{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:52:51Z","timestamp":1726851171497},"reference-count":106,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2022,2,27]],"date-time":"2022-02-27T00:00:00Z","timestamp":1645920000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Accurate precipitation observations are crucial for water resources management and as inputs for a gamut of hydrometeorological applications. Precipitation data from Integrated Multi-Satellite Retrievals for Global Precipitation Measurement (GPM) (IMERG) have recently been widely used to complement traditional rain gauge systems. However, the satellite precipitation data needs to be validated before being widely used in the applications and this is still missing over the Indonesian maritime continent (IMC). We conducted a validation of the IMERG product version 6 for this region. The evaluation was carried out using gauge data in the period from 2016 to 2020 for three types of IMERG: Early (E), Late (L), and Final (F) from annual, monthly, daily and hourly data. In general, the annual and monthly data from IMERG showed a good correlation with the rain gauge, with the mean correlation coefficient (CC) approximately 0.54\u20130.78 and 0.62\u20130.79, respectively. About 80% of stations in the IMC area showed a very good correlation between gauge data and IMERG-F estimates (CC = 0.7\u20130.9). For the daily assessment, the CC value was in the range of 0.39 to 0.44 and about 40% of stations had a correlation of 0.5\u20130.7. IMERG had a fairly good ability to detect daily rain in which the average probability of detection (POD) for all stations was above 0.8. However, the false alarm ratio (FAR) value is quite high (<0.5). For hourly data, IMERG\u2019s performance was still poor with CC around 0.03\u20130.28. For all assessments, IMERG generally overestimated rainfall in comparison with rain gauge. The accuracy of the three types of IMERG in IMC was also influenced by season and topography. The highest and lowest CC values were observed for June\u2013July\u2013August and December\u2013January\u2013February, respectively. However, categorical statistics (POD, FAR and critical success index) did not show any clear seasonal variation. The CC value decreased with higher altitude, but with slight difference for each IMERG type. For all assessments conducted, IMERG-F generally showed the best rainfall observations in IMC, but with slightly difference from IMERG-E and IMERG-L. Thus, IMERG-E and IMERG-L data that had a faster latency than IMERG-F show potential to be used in rainfall observations in IMC.<\/jats:p>","DOI":"10.3390\/rs14051172","type":"journal-article","created":{"date-parts":[[2022,2,28]],"date-time":"2022-02-28T01:48:33Z","timestamp":1646012913000},"page":"1172","source":"Crossref","is-referenced-by-count":41,"title":["Evaluation of GPM IMERG Performance Using Gauge Data over Indonesian Maritime Continent at Different Time Scales"],"prefix":"10.3390","volume":"14","author":[{"given":"Ravidho","family":"Ramadhan","sequence":"first","affiliation":[{"name":"Department of Physics, Universitas Andalas, Padang 25163, Indonesia"},{"name":"Department of Physics, Universitas Gajah Mada, Yogyakarta 55281, Indonesia"}]},{"given":"Helmi","family":"Yusnaini","sequence":"additional","affiliation":[{"name":"Department of Physics, Universitas Andalas, Padang 25163, Indonesia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0266-812X","authenticated-orcid":false,"given":"Marzuki","family":"Marzuki","sequence":"additional","affiliation":[{"name":"Department of Physics, Universitas Andalas, Padang 25163, Indonesia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1590-7487","authenticated-orcid":false,"given":"Robi","family":"Muharsyah","sequence":"additional","affiliation":[{"name":"Agency for Meteorology, Climatology and Geophysics of Republic Indonesia, Jakarta 10610, Indonesia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6275-7880","authenticated-orcid":false,"given":"Wiwit","family":"Suryanto","sequence":"additional","affiliation":[{"name":"Department of Physics, Universitas Gajah Mada, Yogyakarta 55281, Indonesia"}]},{"given":"Sholihun","family":"Sholihun","sequence":"additional","affiliation":[{"name":"Department of Physics, Universitas Gajah Mada, Yogyakarta 55281, Indonesia"}]},{"given":"Mutya","family":"Vonnisa","sequence":"additional","affiliation":[{"name":"Department of Physics, Universitas Andalas, Padang 25163, Indonesia"}]},{"given":"Harmadi","family":"Harmadi","sequence":"additional","affiliation":[{"name":"Department of Physics, Universitas Andalas, Padang 25163, Indonesia"}]},{"given":"Ayu Putri","family":"Ningsih","sequence":"additional","affiliation":[{"name":"Department of Physics, Universitas Andalas, Padang 25163, Indonesia"}]},{"given":"Alessandro","family":"Battaglia","sequence":"additional","affiliation":[{"name":"Department of Environment, Land and Infrastructure Engineering, Politecnico of Turin, 10129 Turin, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8033-0955","authenticated-orcid":false,"given":"Hiroyuki","family":"Hashiguchi","sequence":"additional","affiliation":[{"name":"Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan"}]},{"given":"Ali","family":"Tokay","sequence":"additional","affiliation":[{"name":"Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD 21250, USA"}]}],"member":"1968","published-online":{"date-parts":[[2022,2,27]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"2497","DOI":"10.1007\/s00704-018-2749-1","article-title":"Validation of Integrated MultisatellitE Retrievals for GPM (IMERG) by using gauge-based analysis products of daily precipitation over East Asia","volume":"137","author":"Lee","year":"2019","journal-title":"Theor. Appl. Climatol."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"7773","DOI":"10.1175\/JCLI-D-15-0618.1","article-title":"Comparison of global precipitation estimates across a range of temporal and spatial scales","volume":"29","author":"Gehne","year":"2016","journal-title":"J. Clim."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.jaridenv.2013.05.013","article-title":"Evaluation of satellite-based precipitation estimation over Iran","volume":"97","author":"Nasrollahi","year":"2013","journal-title":"J. Arid Environ."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jhydrol.2018.02.015","article-title":"Assessment of global precipitation measurement satellite products over Saudi Arabia","volume":"559","author":"Mahmoud","year":"2018","journal-title":"J. Hydrol."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"2021","DOI":"10.1175\/1520-0493(2004)132<2021:DLRPMO>2.0.CO;2","article-title":"Diurnal land-sea rainfall peak migration over Sumatera Island, Indonesian Maritime Continent, observed by TRMM satellite and intensive rawinsonde soundings","volume":"132","author":"Mori","year":"2004","journal-title":"Mon. Weather Rev."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Marzuki, M., Yusnaini, H., Tangang, F., Muharsyah, R., Vonnisa, M., and Harmadi, H. (2022). Land-Sea Contrast of Diurnal Cycle Characteristics and Rain Event Propagations over Sumatra According to Different Rain Duration and Seasons. Atmos. Res., in press.","DOI":"10.1016\/j.atmosres.2022.106051"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"1669","DOI":"10.1080\/02626667.2018.1524986","article-title":"Spatio-temporal evaluation of global gridded precipitation datasets across Iran","volume":"63","author":"Araghinejad","year":"2018","journal-title":"Hydrol. Sci. J."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1002\/2017RG000574","article-title":"A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons","volume":"56","author":"Sun","year":"2018","journal-title":"Rev. Geophys."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1175\/BAMS-D-14-00283.1","article-title":"So, how much of the Earth\u2019s surface is covered by rain gauges?","volume":"98","author":"Kidd","year":"2017","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1175\/1520-0442(1997)010<0092:RMICCO>2.0.CO;2","article-title":"Rainfall measurement in Canada: Changing observational methodsand archive adjustment procedures","volume":"10","author":"Metcalfe","year":"1997","journal-title":"J. Clim."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1889","DOI":"10.1002\/joc.680","article-title":"Precipitation measurements and trends in the twentieth century","volume":"21","author":"New","year":"2001","journal-title":"Int. J. Climatol. J. R. Meteorol. Soc."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"1201","DOI":"10.1002\/joc.4045","article-title":"Bin Precipitation bias variability versus various gauges under different climatic conditions over the Third Pole Environment (TPE) region","volume":"35","author":"Ma","year":"2015","journal-title":"Int. J. Climatol."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1623","DOI":"10.1175\/JHM-D-15-0165.1","article-title":"Evaluating four multisatellite precipitation estimates over the Diaoyu Islands during typhoon seasons","volume":"17","author":"Yong","year":"2016","journal-title":"J. Hydrometeorol."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1094","DOI":"10.1080\/02626667.2010.513518","article-title":"A comparison of local and aggregated climate model outputs with observed data","volume":"55","author":"Anagnostopoulos","year":"2010","journal-title":"Hydrol. Sci. J."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"738","DOI":"10.1002\/joc.5839","article-title":"Evaluation of TMPA 3B42V7, GPM IMERG and CMPA precipitation estimates in Guangdong Province, China","volume":"39","author":"Wang","year":"2019","journal-title":"Int. J. Climatol."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1175\/BAMS-D-11-00171.1","article-title":"Precipitation from space: Advancing earth system science","volume":"94","author":"Kucera","year":"2013","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"4386","DOI":"10.1002\/joc.7078","article-title":"Diurnal variation of precipitation from the perspectives of precipitation amount, intensity and duration over Sumatra from rain gauge observations","volume":"41","author":"Marzuki","year":"2021","journal-title":"Int. J. Climatol."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"W08421","DOI":"10.1029\/2005WR004398","article-title":"Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrologic response","volume":"42","author":"Hong","year":"2006","journal-title":"Water Resour. Res."},{"key":"ref_19","first-page":"3414","article-title":"The global satellite mapping of precipitation (GSMaP) project","volume":"Volume 5","author":"Okamoto","year":"2005","journal-title":"Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1175\/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2","article-title":"CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution","volume":"5","author":"Joyce","year":"2004","journal-title":"J. Hydrometeorol."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"150066","DOI":"10.1038\/sdata.2015.66","article-title":"The climate hazards infrared precipitation with stations\u2014a new environmental record for monitoring extremes","volume":"2","author":"Funk","year":"2015","journal-title":"Sci. Data"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1176","DOI":"10.1175\/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2","article-title":"V Precipitation estimation from remotely sensed information using artificial neural networks","volume":"36","author":"Hsu","year":"1997","journal-title":"J. Appl. Meteorol."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1175\/JHM560.1","article-title":"The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales","volume":"8","author":"Huffman","year":"2007","journal-title":"J. Hydrometeorol."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.atmosres.2016.12.007","article-title":"Evaluation of topographical and seasonal feature using GPM IMERG and TRMM 3B42 over Far-East Asia","volume":"187","author":"Kim","year":"2017","journal-title":"Atmos. Res."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Tan, M.L., and Duan, Z. (2017). Assessment of GPM and TRMM precipitation products over Singapore. Remote Sens., 9.","DOI":"10.3390\/rs9070720"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Rozante, J.R., Vila, D.A., Chiquetto, J.B., Fernandes, A.d.A., and Alvim, D.S. (2018). Evaluation of TRMM\/GPM blended daily products over Brazil. Remote Sens., 10.","DOI":"10.3390\/rs10060882"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"111697","DOI":"10.1016\/j.rse.2020.111697","article-title":"Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets","volume":"240","author":"Tang","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Hanati, G., Danierhan, S., Liu, Q., and Xu, Z. (2020). Evaluation and comparison of daily gpm\/trmm precipitation products over the tianshan mountains in china. Water, 12.","DOI":"10.3390\/w12113088"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"105341","DOI":"10.1016\/j.atmosres.2020.105341","article-title":"Evaluation of GPM-IMERG and TRMM-3B42 precipitation products over Pakistan","volume":"249","author":"Arshad","year":"2021","journal-title":"Atmos. Res."},{"key":"ref_30","unstructured":"Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E.J., and Xie, P. (2015). NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), Algorithm Theoretical Basis Document (ATBD) Version 4.5."},{"key":"ref_31","unstructured":"Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Kidd, C., Nelkin, E.J., Sorooshian, S., Tan, J., and Xie, P. (2019). NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), Algorithm Theoretical Basis Document (ATBD) Version 06."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1002\/wea.3865","article-title":"The NASA-JAXA Global Precipitation Measurement mission\u2014Part I: New frontiers in precipitation","volume":"76","author":"Watters","year":"2021","journal-title":"Weather"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1175\/BAMS-D-13-00164.1","article-title":"The global precipitation measurement mission","volume":"95","author":"Hou","year":"2014","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"112754","DOI":"10.1016\/j.rse.2021.112754","article-title":"Review of GPM IMERG performance: A global perspective","volume":"268","author":"Pradhan","year":"2022","journal-title":"Remote Sens. Environ."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1007\/s00704-013-0860-x","article-title":"GPCC\u2019s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle","volume":"115","author":"Schneider","year":"2014","journal-title":"Theor. Appl. Climatol."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"2471","DOI":"10.1175\/JTECH-D-19-0114.1","article-title":"IMERG V06: Changes to the morphing algorithm","volume":"36","author":"Tan","year":"2019","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.atmosres.2017.11.006","article-title":"Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia","volume":"202","author":"Tan","year":"2018","journal-title":"Atmos. Res."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"e2021EA001738","DOI":"10.1029\/2021EA001738","article-title":"Validation of GPM IMERG Extreme Precipitation in the Maritime Continent by Station and Radar Data","volume":"8","author":"Webber","year":"2021","journal-title":"Earth Sp. Sci."},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Veloria, A., Perez, G.J., Tapang, G., and Comiso, J. (2021). Improved rainfall data in the Philippines through concurrent use of GPM IMERG and ground-based measurements. Remote Sens., 13.","DOI":"10.3390\/rs13152859"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"105032","DOI":"10.1016\/j.atmosres.2020.105032","article-title":"Assessment of satellite precipitation product estimates over Bali Island","volume":"244","author":"Liu","year":"2020","journal-title":"Atmos. Res."},{"key":"ref_41","unstructured":"Yuda, I.W.A., Prasetia, R., As-Syakur, A.R., Osawa, T., and Nagai, M. (2019, January 14\u201315). An assessment of IMERG rainfall products over Bali at multiple time scale. Proceedings of the International Conference on Sustainability Science and Management: Advanced Technology in Environmental Research (CORECT-IJJSS 2019), Bali, Indonesia."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"10","DOI":"10.25077\/jif.14.1.10-20.2022","article-title":"Statistical Comparison of IMERG Precipitation Products with Optical Rain Gauge Observations over Kototabang, Indonesia","volume":"14","author":"Yusnaini","year":"2022","journal-title":"J. ILMU Fis. Univ. ANDALAS"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"163","DOI":"10.29303\/jppipa.v8i1.1155","article-title":"Ground Validation of GPM IMERG-F Precipitation Products with the Point Rain Gauge Records on the Extreme Rainfall Over a Mountainous Area of Sumatra Island","volume":"8","author":"Ramadhan","year":"2022","journal-title":"J. Penelit. Pendidik. IPA"},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Alsumaiti, T.S., Hussein, K., Ghebreyesus, D.T., and Sharif, H.O. (2020). Performance of the CMORPH and GPM IMERG products over the United Arab Emirates. Remote Sens., 12.","DOI":"10.3390\/rs12091426"},{"key":"ref_45","unstructured":"Wicaksana, H.S., Putra, M., and Djenal, D.P. (2021, January 22). Evaluation of Automatic Weather Station Performance Based on Parallel Observations at Kemayoran Meteorological Station (in Bahasa). Proceedings of the Seminar Nasional Teknik Elektro, Bandung, Indonesia."},{"key":"ref_46","unstructured":"Heryanto, D.T., and Mulyani, T. (2021, November 18). Prototype of Automatic Rain Water Sampler ARWS_GSM SYS. Available online: https:\/\/library.wmo.int\/pmb_ged\/wmo-td_1546_en\/P1_26_Masturyono_Indonesia.doc."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Ramadhan, R., Marzuki, M., Yusnaini, H., Muharsyah, R., Suryanto, W., Sholihun, S., Vonnisa, M., Battaglia, A., and Hashiguchi, H. (2022). Capability of GPM IMERG Products for Extreme Precipitation Analysis over the Indonesian Maritime Continent. Remote Sens., 14.","DOI":"10.3390\/rs14020412"},{"key":"ref_48","unstructured":"(2021, November 18). Gridded Bathymetry Data. Available online: https:\/\/www.gebco.net\/data_and_products\/gridded_bathymetry_data\/."},{"key":"ref_49","first-page":"1","article-title":"Evaluasi Pengukuran Curah Hujan Antara Hasil Pengukuran Permukaan (AWS, HELLMAN, OBS) dan Hasil Estimasi (Citra Satelit =GSMaP) Di Stasiun Klimatologi Mlati Tahun 2018","volume":"4","author":"Kurniawan","year":"2020","journal-title":"J. Geogr. Edukasi Lingkung."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"e2020MS002413","DOI":"10.1029\/2020MS002413","article-title":"Description of the NASA GEOS Composition Forecast Modeling System GEOS-CF v1.0","volume":"13","author":"Keller","year":"2021","journal-title":"J. Adv. Model. Earth Syst."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"5419","DOI":"10.1175\/JCLI-D-16-0758.1","article-title":"The modern-era retrospective analysis for research and applications, version 2 (MERRA-2)","volume":"30","author":"Gelaro","year":"2017","journal-title":"J. Clim."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"6559","DOI":"10.5194\/hess-21-6559-2017","article-title":"Evaluation of GPM IMERG Early, Late, and Final rainfall estimates using WegenerNet gauge data in southeastern Austria","volume":"21","author":"Sungmin","year":"2017","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_53","unstructured":"Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., Xie, P., and Yoo, S.H. (2021, December 04). Algorithm Theoretical Basis Document (ATBD) Version 06, Available online: https:\/\/gpm.nasa.gov\/sites\/default\/files\/2020-05\/IMERG_ATBD_V06.3.pdf."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1016\/j.atmosres.2018.08.004","article-title":"Assessment of IMERG precipitation over Taiwan at multiple timescales","volume":"214","author":"Huang","year":"2018","journal-title":"Atmos. Res."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Mahmoud, M.T., Mohammed, S.A., Hamouda, M.A., and Mohamed, M.M. (2021). Impact of topography and rainfall intensity on the accuracy of imerg precipitation estimates in an arid region. Remote Sens., 13.","DOI":"10.3390\/rs13010013"},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Sharifi, E., Steinacker, R., and Saghafian, B. (2016). Assessment of GPM-IMERG and other precipitation products against gauge data under different topographic and climatic conditions in Iran: Preliminary results. Remote Sens., 8.","DOI":"10.3390\/rs8020135"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"W07542","DOI":"10.1029\/2009WR008965","article-title":"Hydrologic evaluation of Multisatellite Precipitation Analysis standard precipitation products in basins beyond its inclined latitude band: A case study in Laohahe basin, China","volume":"46","author":"Yong","year":"2010","journal-title":"Water Resour. Res."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"1435","DOI":"10.1002\/joc.950","article-title":"Identification of three dominant rainfall regions within Indonesia and their relationship to sea surface temperature","volume":"23","author":"Aldrian","year":"2003","journal-title":"Int. J. Climatol."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"7723","DOI":"10.1080\/01431161.2013.826837","article-title":"Indonesian rainfall variability observation using TRMM multi-satellite data","volume":"34","author":"Tanaka","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"268","DOI":"10.1016\/j.atmosres.2012.09.004","article-title":"Cloud episode propagation over the Indonesian Maritime Continent from 10 years of infrared brightness temperature observations","volume":"120","author":"Marzuki","year":"2013","journal-title":"Atmos. Res."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Lu, C., Ye, J., Fang, G., Huang, X., and Yan, M. (2021). Assessment of gpm imerg satellite precipitation estimation under complex climatic and topographic conditions. Atmosphere, 12.","DOI":"10.3390\/atmos12060780"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"105454","DOI":"10.1016\/j.atmosres.2021.105454","article-title":"Assessment of GPM IMERG satellite precipitation estimation and its dependence on microphysical rain regimes over the mountains of south-central Chile","volume":"253","author":"Rojas","year":"2021","journal-title":"Atmos. Res."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1175\/2008JHM1048.1","article-title":"Statistical evaluation of combined daily gauge observations and rainfall satellite estimates over continental South America","volume":"10","author":"Vila","year":"2009","journal-title":"J. Hydrometeorol."},{"key":"ref_64","unstructured":"Wilks, D.S. (2011). Statistical Methods in the Atmospheric Sciences, Academic Press."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1175\/BAMS-88-1-47","article-title":"Comparison of near-real-time precipitation estimates from satellite observations and numerical models","volume":"88","author":"Ebert","year":"2007","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"5063","DOI":"10.1175\/JCLI-D-20-0966.1","article-title":"The diurnal cycle of precipitation according to multiple decades of global satellite observations, three CMIP6 models, and the ECMWF reanalysis","volume":"34","author":"Watters","year":"2021","journal-title":"J. Clim."},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Marzuki, M., Yusnaini, H., Ramadhan, R., Tangang, F., Amirudin, A.A.B., Hashiguchi, H., Shimomai, T., and Vonnisa, M. (2022). Characteristics of Precipitation Diurnal Cycle over a Mountainous Area of Sumatra Island including MJO and Seasonal Signatures Based on the 15-Year Optical Rain Gauge Data, WRF Model and IMERG. Atmosphere, 13.","DOI":"10.3390\/atmos13010063"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"125929","DOI":"10.1016\/j.jhydrol.2020.125929","article-title":"A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based precipitation observations across Canada","volume":"594","author":"Moazami","year":"2021","journal-title":"J. Hydrol."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.jhydrol.2020.125128","article-title":"The performance of the IMERG satellite-based product in identifying sub-daily rainfall events and their properties","volume":"589","author":"Freitas","year":"2020","journal-title":"J. Hydrol."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"125128","DOI":"10.1016\/j.asr.2019.01.014","article-title":"Evaluation of the IMERG version 05B precipitation product and comparison with IMERG version 04A over mainland China at hourly and daily scales","volume":"63","author":"Xu","year":"2019","journal-title":"Adv. Sp. Res."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"2387","DOI":"10.5194\/hess-21-2163-2017","article-title":"Inter-comparison of daily precipitation products for large-scale hydro-climatic applications over Canada","volume":"21","author":"Wong","year":"2017","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"2163","DOI":"10.20965\/jdr.2018.p0022","article-title":"Preliminary assessment of GPM satellite rainfall over Myanmar","volume":"13","author":"Mohsan","year":"2018","journal-title":"J. Disaster Res."},{"key":"ref_73","doi-asserted-by":"crossref","unstructured":"Li, R., Shi, J., Ji, D., Zhao, T., Plermkamon, V., Moukomla, S., Kuntiyawichai, K., and Kruasilp, J. (2019). Evaluation and hydrological application of TRMM and GPM precipitation products in a tropical monsoon basin of Thailand. Water, 11.","DOI":"10.3390\/w11040818"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"818","DOI":"10.1109\/JSTARS.2017.2672786","article-title":"Evaluation and comparison of daily rainfall from latest GPM and TRMM products over the Mekong River Basin","volume":"10","author":"Wang","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"2540","DOI":"10.3390\/w7041751","article-title":"General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity","volume":"7","author":"Lee","year":"2015","journal-title":"Water"},{"key":"ref_76","unstructured":"Bappenas (2018). RAN API Review: Scientific Base Study of Atmospheric Climate Projections, Bappenas."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"105304","DOI":"10.1016\/j.atmosres.2020.105304","article-title":"Performance evaluation and correction of precipitation data using the 20-year IMERG and TMPA precipitation products in diverse subregions of China","volume":"249","author":"Ma","year":"2021","journal-title":"Atmos. Res."},{"key":"ref_78","doi-asserted-by":"crossref","unstructured":"Salles, L., Satg\u00e9, F., Roig, H., Almeida, T., Olivetti, D., and Ferreira, W. (2019). Seasonal effect on spatial and temporal consistency of the new GPM-based IMERG-v5 and GSMaP-v7 satellite precipitation estimates in Brazil\u2019s Central Plateau region. Water, 11.","DOI":"10.3390\/w11040668"},{"key":"ref_79","doi-asserted-by":"crossref","unstructured":"Ma, Z., He, K., Tan, X., Xu, J., Fang, W., He, Y., and Hong, Y. (2018). Comparisons of spatially downscaling TMPA and IMERG over the Tibetan Plateau. Remote Sens., 10.","DOI":"10.3390\/rs10121883"},{"key":"ref_80","doi-asserted-by":"crossref","unstructured":"Xu, F., Guo, B., Ye, B., Ye, Q., Chen, H., Ju, X., Guo, J., and Wang, Z. (2019). Systematical Evaluation of GPM IMERG and TRMM 3B42V7 Precipitation Products in the Huang-Huai-Hai Plain, China. Remote Sens., 11.","DOI":"10.3390\/rs11060697"},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"188","DOI":"10.1016\/j.gloplacha.2015.08.013","article-title":"Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia","volume":"133","author":"McCabe","year":"2015","journal-title":"Glob. Planet. Chang."},{"key":"ref_82","doi-asserted-by":"crossref","unstructured":"Retalis, A., Katsanos, D., Tymvios, F., and Michaelides, S. (2020). Comparison of GPM imerg and TRMM 3B43 products over Cyprus. Remote Sens., 12.","DOI":"10.3390\/rs12193212"},{"key":"ref_83","doi-asserted-by":"crossref","unstructured":"Yu, L., Leng, G., Python, A., and Peng, J. (2021). A comprehensive evaluation of latest GPM IMERG V06 early, late and final precipitation products across China. Remote Sens., 13.","DOI":"10.3390\/rs13061208"},{"key":"ref_84","doi-asserted-by":"crossref","unstructured":"Yuan, F., Zhang, L., Soe, K.M.W., Ren, L., Zhao, C., Zhu, Y., Jiang, S., and Liu, Y. (2019). Applications of TRMM- and GPM-era multiple- satellite precipitation products for flood simulations at sub-daily scales in a sparsely gauged watershed in Myanmar. Remote Sens., 11.","DOI":"10.3390\/rs11020140"},{"key":"ref_85","doi-asserted-by":"crossref","unstructured":"Wang, S., Liu, J., Wang, J., Qiao, X., and Zhang, J. (2019). Evaluation of GPM IMERG V05B and TRMM 3B42V7 Precipitation products over high mountainous tributaries in Lhasa with dense rain gauges. Remote Sens., 11.","DOI":"10.3390\/rs11182080"},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1175\/JHM-D-19-0116.1","article-title":"The contribution of rain gauges in the calibration of the IMERG product: Results from the first validation over Spain","volume":"21","author":"Tapiador","year":"2020","journal-title":"J. Hydrometeorol."},{"key":"ref_87","doi-asserted-by":"crossref","unstructured":"Tan, M.L., Samat, N., Chan, N.W., and Roy, R. (2018). Hydro-meteorological assessment of three GPM Satellite Precipitation Products in the Kelantan River Basin, Malaysia. Remote Sens., 10.","DOI":"10.3390\/rs10071011"},{"key":"ref_88","doi-asserted-by":"crossref","unstructured":"Maghsood, F.F., Hashemi, H., Hosseini, S.H., and Berndtsson, R. (2020). Ground validation of GPM IMERG precipitation products over Iran. Remote Sens., 12.","DOI":"10.3390\/rs12010048"},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"1544","DOI":"10.5194\/essd-12-1525-2020","article-title":"AIMERG: A new Asian precipitation dataset (0.1\u00b0\/half-hourly, 2000-2015) by calibrating the GPM-era IMERG at a daily scale using APHRODITE","volume":"12","author":"Ma","year":"2020","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"105132","DOI":"10.1016\/j.atmosres.2020.105132","article-title":"Comprehensive evaluation of latest GPM era IMERG and GSMaP precipitation products over mainland China","volume":"246","author":"Zhou","year":"2020","journal-title":"Atmos. Res."},{"key":"ref_91","doi-asserted-by":"crossref","unstructured":"Gao, Z., Huang, B., Ma, Z., Chen, X., Liu, D., and Qiu, J. (2020). Comprehensive comparisons of state-of-the-art gridded precipitation estimates for hydrological applications over southern China. Remote Sens., 12.","DOI":"10.3390\/rs12233997"},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.atmosres.2018.12.001","article-title":"das N. Grid box-level evaluation of IMERG over Brazil at various space and time scales","volume":"218","author":"Gadelha","year":"2019","journal-title":"Atmos. Res."},{"key":"ref_93","doi-asserted-by":"crossref","unstructured":"Shi, J., Yuan, F., Shi, C., Zhao, C., Zhang, L., Ren, L., Zhu, Y., Jiang, S., and Liu, Y. (2020). Statistical evaluation of the latest GPM-Era IMERG and GSMaP satellite precipitation products in the Yellow River source region. Water, 12.","DOI":"10.3390\/w12041006"},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1175\/JHM-D-17-0161.1","article-title":"How does the evaluation of the GPM IMERG rainfall product depend on gauge density and rainfall intensity?","volume":"19","author":"Tian","year":"2018","journal-title":"J. Hydrometeorol."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"7","DOI":"10.14203\/instrumentasi.v40i1.52","article-title":"Comparison and correlation among measurement results of observatory, Hellman, and tipping bucket sensors","volume":"40","author":"Maftukhah","year":"2016","journal-title":"Instrumentasi"},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/0169-8095(95)00066-6","article-title":"Adjustment of tipping-bucket precipitation gauge measurements","volume":"42","author":"Sevruk","year":"1996","journal-title":"Atmos. Res."},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"752","DOI":"10.1175\/1520-0426(2003)20<752:LREITB>2.0.CO;2","article-title":"Local random errors in tipping-bucket rain gauge measurements","volume":"20","author":"Ciach","year":"2003","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1061\/(ASCE)1084-0699(2001)6:2(159)","article-title":"Sampling errors of tipping-bucket rain gauge measurements","volume":"6","author":"Habib","year":"2001","journal-title":"J. Hydrol. Eng."},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1002\/qj.3313","article-title":"The Global Precipitation Measurement (GPM) mission\u2019s scientific achievements and societal contributions: Reviewing four years of advanced rain and snow observations","volume":"144","author":"Kirschbaum","year":"2018","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_100","doi-asserted-by":"crossref","unstructured":"Ma, M., Wang, H., Jia, P., Tang, G., Wang, D., Ma, Z., and Yan, H. (2020). Application of the GPM-IMERG Products in Flash Flood Warning: A Case Study in Yunnan, China. Remote Sens., 12.","DOI":"10.3390\/rs12121954"},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"106037","DOI":"10.1016\/j.atmosres.2022.106037","article-title":"Near real-time hurricane rainfall forecasting using convolutional neural network models with Integrated Multi-satellitE Retrievals for GPM (IMERG) product","volume":"270","author":"Kim","year":"2022","journal-title":"Atmos. Res."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"126705","DOI":"10.1016\/j.jhydrol.2021.126705","article-title":"How reliable are the satellite-based precipitation estimations in guiding hydrological modelling in South China?","volume":"602","author":"Su","year":"2021","journal-title":"J. Hydrol."},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"679","DOI":"10.1002\/joc.1287","article-title":"Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods","volume":"26","author":"Schmidli","year":"2006","journal-title":"Int. J. Climatol. J. R. Meteorol. Soc."},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.jhydrol.2012.05.052","article-title":"Bias correction of regional climate model simulations for hydrological climate-change impact studies: Review and evaluation of different methods","volume":"456","author":"Teutschbein","year":"2012","journal-title":"J. Hydrol."},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"5237","DOI":"10.1002\/2015JD024511","article-title":"Bias correction of precipitation through Singularity Stochastic Removal: Because occurrences matter","volume":"121","author":"Vrac","year":"2016","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_106","doi-asserted-by":"crossref","first-page":"4187","DOI":"10.1002\/wrcr.20331","article-title":"Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America","volume":"49","author":"Chen","year":"2013","journal-title":"Water Resour. Res."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/5\/1172\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,26]],"date-time":"2024-07-26T20:20:54Z","timestamp":1722025254000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/5\/1172"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2,27]]},"references-count":106,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2022,3]]}},"alternative-id":["rs14051172"],"URL":"https:\/\/doi.org\/10.3390\/rs14051172","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,2,27]]}}}