{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,10]],"date-time":"2024-08-10T17:07:33Z","timestamp":1723309653002},"reference-count":57,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2022,3,31]],"date-time":"2022-03-31T00:00:00Z","timestamp":1648684800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Land use is one of the drivers of land-cover change (LCC) and represents the conversion of natural to artificial land cover. This work aims to describe the land-take-monitoring activities and analyze the development trend in test areas of the Basilicata region. Remote sensing is the primary technique for extracting land-use\/land-cover (LULC) data. In this study, a new methodology of classification of Landsat data (TM\u2013OLI) is proposed to detect land-cover information automatically and identify land take to perform a multi-temporal analysis. Moreover, within the defined model, it is crucial to use the territorial information layers of geotopographic database (GTDB) for the detailed definition of the land take. All stages of the classification process were developed using the supervised classification algorithm support vector machine (SVM) change-detection analysis, thus integrating the geographic information system (GIS) remote sensing data and adopting free and open-source software and data. The application of the proposed method allowed us to quickly extract detailed land-take maps with an overall accuracy greater than 90%, reducing the cost and processing time.<\/jats:p>","DOI":"10.3390\/rs14071692","type":"journal-article","created":{"date-parts":[[2022,4,1]],"date-time":"2022-04-01T01:34:29Z","timestamp":1648776869000},"page":"1692","source":"Crossref","is-referenced-by-count":11,"title":["Remote Sensing and Spatial Analysis for Land-Take Assessment in Basilicata Region (Southern Italy)"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1484-5082","authenticated-orcid":false,"given":"Valentina","family":"Santarsiero","sequence":"first","affiliation":[{"name":"CNR IMAA, C.da Santa Loja, Zona Industriale, Tito Scalo, 85050 Potenza, Italy"},{"name":"School of Engineering, University of Basilicata, 10 Viale dell\u2019Ateneo Lucano, 85100 Potenza, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1704-9073","authenticated-orcid":false,"given":"Gabriele","family":"Nol\u00e8","sequence":"additional","affiliation":[{"name":"CNR IMAA, C.da Santa Loja, Zona Industriale, Tito Scalo, 85050 Potenza, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2463-4601","authenticated-orcid":false,"given":"Antonio","family":"Lanorte","sequence":"additional","affiliation":[{"name":"CNR IMAA, C.da Santa Loja, Zona Industriale, Tito Scalo, 85050 Potenza, Italy"}]},{"given":"Biagio","family":"Tucci","sequence":"additional","affiliation":[{"name":"CNR IMAA, C.da Santa Loja, Zona Industriale, Tito Scalo, 85050 Potenza, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1851-1533","authenticated-orcid":false,"given":"Giuseppe","family":"Cillis","sequence":"additional","affiliation":[{"name":"CNR IMAA, C.da Santa Loja, Zona Industriale, Tito Scalo, 85050 Potenza, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2409-5959","authenticated-orcid":false,"given":"Beniamino","family":"Murgante","sequence":"additional","affiliation":[{"name":"School of Engineering, University of Basilicata, 10 Viale dell\u2019Ateneo Lucano, 85100 Potenza, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2022,3,31]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Marquard, E., Bartke, S., Font, J.G.I., Humer, A., Jonkman, A., J\u00fcrgenson, E., Marot, N., Poelmans, L., Repe, B., and Rybski, R. (2020). Land Consumption and Land Take: Enhancing Conceptual Clarity for Evaluating Spatial Governance in the EU Context. Sustainability, 12.","DOI":"10.3390\/su12198269"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"16083","DOI":"10.1073\/pnas.1211658109","article-title":"Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools","volume":"109","author":"Seto","year":"2012","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Yuan, Y., Chen, D., Wu, S., Mo, L., Tong, G., and Total, D.Y.-S. (2019). Undefined Urban Sprawl Decreases the Value of Ecosystem Services and Intensifies the Supply Scarcity of Ecosystem Services in China, Elsevier.","DOI":"10.1016\/j.scitotenv.2019.134170"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"675","DOI":"10.1007\/978-3-030-24302-9_48","article-title":"Evolution of Soil Consumption in the Municipality of Melfi (Southern Italy) in Relation to Renewable Energy","volume":"11621","author":"Santarsiero","year":"2019","journal-title":"Lect. Notes Comput. Sci."},{"key":"ref_5","unstructured":"Richardson, H.W., and Bae, C.H.C. (2017). Urban Sprawl in Western Europe and the United States, Routledge."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.jum.2018.09.003","article-title":"Land take and landscape loss: Effect of uncontrolled urbanization in Southern Italy","volume":"8","author":"Fiorini","year":"2019","journal-title":"J. Urban Manag."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1016\/j.landusepol.2017.06.006","article-title":"Land transformation of Italy due to half a century of urbanization","volume":"67","author":"Romano","year":"2017","journal-title":"Land Use Policy"},{"key":"ref_8","unstructured":"(2021, November 03). World Urbanization Prospects\u2014Population Division\u2014United Nations. Available online: https:\/\/population.un.org\/wup\/."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.gloenvcha.2017.02.001","article-title":"A global analysis of land take in cropland areas and production displacement from urbanization","volume":"43","author":"Eitelberg","year":"2017","journal-title":"Glob. Environ. Chang."},{"key":"ref_10","unstructured":"(2022, March 18). Annual Activity Reports 2016|European Commission. Available online: https:\/\/ec.europa.eu\/info\/publications\/annual-activity-reports-2016_en."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1797","DOI":"10.1080\/19475705.2021.1951363","article-title":"Land degradation and metropolitan expansion in a peri-urban environment","volume":"12","author":"Imbrenda","year":"2021","journal-title":"Geomat. Nat. Hazards Risk"},{"key":"ref_12","unstructured":"ISPRA Institute (2021). Consumo di Suolo, Dinamiche Territoriali e Servizi Ecosistemici Edizione 2021 Rapporto ISPRA SNPA, ISPRA Institute."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Saganeiti, L., Favale, A., Pilogallo, A., Scorza, F., and Murgante, B. (2018). Assessing Urban Fragmentation at Regional Scale Using Sprinkling Indexes. Sustainability, 10.","DOI":"10.3390\/su10093274"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.landusepol.2013.11.024","article-title":"Assessing spatial dynamics of urban growth using an integrated land use model. Application in Santiago Metropolitan Area, 2010\u20132045","volume":"38","author":"Puertas","year":"2014","journal-title":"Land Use Policy"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"102586","DOI":"10.1016\/j.scs.2020.102586","article-title":"Modeling urban sprinkling with cellular automata","volume":"65","author":"Saganeiti","year":"2021","journal-title":"Sustain. Cities Soc."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Scorza, F., Pilogallo, A., Saganeiti, L., and Murgante, B. (2020). Natura 2000 Areas and Sites of National Interest (SNI): Measuring (un)Integration between Naturalness Preservation and Environmental Remediation Policies. Sustainability, 12.","DOI":"10.3390\/su12072928"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1007\/978-3-319-95174-4_8","article-title":"Spatial Indicators to Evaluate Urban Fragmentation in Basilicata Region","volume":"10964","author":"Saganeiti","year":"2018","journal-title":"Lect. Notes Comput. Sci."},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Amato, F., Maimone, B.A., Martellozzo, F., Nol\u00e8, G., and Murgante, B. (2016). The Effects of Urban Policies on the Development of Urban Areas. Sustainability, 8.","DOI":"10.3390\/su8040297"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"19","DOI":"10.4018\/IJAEIS.2014040102","article-title":"Quantifying Urban Sprawl with Spatial Autocorrelation Techniques using Multi-Temporal Satellite Data","volume":"5","author":"Lasaponara","year":"2014","journal-title":"Int. J. Agric. Environ. Inf. Syst."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"683","DOI":"10.1007\/978-3-030-24302-9_49","article-title":"Trend Definition of Soil Consumption in the Period 1994\u20132014\u2014Municipalities of Potenza, Matera and Melfi","volume":"11621","author":"Baldantoni","year":"2019","journal-title":"Lect. Notes Comput. Sci."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s12517-015-2292-7","article-title":"Scenario of land use and land cover change in the Gaza Strip using remote sensing and GIS models","volume":"9","author":"Abuelaish","year":"2016","journal-title":"Arab. J. Geosci."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Joshi, N., Baumann, M., Ehammer, A., Fensholt, R., Grogan, K., Hostert, P., Jepsen, M.R., Kuemmerle, T., Meyfroidt, P., and Mitchard, E.T.A. (2016). A Review of the Application of Optical and Radar Remote Sensing Data Fusion to Land Use Mapping and Monitoring. Remote Sens., 8.","DOI":"10.3390\/rs8010070"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"105730","DOI":"10.1016\/j.landusepol.2021.105730","article-title":"Land take in environmental assessments: Recent advances and persisting challenges in selected EU countries","volume":"111","author":"Schatz","year":"2021","journal-title":"Land Use Policy"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"689","DOI":"10.1007\/s12524-011-0165-4","article-title":"Assessment of Land use\/land cover Change in the North-West District of Delhi Using Remote Sensing and GIS Techniques","volume":"40","author":"Rahman","year":"2012","journal-title":"J. Indian Soc. Remote Sens."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Ghayour, L., Neshat, A., Paryani, S., Shahabi, H., Shirzadi, A., Chen, W., Al-Ansari, N., Geertsema, M., Amiri, M.P., and Gholamnia, M. (2021). Performance Evaluation of Sentinel-2 and Landsat 8 OLI Data for Land Cover\/Use Classification Using a Comparison between Machine Learning Algorithms. Remote Sens., 13.","DOI":"10.3390\/rs13071349"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"189","DOI":"10.1007\/978-981-13-1906-8_21","article-title":"Accuracy Assessment of Classification on Landsat-8 Data for Land Cover and Land Use of an Urban Area by Applying Different Image Fusion Techniques and Varying Training Samples","volume":"521","author":"Birdi","year":"2018","journal-title":"Lect. Notes Electr. Eng."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1007\/978-981-13-0869-7_41","article-title":"Analysis of Land Cover Change Detection Using Satellite Images in Patheingyi Township","volume":"744","author":"Aung","year":"2018","journal-title":"Adv. Intell. Syst. Comput."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1016\/S0034-4257(97)00049-7","article-title":"Decision tree classification of land cover from remotely sensed data","volume":"61","author":"Friedl","year":"1997","journal-title":"Remote Sens. Environ."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"823","DOI":"10.1080\/01431160600746456","article-title":"A survey of image classification methods and techniques for improving classification performance A survey of image classification methods and techniques for improving classification performance","volume":"28","author":"Lu","year":"2007","journal-title":"Int. J. Remote Sens."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"941","DOI":"10.1080\/10106049.2014.894586","article-title":"Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China","volume":"29","author":"Jia","year":"2014","journal-title":"Geocarto Int."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1016\/j.isprsjprs.2012.04.001","article-title":"Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points","volume":"70","author":"Shao","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"648","DOI":"10.1016\/j.rse.2017.09.035","article-title":"Effect of classifier selection, reference sample size, reference class distribution and scene heterogeneity in per-pixel classification accuracy using 26 Landsat sites","volume":"204","author":"Heydari","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Kwan, C., Ayhan, B., Budavari, B., Lu, Y., Perez, D., Li, J., Bernabe, S., and Plaza, A. (2020). Deep Learning for Land Cover Classification Using Only a Few Bands. Remote Sens., 12.","DOI":"10.3390\/rs12122000"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Naushad, R., Kaur, T., and Ghaderpour, E. (2021). Deep Transfer Learning for Land Use and Land Cover Classification: A Comparative Study. Sensors, 21.","DOI":"10.3390\/s21238083"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Afrin, S., Gupta, A., Farjad, B., Ahmed, M.R., Achari, G., and Hassan, Q.K. (2019). Development of Land-Use\/Land-Cover Maps Using Landsat-8 and MODIS Data, and Their Integration for Hydro-Ecological Applications. Sensors, 19.","DOI":"10.3390\/s19224891"},{"key":"ref_36","unstructured":"(2021, November 23). Popolazione Residente al 1 Gennaio: Basilicata. Available online: http:\/\/dati.istat.it\/Index.aspx?QueryId=18564."},{"key":"ref_37","unstructured":"(2017, June 10). USGS (United States Geological Survey), Available online: https:\/\/earthexplorer.usgs.gov."},{"key":"ref_38","unstructured":"(2021, December 14). USGS Landsat Missions Home Page, Available online: https:\/\/www.usgs.gov\/core-science-systems\/nli\/landsat."},{"key":"ref_39","unstructured":"(2021, November 24). Home\u2014Geoportale Nazionale. Available online: http:\/\/www.pcn.minambiente.it\/mattm\/."},{"key":"ref_40","unstructured":"(2021, November 24). RSDI. Available online: https:\/\/rsdi.regione.basilicata.it\/."},{"key":"ref_41","unstructured":"(2021, December 16). QGIS Python Plugins Repository. Available online: https:\/\/plugins.qgis.org\/plugins\/SemiAutomaticClassificationPlugin\/."},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Di Palma, F., Amato, F., Nol\u00e8, G., Martellozzo, F., and Murgante, B. (2016). A SMAP Supervised Classification of Landsat Images for Urban Sprawl Evaluation. ISPRS Int. J. Geo-Inf., 5.","DOI":"10.3390\/ijgi5070109"},{"key":"ref_43","unstructured":"(2021, November 24). GitHub\u2014Nkarasiak\/Dzetsaka: Dzetsaka: Classification Plugin for Qgis. Available online: https:\/\/github.com\/nkarasiak\/dzetsaka."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.ecoinf.2014.05.005","article-title":"Evaluation of urban sprawl from space using open source technologies","volume":"26","author":"Murgante","year":"2015","journal-title":"Ecol. Inform."},{"key":"ref_45","first-page":"103","article-title":"A support vector machine to identify irrigated crop types using time-series Landsat NDVI data","volume":"34","author":"Zheng","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"S110","DOI":"10.1016\/j.rse.2007.07.028","article-title":"Recent advances in techniques for hyperspectral image processing","volume":"113","author":"Plaza","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1023\/A:1009715923555","article-title":"A Tutorial on Support Vector Machines for Pattern Recognition","volume":"2","author":"Burges","year":"1998","journal-title":"Data Min. Knowl. Discov."},{"key":"ref_48","unstructured":"Paoletti, M. (2009). Sistematica Molecolare e Coevoluzione Parassita-Ospite, in Specie del Genere Contracaecum (Namatoda: Anisakidae), Parassite di Uccelli Ittiofagi. [Ph.D. Thesis, University of Tuscia]."},{"key":"ref_49","unstructured":"(2021, November 24). A Land Use and Land Cover Classification System for Use with Remote Sensor Data-James Richard Anderson-Google Libri, Available online: https:\/\/pubs.usgs.gov\/pp\/0964\/report.pdf."},{"key":"ref_50","first-page":"259","article-title":"Landsat 8 vs. Landsat 5: A comparison based on urban and peri-urban land cover mapping","volume":"35","author":"Poursanidis","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_51","unstructured":"(2021, December 22). Classification Method, Spectral Diversity, Band Combination and Accuracy Assessment Evaluation for Urban Feature Detection|Elsevier Enhanced Reader. Available online: https:\/\/reader.elsevier.com\/reader\/sd\/pii\/S0303243411002030?token=5D340853EB3DB0D18D8E4C96A5543D4DDA456DA3B314EB1A6DC1644B79C4FD641F9BA530562A24BF187764C97A466176&originRegion=eu-west-1&originCreation=20211222151310."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"653","DOI":"10.1007\/s12303-018-0023-2","article-title":"Land cover classification analysis of volcanic island in Aleutian Arc using an artificial neural network (ANN) and a support vector machine (SVM) from Landsat imagery","volume":"22","author":"Kadavi","year":"2018","journal-title":"Geosci. J."},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Eskandari, S., Jaafari, M.R., Oliva, P., Ghorbanzadeh, O., and Blaschke, T. (2020). Mapping Land Cover and Tree Canopy Cover in Zagros Forests of Iran: Application of Sentinel-2, Google Earth, and Field Data. Remote Sens., 12.","DOI":"10.3390\/rs12121912"},{"key":"ref_54","first-page":"557","article-title":"Mapping the land uses and analysing the landscape elements in south-western Iran: Application of Landsat-7, field data, and landscape metrics Identification of suitable lands for wood farming by Eucalyptus in Khuzestan Province View project","volume":"11","author":"Eskandari","year":"2020","journal-title":"Int. J. Conserv. Sci."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Agapiou, A. (2021). Land Cover Mapping from Colorized CORONA Archived Greyscale Satellite Data and Feature Extraction Classification. Land, 10.","DOI":"10.3390\/land10080771"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"3440","DOI":"10.1080\/01431161.2014.903435","article-title":"Land-use\/cover classification in a heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random forest and support vector machines classifiers","volume":"35","author":"Adam","year":"2014","journal-title":"Int. J. Remote Sens."},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Pignatti, S., Acito, N., Amato, U., Casa, R., Castaldi, F., Coluzzi, R., De Bonis, R., Diani, M., Imbrenda, V., and Laneve, G. (2015). Environmental Products Overview of the Italian Hyperspectral Prisma Mission: The SAP4PRISMA Project, IEEE.","DOI":"10.1109\/IGARSS.2015.7326701"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/7\/1692\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,28]],"date-time":"2024-07-28T02:47:26Z","timestamp":1722134846000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/7\/1692"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3,31]]},"references-count":57,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2022,4]]}},"alternative-id":["rs14071692"],"URL":"https:\/\/doi.org\/10.3390\/rs14071692","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,3,31]]}}}