{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,28]],"date-time":"2024-07-28T00:40:10Z","timestamp":1722127210948},"reference-count":51,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2022,3,29]],"date-time":"2022-03-29T00:00:00Z","timestamp":1648512000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000780","name":"European Commission","doi-asserted-by":"publisher","award":["818346"],"id":[{"id":"10.13039\/501100000780","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Soil surveys with line-scanning platforms appear to have great advantages over the traditional methods used to collect soil information for the development of field-scale soil mapping and applications. These carry VNIR (visible and near infrared) spectrometers and have been used in recent years extensively for the assessment of soil fertility at the field scale, and the delineation of site-specific management zones (MZ). A challenging feature of VNIR applications in precision agriculture (PA) is the massiveness of the derived datasets that contain point predictions of soil properties, and the interpolation techniques involved in incorporating these data into site-specific management plans. In this study, fixed-rank kriging (FRK) geostatistical interpolation, which is a flexible, non-stationary spatial interpolation method especially suited to handling huge datasets, was applied to massive VNIR soil scanner data for the production of useful, smooth interpolated maps, appropriate for the delineation of site-specific MZ maps. Moreover, auxiliary Sentinel-2 data-based biophysical parameters NDVI (normalized difference vegetation index) and fAPAR (fraction of photosynthetically active radiation absorbed by the canopy) were included as covariates to improve the filtering performance of the interpolator and the ability to generate uniform patterns of spatial variation from which it is easier to receive a meaningful interpretation in PA applications. Results from the VNIR prediction dataset obtained from a pivot-irrigated field in Albacete, southeastern Spain, during 2019, have shown that FRK variants outperform ordinary kriging in terms of filtering capacity, by doubling the noise removal metrics while keeping the computation cost reasonably low. Such features, along with the capacity to handle a large volume of spatial information, nominate the method as ideal for PA applications with massive proximal and remote sensing datasets.<\/jats:p>","DOI":"10.3390\/rs14071639","type":"journal-article","created":{"date-parts":[[2022,3,30]],"date-time":"2022-03-30T01:45:51Z","timestamp":1648604751000},"page":"1639","source":"Crossref","is-referenced-by-count":3,"title":["Mapping Soil Properties with Fixed Rank Kriging of Proximally Sensed Soil Data Fused with Sentinel-2 Biophysical Parameter"],"prefix":"10.3390","volume":"14","author":[{"given":"Nikolaos","family":"Karapetsas","sequence":"first","affiliation":[{"name":"Laboratory of Remote Sensing, Spectroscopy and GIS, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1893-6301","authenticated-orcid":false,"given":"Thomas K.","family":"Alexandridis","sequence":"additional","affiliation":[{"name":"Laboratory of Remote Sensing, Spectroscopy and GIS, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece"}]},{"given":"George","family":"Bilas","sequence":"additional","affiliation":[{"name":"Laboratory of Remote Sensing, Spectroscopy and GIS, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4406-3348","authenticated-orcid":false,"given":"Muhammad Abdul","family":"Munnaf","sequence":"additional","affiliation":[{"name":"Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium"}]},{"given":"Angela P.","family":"Guerrero","sequence":"additional","affiliation":[{"name":"Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium"}]},{"given":"Maria","family":"Calera","sequence":"additional","affiliation":[{"name":"AgriSat Iberia SL, Paseo de la Innovaci\u00f3n 1, 02006 Albacete, Spain"}]},{"given":"Anna","family":"Osann","sequence":"additional","affiliation":[{"name":"AgriSat Iberia SL, Paseo de la Innovaci\u00f3n 1, 02006 Albacete, Spain"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3742-7062","authenticated-orcid":false,"given":"Anne","family":"Gobin","sequence":"additional","affiliation":[{"name":"Remote Sensing Unit, VITO NV, Boeretang 200, 2400 Mol, Belgium"},{"name":"Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, University of Leuven, Celestijnenlaan 200E, 3001 Leuven, Belgium"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7331-9686","authenticated-orcid":false,"given":"Tom\u00e1\u0161","family":"Rezn\u00edk","sequence":"additional","affiliation":[{"name":"Laboratory on Geoinformatics and Cartography, Department of Geography, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7270-5307","authenticated-orcid":false,"given":"Dimitrios","family":"Moshou","sequence":"additional","affiliation":[{"name":"Laboratory of Agricultural Engineering, School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0354-0067","authenticated-orcid":false,"given":"Abdul Mounem","family":"Mouazen","sequence":"additional","affiliation":[{"name":"Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium"}]}],"member":"1968","published-online":{"date-parts":[[2022,3,29]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1016\/S0168-1699(00)00153-8","article-title":"Precision farming\u2014the environmental challenge","volume":"30","author":"Auernhammer","year":"2001","journal-title":"Comput. Electron. Agric."},{"key":"ref_2","first-page":"1023","article-title":"Monitoring of in-field variability for site specific crop management through open geospatial information","volume":"41","author":"Lukas","year":"2016","journal-title":"Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1016\/j.catena.2018.05.011","article-title":"A geostatistical sensor data fusion approach for delineating homogeneous management zones in Precision Agriculture","volume":"167","author":"Buttafuoco","year":"2018","journal-title":"Catena"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"442","DOI":"10.1111\/j.1365-2389.2011.01372.x","article-title":"On the soil information content of visible\u2013near infrared reflectance spectra","volume":"62","author":"Chappell","year":"2011","journal-title":"Eur. J. Soil Sci."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/B978-0-12-394275-3.00003-1","article-title":"Sensing soil properties in the laboratory, in situ, and on-line: A review","volume":"114","author":"Kuang","year":"2012","journal-title":"Adv. Agron."},{"key":"ref_6","unstructured":"Castrignan\u00f2, A., Buttafuoco, G., Khosla, R., Mouazen, A.M., Moshou, D., and Naud, O. (2020). Chapter 2\u2014Monitoring. Agricultural Internet of Things and Decision Support for Precision Smart Farming, Academic Press."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"144","DOI":"10.1016\/j.still.2008.10.006","article-title":"Optimum three-point linkage set up for improving the quality of soil spectra and the accuracy of soil phosphorus measured using an on-line visible and near infrared sensor","volume":"103","author":"Mouazen","year":"2009","journal-title":"Soil Tillage Res."},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Munnaf, M.A., Nawar, S., and Mouazen, A.M. (2019). Estimation of secondary soil properties by fusion of laboratory and on-line measured Vis\u2013NIR spectra. Remote Sens., 11.","DOI":"10.3390\/rs11232819"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1111\/j.1467-9868.2007.00633.x","article-title":"Fixed rank kriging for very large spatial data sets","volume":"70","author":"Cressie","year":"2008","journal-title":"J. R. Stat. Soc. Ser. B (Stat. Methodol.)"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"724","DOI":"10.1198\/jcgs.2010.09051","article-title":"Fixed rank filtering for spatio-temporal data","volume":"19","author":"Cressie","year":"2010","journal-title":"J. Comput. Graph. Stat."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"16","DOI":"10.1016\/j.geoderma.2011.02.010","article-title":"Analysis and prediction of soil properties using local regression-kriging","volume":"171","author":"Sun","year":"2012","journal-title":"Geoderma"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"5644","DOI":"10.1080\/01431161.2012.666363","article-title":"Remote-sensing image analysis and geostatistics","volume":"33","year":"2012","journal-title":"Int. J. Remote Sens."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1071\/SR99114","article-title":"Spatial prediction of topsoil salinity in the Chelif Valley, Algeria, using local ordinary kriging with local variograms versus whole-area variogram","volume":"39","author":"Walter","year":"2001","journal-title":"Soil Res."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Khosla, R., Westfall, D., Reich, R., Mahal, J., and Gangloff, W. (2010). Spatial variation and site-specific management zones. Geostatistical Applications for Precision Agriculture, Springer.","DOI":"10.1007\/978-90-481-9133-8_8"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Lal, R., and Stewart, B.A. (2015). Soil-Specific Farming: Precision Agriculture, CRC Press.","DOI":"10.1201\/b18759"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/bs.agron.2017.01.003","article-title":"Delineation of soil management zones for variable-rate fertilization: A review","volume":"143","author":"Nawar","year":"2017","journal-title":"Adv. Agron."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1007\/s11119-015-9417-6","article-title":"Data fusion techniques for delineation of site-specific management zones in a field in UK","volume":"17","author":"Shaddad","year":"2016","journal-title":"Precis. Agric."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1016\/j.compag.2018.11.034","article-title":"Factorial kriging analysis leverages soil physical properties and exhaustive data to predict distinguished zones of hydraulic properties","volume":"156","author":"Bevington","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.geoderma.2018.04.004","article-title":"Regression kriging as a workhorse in the digital soil mapper\u2019s toolbox","volume":"326","author":"Keskin","year":"2018","journal-title":"Geoderma"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2136\/vzj2012.0201","article-title":"Geophysical and hyperspectral data fusion techniques for in-field estimation of soil properties","volume":"12","author":"Casa","year":"2013","journal-title":"Vadose Zone J."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1004","DOI":"10.1080\/01621459.2012.694717","article-title":"Spatial statistical data fusion for remote sensing applications","volume":"107","author":"Nguyen","year":"2012","journal-title":"J. Am. Stat. Assoc."},{"key":"ref_22","unstructured":"Wulf, H., Mulder, T., Schaepman, M.E., Keller, A., and J\u00f6rg, P.C. (2015). Remote Sensing of Soils, University of Zurich."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.rse.2013.08.018","article-title":"Characterizing regional soil mineral composition using spectroscopy and geostatistics","volume":"139","author":"Mulder","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Cressie, N., and Kang, E.L. (2010). High-resolution digital soil mapping: Kriging for very large datasets. Proximal Soil Sensing, Springer.","DOI":"10.1007\/978-90-481-8859-8_4"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1007\/s11119-018-9596-z","article-title":"Mapping within-field variability in wheat yield and biomass using remote sensing vegetation indices","volume":"20","author":"Campos","year":"2019","journal-title":"Precis. Agric."},{"key":"ref_26","unstructured":"Mouazen, A. (2006). Soil Survey Device. International Publication Published under the Patent Cooperation Treaty (PCT), World Intellectual Property Organization, International Bureau."},{"key":"ref_27","unstructured":"Weiss, M., and Baret, F. (2022, February 27). ATBD S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER (Version 1.1). Available online: http:\/\/step.esa.int\/docs\/extra\/ATBD_S2ToolBox_L2B_V1.1.pdf."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1423","DOI":"10.2136\/sssaj2000.6441423x","article-title":"Quantifying soil morphology in tropical environments methods and application in soil classification","volume":"64","author":"Gobin","year":"2000","journal-title":"Soil Sci. Soc. Am. J."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1016\/S1464-1909(01)85012-7","article-title":"Soil-landscape modelling to quantify spatial variability of soil texture","volume":"26","author":"Gobin","year":"2001","journal-title":"Phys. Chem. Earth Part B: Hydrol. Ocean. Atmos."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/j.geoderma.2007.04.022","article-title":"Methods to interpolate soil categorical variables from profile observations: Lessons from Iran","volume":"140","author":"Hengl","year":"2007","journal-title":"Geoderma"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2016.11.001","article-title":"Incorporation of satellite remote sensing pan-sharpened imagery into digital soil prediction and mapping models to characterize soil property variability in small agricultural fields","volume":"123","author":"Xu","year":"2017","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/S0016-7061(98)00077-9","article-title":"Spatial aggregation and soil process modelling","volume":"89","author":"Heuvelink","year":"1999","journal-title":"Geoderma"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1016\/j.geoderma.2006.08.018","article-title":"Spatial variability of Southeastern US Coastal Plain soil physical properties: Implications for site-specific management","volume":"137","author":"Duffera","year":"2007","journal-title":"Geoderma"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1007\/s003740050439","article-title":"Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties","volume":"27","author":"Goovaerts","year":"1998","journal-title":"Biol. Fertil. Soils"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Wackernagel, H. (2003). Multivariate Geostatistics: An Introduction with Applications, Springer Science & Business Media.","DOI":"10.1007\/978-3-662-05294-5"},{"key":"ref_36","first-page":"1","article-title":"FRK: An R package for spatial and spatio-temporal prediction with large datasets","volume":"98","author":"Cressie","year":"2021","journal-title":"J. Stat. Softw."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1111\/j.1467-9892.2011.00732.x","article-title":"Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets","volume":"32","author":"Katzfuss","year":"2011","journal-title":"J. Time Ser. Anal."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"3016","DOI":"10.1016\/j.csda.2008.07.033","article-title":"Statistical analysis of small-area data based on independence, spatial, non-hierarchical, and hierarchical models","volume":"53","author":"Kang","year":"2009","journal-title":"Comput. Stat. Data Anal."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1191\/1471082x02st037oa","article-title":"Multiresolution models for nonstationary spatial covariance functions","volume":"2","author":"Nychka","year":"2002","journal-title":"Stat. Model."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/0304-3800(95)00084-9","article-title":"Calibration of process-oriented models","volume":"83","author":"Janssen","year":"1995","journal-title":"Ecol. Model."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1016\/j.scitotenv.2018.02.204","article-title":"High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia","volume":"630","author":"Wang","year":"2018","journal-title":"Sci. Total Environ."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1073","DOI":"10.1016\/j.trac.2010.05.006","article-title":"Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy","volume":"29","author":"Palagos","year":"2010","journal-title":"TrAC Trends Anal. Chem."},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"\u0158ezn\u00edk, T., Herman, L., Trojanov\u00e1, K., Pavelka, T., and Leitgeb, \u0160. (2020, January 5\u20137). Interpolation of data measured by field harvesters: Deployment, comparison and verification. Proceedings of the International Symposium on Environmental Software Systems, Wageningen, The Netherlands.","DOI":"10.1007\/978-3-030-39815-6_25"},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"McGarigal, K. (1995). FRAGSTATS: Spatial Pattern Analysis Program for Quantifying Landscape Structure, US Department of Agriculture, Forest Service, Pacific Northwest Research Station.","DOI":"10.2737\/PNW-GTR-351"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1648","DOI":"10.1111\/ecog.04617","article-title":"landscapemetrics: An open-source R tool to calculate landscape metrics","volume":"42","author":"Hesselbarth","year":"2019","journal-title":"Ecography"},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Huete, A., Miura, T., Yoshioka, H., Ratana, P., and Broich, M. (2014). Indices of vegetation activity. Biophysical Applications of Satellite Remote Sensing, Springer.","DOI":"10.1007\/978-3-642-25047-7_1"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"2506","DOI":"10.1109\/TGRS.2006.873205","article-title":"An analysis of angle-based with ratio-based vegetation indices","volume":"44","author":"Jiang","year":"2006","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.geoderma.2014.09.018","article-title":"Impact of multi-scale predictor selection for modeling soil properties","volume":"239","author":"Miller","year":"2015","journal-title":"Geoderma"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v033.i01","article-title":"Regularization paths for generalized linear models via coordinate descent","volume":"33","author":"Friedman","year":"2010","journal-title":"J. Stat. Softw."},{"key":"ref_50","first-page":"115","article-title":"An extension of Shapiro and Wilk\u2019s W test for normality to large samples","volume":"31","author":"Royston","year":"1982","journal-title":"J. R. Stat. Soc. Ser. C (Appl. Stat.)"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1016\/j.still.2006.03.009","article-title":"On-line measurement of some selected soil properties using a VIS\u2013NIR sensor","volume":"93","author":"Mouazen","year":"2007","journal-title":"Soil Tillage Res."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/7\/1639\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,28]],"date-time":"2024-07-28T00:07:27Z","timestamp":1722125247000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/7\/1639"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,3,29]]},"references-count":51,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2022,4]]}},"alternative-id":["rs14071639"],"URL":"https:\/\/doi.org\/10.3390\/rs14071639","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,3,29]]}}}