{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:12:05Z","timestamp":1728177125348},"reference-count":71,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2022,2,24]],"date-time":"2022-02-24T00:00:00Z","timestamp":1645660800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"European Union Horizon 2020 research and innovation programme","award":["825355"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The rich, complementary data provided by Sentinel-1 and Sentinel-2 satellite constellations host considerable potential to transform Earth observation (EO) applications. However, a substantial amount of effort and infrastructure is still required for the generation of analysis-ready data (ARD) from the low-level products provided by the European Space Agency (ESA). Here, a flexible Python framework able to generate a range of consistent ARD aligned with the ESA-recommended processing pipeline is detailed. Sentinel-1 Synthetic Aperture Radar (SAR) data are radiometrically calibrated, speckle-filtered and terrain-corrected, and Sentinel-2 multi-spectral data resampled in order to harmonise the spatial resolution between the two streams and to allow stacking with multiple scene classification masks. The global coverage and flexibility of the framework allows users to define a specific region of interest (ROI) and time window to create geo-referenced Sentinel-1 and Sentinel-2 images, or a combination of both with closest temporal alignment. The framework can be applied to any location and is user-centric and versatile in generating multi-modal and multi-temporal ARD. Finally, the framework handles automatically the inherent challenges in processing Sentinel data, such as boundary regions with missing values within Sentinel-1 and the filtering of Sentinel-2 scenes based on ROI cloud coverage.<\/jats:p>","DOI":"10.3390\/rs14051120","type":"journal-article","created":{"date-parts":[[2022,2,25]],"date-time":"2022-02-25T02:11:07Z","timestamp":1645755067000},"page":"1120","source":"Crossref","is-referenced-by-count":7,"title":["A Flexible Multi-Temporal and Multi-Modal Framework for Sentinel-1 and Sentinel-2 Analysis Ready Data"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6212-5314","authenticated-orcid":false,"given":"Priti","family":"Upadhyay","sequence":"first","affiliation":[{"name":"Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0927-0416","authenticated-orcid":false,"given":"Mikolaj","family":"Czerkawski","sequence":"additional","affiliation":[{"name":"Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9450-1791","authenticated-orcid":false,"given":"Christopher","family":"Davison","sequence":"additional","affiliation":[{"name":"Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9284-1899","authenticated-orcid":false,"given":"Javier","family":"Cardona","sequence":"additional","affiliation":[{"name":"Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK"},{"name":"Department of Chemical and Process Engineering, University of Strathclyde, Glasgow G1 1XJ, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4499-4281","authenticated-orcid":false,"given":"Malcolm","family":"Macdonald","sequence":"additional","affiliation":[{"name":"Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9093-5245","authenticated-orcid":false,"given":"Ivan","family":"Andonovic","sequence":"additional","affiliation":[{"name":"Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK"}]},{"given":"Craig","family":"Michie","sequence":"additional","affiliation":[{"name":"Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6206-2229","authenticated-orcid":false,"given":"Robert","family":"Atkinson","sequence":"additional","affiliation":[{"name":"Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2141-5654","authenticated-orcid":false,"given":"Nikela","family":"Papadopoulou","sequence":"additional","affiliation":[{"name":"Computing Systems Laboratory, National Technical University of Athens, 157 80 Athens, Greece"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4424-9951","authenticated-orcid":false,"given":"Konstantinos","family":"Nikas","sequence":"additional","affiliation":[{"name":"Computing Systems Laboratory, National Technical University of Athens, 157 80 Athens, Greece"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9150-6805","authenticated-orcid":false,"given":"Christos","family":"Tachtatzis","sequence":"additional","affiliation":[{"name":"Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow G1 1XW, UK"}]}],"member":"1968","published-online":{"date-parts":[[2022,2,24]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1080\/10095020.2017.1333230","article-title":"Earth observation in service of the 2030 Agenda for Sustainable Development","volume":"20","author":"Anderson","year":"2017","journal-title":"Geo-Spat. Inf. Sci."},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Schumann, G.J.P., Brakenridge, G.R., Kettner, A.J., Kashif, R., and Niebuhr, E. (2018). Assisting Flood Disaster Response with Earth Observation Data and Products: A Critical Assessment. Remote Sens., 10.","DOI":"10.3390\/rs10081230"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"7819","DOI":"10.3390\/rs6087819","article-title":"Enabling the Use of Earth Observation Data for Integrated Water Resource Management in Africa with the Water Observation and Information System","volume":"6","author":"Guzinski","year":"2014","journal-title":"Remote Sens."},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Bouvet, A., Mermoz, S., Ball\u00e8re, M., Koleck, T., and Le Toan, T. (2018). Use of the SAR Shadowing Effect for Deforestation Detection with Sentinel-1 Time Series. Remote Sens., 10.","DOI":"10.3390\/rs10081250"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"100008","DOI":"10.1016\/j.srs.2020.100008","article-title":"Mapping of glacial lakes using Sentinel-1 and Sentinel-2 data and a random forest classifier: Strengths and challenges","volume":"2","author":"Wangchuk","year":"2020","journal-title":"Sci. Remote Sens."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Gargiulo, M., Dell\u2019Aglio, D.A.G., Iodice, A., Riccio, D., and Ruello, G. (2020). Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net. Sensors, 20.","DOI":"10.3390\/s20102969"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Orynbaikyzy, A., Gessner, U., Mack, B., and Conrad, C. (2020). Crop Type Classification Using Fusion of Sentinel-1 and Sentinel-2 Data: Assessing the Impact of Feature Selection, Optical Data Availability, and Parcel Sizes on the Accuracies. Remote Sens., 12.","DOI":"10.3390\/rs12172779"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1016\/j.isprsjprs.2020.05.013","article-title":"Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion","volume":"166","author":"Meraner","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Gao, Q., Zribi, M., Escorihuela, M.J., and Baghdadi, N. (2017). Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution. Sensors, 17.","DOI":"10.3390\/s17091966"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1109\/JSTARS.2017.2755672","article-title":"OpenSARShip: A Dataset Dedicated to Sentinel-1 Ship Interpretation","volume":"11","author":"Huang","year":"2018","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1109\/JSTARS.2019.2954850","article-title":"OpenSARUrban: A Sentinel-1 SAR Image Dataset for Urban Interpretation","volume":"13","author":"Zhao","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Ard\u00f6, J. (2021). A Sentinel-2 Dataset for Uganda. Data, 6.","DOI":"10.3390\/data6040035"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Helber, P., Bischke, B., Dengel, A., and Borth, D. (2018, January 22\u201327). Introducing Eurosat: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification. Proceedings of the IGARSS 2018\u20142018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain.","DOI":"10.1109\/IGARSS.2018.8519248"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"4699","DOI":"10.1109\/JSTARS.2021.3073965","article-title":"TimeSen2Crop: A Million Labeled Samples Dataset of Sentinel 2 Image Time Series for Crop-Type Classification","volume":"14","author":"Weikmann","year":"2021","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"141","DOI":"10.5194\/isprs-annals-IV-1-141-2018","article-title":"The SEN1-2 dataset for deep learning in SAR-optical data fusion","volume":"IV-1","author":"Schmitt","year":"2018","journal-title":"ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Schmitt, M., Hughes, L., Qiu, C., and Zhu, X. (2019). SEN12MS\u2014A Curated Dataset of Georeferenced Multi-Spectral Sentinel-1\/2 Imagery for Deep Learning and Data Fusion. arXiv.","DOI":"10.5194\/isprs-annals-IV-2-W7-153-2019"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1109\/MGRS.2020.2964708","article-title":"So2Sat LCZ42: A Benchmark Data Set for the Classification of Global Local Climate Zones [Software and Data Sets]","volume":"8","author":"Zhu","year":"2020","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Augustin, H., Sudmanns, M., Tiede, D., Lang, S., and Baraldi, A. (2019). Semantic Earth Observation Data Cubes. Data, 4.","DOI":"10.3390\/data4030102"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1016\/j.rse.2017.03.015","article-title":"The Australian Geoscience Data Cube\u2014Foundations and lessons learned","volume":"202","author":"Lewis","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1080\/17538947.2015.1111952","article-title":"Rapid, high-resolution detection of environmental change over continental scales from satellite data \u2013 the Earth Observation Data Cube","volume":"9","author":"Lewis","year":"2016","journal-title":"Int. J. Digit. Earth"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1080\/20964471.2017.1398903","article-title":"Building an Earth Observations Data Cube: Lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD)","volume":"1","author":"Giuliani","year":"2017","journal-title":"Big Earth Data"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Giuliani, G., Chatenoux, B., Honeck, E., and Richard, J.P. (2018, January 22\u201327). Towards Sentinel-2 Analysis Ready Data: A Swiss Data Cube Perspective. Proceedings of the IGARSS 2018\u20142018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain.","DOI":"10.1109\/IGARSS.2018.8517954"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Ariza Porras, C., Bravo, G., Villamizar, M., Moreno, A., Castro, H., Galindo, G., Cabera, E., Valbuena, S., and Lozano-Rivera, P. (2017). CDCol: A Geoscience Data Cube that Meets Colombian Needs. Colombian Conference on Computing, Springer.","DOI":"10.1007\/978-3-319-66562-7_7"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Cheng, M.C., Chiou, C.R., Chen, B., Liu, C., Lin, H.C., Shih, I.L., Chung, C.H., Lin, H.Y., and Chou, C.Y. (August, January 28). Open Data Cube (ODC) in Taiwan: The Initiative and Protocol Development. Proceedings of the IGARSS 2019\u20142019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan.","DOI":"10.1109\/IGARSS.2019.8898576"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1080\/20964471.2017.1402490","article-title":"Digital earth Australia \u2013 unlocking new value from earth observation data","volume":"1","author":"Dhu","year":"2017","journal-title":"Big Earth Data"},{"key":"ref_26","unstructured":"(2021, October 05). Digital Earth Africa (DE Africa). Available online: https:\/\/www.earthobservations.org\/documents\/gwp20_22\/DE-AFRICA.pdf."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Ticehurst, C., Zhou, Z.S., Lehmann, E., Yuan, F., Thankappan, M., Rosenqvist, A., Lewis, B., and Paget, M. (2019). Building a SAR-Enabled Data Cube Capability in Australia Using SAR Analysis Ready Data. Data, 4.","DOI":"10.3390\/data4030100"},{"key":"ref_28","unstructured":"(2021, October 05). The \u201cRoad to 20\u201d International Data Cube Deployments. Available online: https:\/\/ecb55191-c6e7-461e-a453-1feef4c7e8b7.filesusr.com\/ugd\/8959d6_cfcba3751fe642bc9faec776ab98cb20.pdf."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Frantz, D. (2019). FORCE\u2014Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sens., 11.","DOI":"10.3390\/rs11091124"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1080\/17538947.2014.1003106","article-title":"Big Data Analytics for Earth Sciences: The EarthServer approach","volume":"9","author":"Baumann","year":"2016","journal-title":"Int. J. Digit. Earth"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.rse.2017.06.031","article-title":"Google Earth Engine: Planetary-scale geospatial analysis for everyone","volume":"202","author":"Gorelick","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Giuliani, G., Mas\u00f3, J., Mazzetti, P., Nativi, S., and Zabala, A. (2019). Paving the Way to Increased Interoperability of Earth Observations Data Cubes. Data, 4.","DOI":"10.3390\/data4030113"},{"key":"ref_33","first-page":"102035","article-title":"Data Cube on Demand (DCoD): Generating an earth observation Data Cube anywhere in the world","volume":"87","author":"Giuliani","year":"2020","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Appel, M., and Pebesma, E. (2019). On-Demand Processing of Data Cubes from Satellite Image Collections with the gdalcubes Library. Data, 4.","DOI":"10.32614\/CRAN.package.gdalcubes"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Planque, C., Lucas, R., Punalekar, S., Chognard, S., Hurford, C., Owers, C., Horton, C., Guest, P., King, S., and Williams, S. (2021). National Crop Mapping Using Sentinel-1 Time Series: A Knowledge-Based Descriptive Algorithm. Remote Sens., 13.","DOI":"10.3390\/rs13050846"},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"El Mendili, L., Puissant, A., Chougrad, M., and Sebari, I. (2020). Towards a Multi-Temporal Deep Learning Approach for Mapping Urban Fabric Using Sentinel 2 Images. Remote Sens., 12.","DOI":"10.3390\/rs12030423"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"111254","DOI":"10.1016\/j.rse.2019.111254","article-title":"Landsat-8 and Sentinel-2 burned area mapping - A combined sensor multi-temporal change detection approach","volume":"231","author":"Roy","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1016\/j.isprsjprs.2019.12.014","article-title":"A deep learning approach for mapping and dating burned areas using temporal sequences of satellite images","volume":"160","author":"Pinto","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_39","unstructured":"(2021, October 06). SNAP. Available online: https:\/\/step.esa.int\/main\/toolboxes\/SNAP\/."},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Lewis, A., Lacey, J., Mecklenburg, S., Ross, J., Siqueira, A., Killough, B., Szantoi, Z., Tadono, T., Rosenavist, A., and Goryl, P. (2018, January 22\u201327). CEOS Analysis Ready Data for Land (CARD4L) Overview. Proceedings of the IGARSS 2018\u20142018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain.","DOI":"10.1109\/IGARSS.2018.8519255"},{"key":"ref_41","unstructured":"(2021, November 16). CEOS Analysis Ready Data for Land (CARD4L). Available online: https:\/\/ceos.org\/document_management\/Meetings\/Plenary\/30\/Documents\/5.5_CEOS-CARD4L-Description_v.22.docx."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.rse.2011.05.028","article-title":"GMES Sentinel-1 mission","volume":"120","author":"Torres","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.rse.2011.11.026","article-title":"Sentinel-2: ESA\u2019s Optical High-Resolution Mission for GMES Operational Services","volume":"120","author":"Drusch","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_44","unstructured":"(2021, November 29). Sentinel Online\u2014Sentinel-2 Level-2A Processing. Available online: https:\/\/sentinels.copernicus.eu\/web\/sentinel\/user-guides\/sentinel-2-msi\/processing-levels\/level-2."},{"key":"ref_45","unstructured":"(2021, October 06). Sentinel Online\u2014Data Products. Available online: https:\/\/sentinels.copernicus.eu\/web\/sentinel\/missions\/sentinel-2\/data-products."},{"key":"ref_46","unstructured":"(2021, October 06). Sentinelsat. Available online: https:\/\/sentinelsat.readthedocs.io\/en\/master\/index.html."},{"key":"ref_47","unstructured":"(2021, October 06). Copernicus Open Access Hub. Available online: https:\/\/scihub.copernicus.eu\/."},{"key":"ref_48","unstructured":"(2022, January 31). Copernicus Sentinel-1 Data 2018, 2019, 2020. Retrieved from ASF DAAC 28 July 2021, Processed by ESA. Available online: https:\/\/asf.alaska.edu\/data-sets\/sar-data-sets\/sentinel-1\/sentinel-1-data-and-imagery\/."},{"key":"ref_49","unstructured":"(2021, October 06). Sentinel-2 Data. Available online: https:\/\/cloud.google.com\/storage\/docs\/public-datasets\/sentinel-2."},{"key":"ref_50","unstructured":"(2021, October 06). Registry of Open Data on AWS Sentinel-1. Available online: https:\/\/registry.opendata.aws\/sentinel-1\/."},{"key":"ref_51","unstructured":"(2021, October 06). Registry of Open Data on AWS Sentinel-2. Available online: https:\/\/registry.opendata.aws\/sentinel-2\/."},{"key":"ref_52","unstructured":"(2021, October 06). SAR Basics Tutorial. Available online: http:\/\/step.esa.int\/docs\/tutorials\/S1TBX%20SAR%20Basics%20Tutorial.pdf."},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Filipponi, F. (2019). Sentinel-1 GRD Preprocessing Workflow. Proceedings, 18.","DOI":"10.3390\/ECRS-3-06201"},{"key":"ref_54","doi-asserted-by":"crossref","unstructured":"Truckenbrodt, J., Freemantle, T., Williams, C., Jones, T., Small, D., Dubois, C., Thiel, C., Rossi, C., Syriou, A., and Giuliani, G. (2019). Towards Sentinel-1 SAR Analysis-Ready Data: A Best Practices Assessment on Preparing Backscatter Data for the Cube. Data, 4.","DOI":"10.3390\/data4030093"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1109\/TGRS.2008.2002881","article-title":"Improved Sigma Filter for Speckle Filtering of SAR Imagery","volume":"47","author":"Lee","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_56","unstructured":"(2021, November 15). USGS EROS Archive\u2014Digital Elevation\u2014Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global, Available online: https:\/\/www.usgs.gov\/centers\/eros\/science\/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1-arc."},{"key":"ref_57","unstructured":"(2021, November 15). GDAL. Available online: https:\/\/pypi.org\/project\/GDAL\/."},{"key":"ref_58","unstructured":"(2021, October 18). Synergetic Use of Radar and Optical Data. Available online: http:\/\/step.esa.int\/docs\/tutorials\/S1TBX%20Synergetic%20use%20127of%20S1%20(SAR)%20and%20S2%20(optical)%20data%20Tutorial.pdf."},{"key":"ref_59","unstructured":"(2021, August 26). Metaflow: A Framework for Real-Life Data Science. Available online: https:\/\/metaflow.org\/."},{"key":"ref_60","first-page":"2","article-title":"Docker: Lightweight linux containers for consistent development and deployment","volume":"2014","author":"Merkel","year":"2014","journal-title":"Linux J."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Kurtzer, G.M., Sochat, V., and Bauer, M.W. (2017). Singularity: Scientific containers for mobility of compute. PLoS ONE, 12.","DOI":"10.1371\/journal.pone.0177459"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"1031","DOI":"10.1175\/BAMS-D-12-00117.1","article-title":"Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel","volume":"94","author":"Stubenrauch","year":"2013","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"3826","DOI":"10.1109\/TGRS.2012.2227333","article-title":"Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites","volume":"51","author":"King","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_64","unstructured":"(2021, October 11). Sentinel-2 Tiling Grid Kml. Available online: https:\/\/sentinels.copernicus.eu\/documents\/247904\/1955685\/S2A_OPER_GIP_TILPAR_MPC__20151209T095117_V20150622T000000_21000101T000000_B00.kml."},{"key":"ref_65","unstructured":"(2021, November 16). Measuring Vegetation (NDVI & EVI), Available online: https:\/\/earthobservatory.nasa.gov\/features\/MeasuringVegetation\/measuring_vegetation_2.php."},{"key":"ref_66","unstructured":"Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. (1974). Monitoring Vegetation Systems in the Great Plains with Erts, NASA. NASA Special Publication."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"929","DOI":"10.1038\/s41598-020-57750-z","article-title":"Quantitative monitoring of leaf area index in wheat of different plant types by integrating NDVI and Beer-Lambert law","volume":"10","author":"Tan","year":"2020","journal-title":"Sci. Rep."},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Aranguren, M., Castell\u00f3n, A., and Aizpurua, A. (2020). Wheat Yield Estimation with NDVI Values Using a Proximal Sensing Tool. Remote Sens., 12.","DOI":"10.3390\/rs12172749"},{"key":"ref_69","doi-asserted-by":"crossref","unstructured":"Vreugdenhil, M., Wagner, W., Bauer-Marschallinger, B., Pfeil, I., Teubner, I., R\u00fcdiger, C., and Strauss, P. (2018). Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sens., 10.","DOI":"10.3390\/rs10091396"},{"key":"ref_70","doi-asserted-by":"crossref","unstructured":"Filgueiras, R., Mantovani, E.C., Althoff, D., Fernandes Filho, E.I., and Cunha, F.F.D. (2019). Crop NDVI Monitoring Based on Sentinel 1. Remote Sens., 11.","DOI":"10.3390\/rs11121441"},{"key":"ref_71","doi-asserted-by":"crossref","unstructured":"Alvarez-Mozos, J., Villanueva, J., Arias, M., and Gonzalez-Audicana, M. (2021, January 11\u201316). Correlation Between NDVI and Sentinel-1 Derived Features for Maize. Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium.","DOI":"10.1109\/IGARSS47720.2021.9554099"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/5\/1120\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,26]],"date-time":"2024-07-26T17:08:20Z","timestamp":1722013700000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/5\/1120"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2,24]]},"references-count":71,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2022,3]]}},"alternative-id":["rs14051120"],"URL":"https:\/\/doi.org\/10.3390\/rs14051120","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,2,24]]}}}