Boundary Layer Heights and Their Longitudinal, Diurnal, and Interseasonal Variability in the Southeastern Pacific Using COSMIC, CALIOP, and Radiosonde Data","volume":"28","author":"Ho","year":"2015","journal-title":"J. Clim."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"4493","DOI":"10.5194\/acp-17-4493-2017","article-title":"Characterization of the long-term radiosonde temperature biases in the upper troposphere and lower stratosphere using COSMIC and Metop-A\/GRAS data from 2006 to 2014","volume":"17","author":"Ho","year":"2017","journal-title":"Atmos. Chem. Phys."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"259","DOI":"10.5194\/acp-18-259-2018","article-title":"Comparison of global observations and trends of total precipitable water derived from microwave radiometers and COSMIC radio occultation from 2006 to 2013","volume":"18","author":"Ho","year":"2018","journal-title":"Atmos. Chem. Phys."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"E1107","DOI":"10.1175\/BAMS-D-18-0290.1","article-title":"The COSMIC\/FORMOSAT-3 Radio Occultation Mission after 12 Years: Accomplishments, Remaining Challenges, and Potential Impacts of COSMIC-2","volume":"101","author":"Ho","year":"2020","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"5309","DOI":"10.5194\/acp-12-5309-2012","article-title":"Thermal structure of intense convective clouds derived from GPS radio occultations","volume":"12","author":"Biondi","year":"2012","journal-title":"Atmos. Chem. Phys."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"5247","DOI":"10.1002\/jgrd.50448","article-title":"Tropical cyclone cloud-top height and vertical temperature structure detection using GPS radio occultation measurements","volume":"118","author":"Biondi","year":"2013","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"5327","DOI":"10.1002\/grl.50885","article-title":"Global variation of COSMIC precipitable water over land: Comparisons with ground-based GPS measurements and NCEP reanalyses","volume":"40","author":"Huang","year":"2013","journal-title":"Geophys. Res. Lett."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"8411","DOI":"10.1002\/jgrd.50371","article-title":"Characteristics of global precipitable water in ENSO events revealed by COSMIC measurements","volume":"118","author":"Teng","year":"2013","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"2019","DOI":"10.5194\/amt-4-2019-2011","article-title":"Quantifying uncertainty in climatological fields from GPS radio occultation: An empirical-analytical error model","volume":"4","author":"Kirchengast","year":"2011","journal-title":"Atmos. Meas. Tech."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"D22108","DOI":"10.1029\/2012JD017685","article-title":"Structural evolution of the Madden-Julian Oscillation from COSMIC radio occultation data","volume":"117","author":"Zeng","year":"2012","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1093","DOI":"10.5194\/amt-10-1093-2017","article-title":"Tropospheric dry layers in the tropical western Pacific: Comparisons of GPS radio occultation with multiple data sets","volume":"10","author":"Rieckh","year":"2017","journal-title":"Atmos. Meas. Tech."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Schr\u00f6der, M., Lockhoff, M., Shi, L., August, T., Bennartz, R., Brogniez, H., Calbet, X., Fell, F., Forsythe, J., and Gambacorta, A. (2019). The GEWEX Water Vapor Assessment: Overview and Introduction to Results and Recommendations. Remote Sens., 11.","DOI":"10.3390\/rs11030251"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"6966","DOI":"10.1029\/2018JD030045","article-title":"Characteristics of Satellite Sampling Errors in Total Precipitable Water from SSMIS, HIRS, and COSMIC Observations","volume":"124","author":"Xue","year":"2019","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_17","first-page":"S26","article-title":"Total Column Water Vapor, [In \u201cStates of the Climate in 2017\u201d]","volume":"99","author":"Mears","year":"2018","journal-title":"Bull. Amer. Meteor. Sci."},{"key":"ref_18","first-page":"S27","article-title":"Total Column Water Vapor, [In \u201cStates of the Climate in 2018\u201d]","volume":"100","author":"Mears","year":"2019","journal-title":"Bull. Amer. Meteor. Sci."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1175\/BAMS-89-3-313","article-title":"The COSMIC\/FORMOSAT-3 Mission: Early Results","volume":"89","author":"Anthes","year":"2008","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"865","DOI":"10.1029\/1999RS002199","article-title":"On the ionosphere calibration in GPS radio occultation measurements","volume":"35","author":"Syndergaard","year":"2000","journal-title":"Radio Sci."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"2315","DOI":"10.1002\/qj.2300","article-title":"Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics","volume":"140","author":"Cardinali","year":"2014","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"e1019","DOI":"10.1002\/asl.1019","article-title":"Forecast Impact of FORMOSAT -7\/ COSMIC -2 GNSS Radio Occultation Measurements","volume":"22","author":"Ruston","year":"2021","journal-title":"Atmos. Sci. Lett."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1107","DOI":"10.1126\/science.271.5252.1107","article-title":"Initial Results of Radio Occultation Observations of Earth\u2019s Atmosphere Using the Global Positioning System","volume":"271","author":"Kursinski","year":"1996","journal-title":"Science"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"23429","DOI":"10.1029\/97JD01569","article-title":"Observing Earth\u2019s atmosphere with radio occultation measurements using the Global Positioning System","volume":"102","author":"Kursinski","year":"1997","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1007\/s10291-009-0132-5","article-title":"Quality assessment of COSMIC\/FORMOSAT-3 GPS radio occultation data derived from single- and double-difference atmospheric excess phase processing","volume":"14","author":"Schreiner","year":"2009","journal-title":"GPS Solut."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1007\/s00190-008-0256-3","article-title":"Precise orbit determination for the FORMOSAT-3\/COSMIC satellite mission using GPS","volume":"83","author":"Hwang","year":"2008","journal-title":"J. Geod."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Weiss, J.-P., Hunt, D., Schreiner, W., VanHove, T., Arnold, D., and Jaeggi, A. (2020, January 4\u20138). COSMIC-2 Precise Orbit Determination Results. Proceedings of the EGU General Assembly 2020, Online.","DOI":"10.5194\/egusphere-egu2020-20170"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1813","DOI":"10.5194\/amt-10-1813-2017","article-title":"Estimation and evaluation of COSMIC radio occultation excess phase using undifferenced measurements","volume":"10","author":"Xia","year":"2017","journal-title":"Atmos. Meas. Tech."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"3384","DOI":"10.1109\/TAES.2020.2972248","article-title":"Kalman Filter-based Robust Closed-loop Carrier Tracking of Airborne GNSS Radio-Occultation Signals","volume":"56","author":"Wang","year":"2020","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"2547","DOI":"10.5194\/amt-13-2547-2020","article-title":"Consistency and structural uncertainty of multi-mission GPS radio occultation records","volume":"13","author":"Steiner","year":"2020","journal-title":"Atmos. Meas. Tech."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1007\/s10291-019-0949-5","article-title":"Comparison of MetOp-A\/-B GRAS radio occultation data processed by CDAAC and ROM","volume":"24","author":"Xu","year":"2020","journal-title":"GPS Solut."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"737","DOI":"10.1175\/2011JTECHA1489.1","article-title":"COSMIC Radio Occultation Processing: Cross-Center Comparison and Validation","volume":"28","author":"Gorbunov","year":"2011","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Adhikari, L., Ho, S.-P., and Zhou, X. (2021). Inverting COSMIC-2 Phase Data to Bending Angle and Refractivity Profiles Using the Full Spectrum Inversion Method. Remote Sens., 13.","DOI":"10.3390\/rs13091793"},{"key":"ref_34","unstructured":"(2022, June 16). UCAR COSMIC Program, COSMIC-2 Data Products (Level0, Level 1a and Level1b). Available online: https:\/\/www.cosmic.ucar.edu\/what-we-do\/cosmic-2\/data."},{"key":"ref_35","unstructured":"Ho, S.-P., Sho, X., Chen, Y., Zhang, B., Adhikari, L., and Zhou, X. (2022). NESDIS STAR GNSS RO Processing, Validation, and Monitoring System: Initial Validation of the STAR COSMIC-2 Data Products. TAO COSMIC-2 Spec. Issue."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"1469","DOI":"10.5194\/acp-13-1469-2013","article-title":"Quantification of structural uncertainty in climate data records from GPS radio occultation","volume":"13","author":"Steiner","year":"2013","journal-title":"Atmos. Chem. Phys."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"1887","DOI":"10.5194\/amt-8-1887-2015","article-title":"The Radio Occultation Processing Package, ROPP","volume":"8","author":"Culverwell","year":"2015","journal-title":"Atmos. Meas. Tech."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"2679","DOI":"10.5194\/amt-12-2679-2019","article-title":"Processing and quality control of FY-3C GNOS data used in numerical weather prediction applications","volume":"12","author":"Liao","year":"2019","journal-title":"Atmos. Meas. Tech."},{"key":"ref_39","unstructured":"(2022, June 16). UCAR\/CDAAC RO Operational Data File Name Convention. Available online: https:\/\/cdaac-www.cosmic.ucar.edu\/cdaac\/doc\/formats.html."},{"key":"ref_40","unstructured":"Dach, R., Lutz, S., Walser, P., and Fridez, P. (2015). Bernese GNSS Software Version 5.2. User Manual, Publikation Digital AG."},{"key":"ref_41","unstructured":"Dach, R., Schaer, S., Arnold, D., Orliac, E., Prange, L., Susnik, A., Villiger, A., and J\u00e4ggi, A. (2022, July 04). CODE Final Product Series for the IGS. Available online: http:\/\/ftp.aiub.unibe.ch\/CODE\/."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1016\/S1364-6826(01)00114-6","article-title":"A technical description of atmospheric sounding by GPS occultation","volume":"64","author":"Hajj","year":"2002","journal-title":"J. Atmos. Sol. -Terr. Phys."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"28-21","DOI":"10.1029\/2001GL013982","article-title":"GPS radio occultation with CHAMP: Atmospheric profiling utilizing the space-based single difference technique","volume":"29","author":"Wickert","year":"2002","journal-title":"Geophys. Res. Lett."},{"key":"ref_44","unstructured":"(2022, June 16). Bernese GNSS Satellite Information, Problem and Phase Center Correction Files. Available online: ftp:\/\/ftp.aiub.unibe.ch\/BSWUSER52\/GEN."},{"key":"ref_45","first-page":"91","article-title":"Effects of antenna orientation on GPS carrier phase measurements","volume":"18","author":"Wu","year":"1993","journal-title":"Manuscr. Geod."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"e2021RS007267","DOI":"10.1029\/2021RS007267","article-title":"Processing and Validation of FORMOSAT-7\/COSMIC-2 GPS Total Electron Content Observations","volume":"56","author":"Pedatella","year":"2021","journal-title":"Radio Sci."},{"key":"ref_47","first-page":"RS4010","article-title":"Analysis of wave fields by Fourier integral operators and their application for radio occultations","volume":"39","author":"Gorbunov","year":"2004","journal-title":"Radio Sci."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"RS2002","DOI":"10.1029\/2008RS003907","article-title":"Postprocessing of L1 GPS radio occultation signals recorded in open-loop mode","volume":"44","author":"Sokolovskiy","year":"2009","journal-title":"Radio Sci."},{"key":"ref_49","unstructured":"(2022, June 16). FORMOSAT-7\/COSMIC-2 Neutral Atmosphere Provisional Data Release 1. Available online: https:\/\/data.cosmic.ucar.edu\/gnss-ro\/cosmic2\/provisional\/F7C2_NA_Provisional_Data_Release_1_Memo.pdf."},{"key":"ref_50","first-page":"1","article-title":"The influence of the signal-to-noise ratio upon radio occultation inversion quality","volume":"2020","author":"Gorbunov","year":"2020","journal-title":"Atmos. Meas. Tech. Discuss."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"D18111","DOI":"10.1029\/2012JD017665","article-title":"Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008 from six data centers","volume":"117","author":"Ho","year":"2012","journal-title":"J. Geophys. Res. Atmos."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/14\/3288\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,1]],"date-time":"2024-08-01T20:11:27Z","timestamp":1722543087000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/14\/3288"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,7,8]]},"references-count":51,"journal-issue":{"issue":"14","published-online":{"date-parts":[[2022,7]]}},"alternative-id":["rs14143288"],"URL":"https:\/\/doi.org\/10.3390\/rs14143288","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2022,7,8]]}}}