{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,5]],"date-time":"2024-08-05T22:41:14Z","timestamp":1722897674339},"reference-count":37,"publisher":"MDPI AG","issue":"4","license":[{"start":{"date-parts":[[2022,2,17]],"date-time":"2022-02-17T00:00:00Z","timestamp":1645056000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["42174041","41774001"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Independent and Controllable Project of National Surveying and Mapping","award":["816-517","2014TDJH101"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"As the first in-orbit formation satellites equipped with a Laser Ranging Interferometer (LRI) instrument, Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) satellites are designed to evaluate the effective ability of the new LRI ranging system applied to satellite-to-satellite tracking. To evaluate the application of LRI in GRACE-FO, a relative kinematic orbit determination scheme for formation satellites integrating Kalman filters and GPS\/LRI is proposed. The observation equation is constructed by combining LRI and spaceborne GPS data, and the intersatellite baselines of GRACE-FO formation satellites are calculated with Kalman filters. The combination of GPS and LRI techniques can limit the influence of GPS observation errors and improve the stability of orbit determination of the GRACE-FO satellites formation. The linearization of the GPS\/LRI observation model and the process of the GPS\/LRI relative kinematic orbit determination are provided. Relative kinematic orbit determination is verified by actual GPS\/LRI data of GRACE-FO-A and GRACE-FO-B satellites. The quality of relative kinematic orbit determination is evaluated by reference orbit check and K-Band Ranging (KBR) check. The result of the reference orbit check indicates that the accuracy of GRACE-FO relative kinematic orbit determination along X, Y, and Z (components of the baseline vector) directions is better than 2.9 cm. Compared with the relative kinematic orbit determination by GPS only, GPS\/LRI improves the accuracy of the relative kinematic orbit determination by approximately 1cm along with X, Y and Z directions, and by about 1.8 cm in 3D directions. The overall accuracy of relative kinematic orbit determination is improved by 25.9%. The result of the KBR check indicates that the accuracy of the intersatellite baseline determination is about +\/\u221210.7 mm.<\/jats:p>","DOI":"10.3390\/rs14040993","type":"journal-article","created":{"date-parts":[[2022,2,18]],"date-time":"2022-02-18T01:26:41Z","timestamp":1645147601000},"page":"993","source":"Crossref","is-referenced-by-count":6,"title":["Relative Kinematic Orbit Determination for GRACE-FO Satellite by Jointing GPS and LRI"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0554-2792","authenticated-orcid":false,"given":"Zhouming","family":"Yang","sequence":"first","affiliation":[{"name":"College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China"}]},{"given":"Xin","family":"Liu","sequence":"additional","affiliation":[{"name":"College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1817-1505","authenticated-orcid":false,"given":"Jinyun","family":"Guo","sequence":"additional","affiliation":[{"name":"College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6359-7383","authenticated-orcid":false,"given":"Hengyang","family":"Guo","sequence":"additional","affiliation":[{"name":"College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China"}]},{"given":"Guowei","family":"Li","sequence":"additional","affiliation":[{"name":"Shandong Provincial Institute of Land Surveying and Mapping, Jinan 250102, China"}]},{"given":"Qiaoli","family":"Kong","sequence":"additional","affiliation":[{"name":"College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China"}]},{"given":"Xiaotao","family":"Chang","sequence":"additional","affiliation":[{"name":"Land Satellite Remote Sensing Application Center of Ministry of Natural Resource, Beijing 100048, China"}]}],"member":"1968","published-online":{"date-parts":[[2022,2,17]]},"reference":[{"key":"ref_1","unstructured":"Dragon, K. (2015). GRACE Follow-On Mission Plan, NASA Jet Propulsion Laboratory\/California Institute of Technology."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"931","DOI":"10.2514\/1.A34326","article-title":"GRACE-FO: The Gravity Recovery and Climate Experiment Follow-On Mission","volume":"56","author":"Kornfeld","year":"2019","journal-title":"J. Spacecr. Rocket."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1007\/s40328-020-00324-2","article-title":"On GPS data quality of GRACE-FO and GRACE satellites: Effects of phase center variation and satellite attitude on precise orbit determination","volume":"56","author":"Xia","year":"2020","journal-title":"Acta Geod. Geophys."},{"key":"ref_4","unstructured":"Case, K., Kruizinga, G., and Wu, S.-C. (2002). GRACE Level 1B Data Product User Handbook, JPL Publication D-22027; NASA Jet Propulsion Laboratory\/California Institute of Technology."},{"key":"ref_5","unstructured":"Wen, H.Y., Kruizinga, G., Paik, M., Landerer, F., Bertiger, W., Sakumura, C., Bandikova, T., and Mccullough, C. (2019). Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) Level-1 Data Product User Handbook, NASA Jet Propulsion Laboratory\/California Institute of Technology."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"327","DOI":"10.1007\/s00190-010-0371-9","article-title":"Single receiver phase ambiguity resolution with GPS data","volume":"84","author":"Bertiger","year":"2010","journal-title":"J. Geodesy"},{"key":"ref_7","first-page":"46","article-title":"Robust and precise baseline determination of distributed spacecraft in LEO","volume":"57","author":"Montenbruck","year":"2015","journal-title":"Adv. Space Res."},{"key":"ref_8","unstructured":"Bettadpur, S. (2007). Gravity Recovery and Climate Experiment Product Specification Document (Rev 4.5\u2013February 20, 2007), The University of Texas at Austin, Center for Space Research."},{"key":"ref_9","unstructured":"Dubovitsky, S. (2016). Definition of Time Specification Relevant to LRI Operations, NASA Jet Propulsion Laboratory\/California Institute of Technology."},{"key":"ref_10","unstructured":"Bertiger, W., Harvey, N., and Spero, R. (2019). An Alternate Formulation of The LRI Measurement, NASA Jet Propulsion Laboratory\/California Institute of Technology."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"031101","DOI":"10.1103\/PhysRevLett.123.031101","article-title":"In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer","volume":"123","author":"Abich","year":"2019","journal-title":"Phys. Rev. Lett."},{"key":"ref_12","unstructured":"Sodnik, Z., Cugny, B., Karafolas, N., Nicklaus, K., Herding, M., Baatzsch, A., Dehne, M., Diekmann, C., Voss, K., and Heinzel, G. (2017). Laser ranging interferometer on Grace follow-on. International Conference on Space Optics\u2014ICSO 2016, International Society for Optics and Photonics."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"105029","DOI":"10.1103\/PhysRevD.89.105029","article-title":"General relativistic laser interferometric observables of the GRACE-Follow-On mission","volume":"89","author":"Turyshev","year":"2014","journal-title":"Phys. Rev. D"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1007\/s10291-004-0123-5","article-title":"Precise GRACE baseline determination using GPS","volume":"9","author":"Kroes","year":"2005","journal-title":"GPS Solut."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1612","DOI":"10.1016\/j.asr.2007.03.012","article-title":"Precise orbit determination for GRACE using undifferenced or doubly differenced GPS data","volume":"39","author":"Hugentobler","year":"2007","journal-title":"Adv. Space Res."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"3317","DOI":"10.1109\/TGRS.2007.900693","article-title":"TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry","volume":"45","author":"Krieger","year":"2007","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_17","unstructured":"Van Barneveld, P. (2012). Orbit Determination of Satellite Formations, Delft University of Technology."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.actaastro.2012.04.033","article-title":"Autonomous formation flying based on GPS\u2014PRISMA flight results","volume":"82","author":"Ardaens","year":"2013","journal-title":"Acta Astronaut."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1007\/s10291-014-0410-8","article-title":"Kinematic single-frequency relative positioning for LEO formation flying mission","volume":"19","author":"Chen","year":"2014","journal-title":"GPS Solut."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1007\/s10291-015-0505-x","article-title":"Precise orbit and baseline determination for maneuvering low earth orbiters","volume":"21","author":"Ju","year":"2015","journal-title":"GPS Solut."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Guo, H., Guo, J., Yang, Z., Wang, G., Qi, L., Lin, M., Peng, H., and Ji, B. (2021). On Satellite-Borne GPS Data Quality and Reduced-Dynamic Precise Orbit Determination of HY-2C: A Case of Orbit Validation with Onboard DORIS Data. Remote Sens., 13.","DOI":"10.3390\/rs13214329"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"10187","DOI":"10.1029\/JB094iB08p10187","article-title":"Carrier phase ambiguity resolution for the Global Positioning System applied to geodetic baselines up to 2000 km","volume":"94","author":"Blewitt","year":"1989","journal-title":"J. Geophys. Res. Earth Surf."},{"key":"ref_23","first-page":"42","article-title":"Epoch-by-epoch phase difference method to evaluate GNSS single-frequency phase data quality","volume":"36","author":"Maosheng","year":"2020","journal-title":"Rev. Int. M\u00e9todos Num\u00e9r. C\u00e1lc. Dise\u00f1o Ing."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"29841","DOI":"10.1109\/ACCESS.2021.3059296","article-title":"Effect of Higher-Order Ionospheric Delay on Precise Orbit Determination of GRACE-FO Based on Satellite-Borne GPS Technique","volume":"9","author":"Qi","year":"2021","journal-title":"IEEE Access"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1419","DOI":"10.1007\/s00190-019-01254-w","article-title":"A GPS relative positioning quality control algorithm considering both code and phase observation errors","volume":"93","author":"Shi","year":"2019","journal-title":"J. Geodesy"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"74","DOI":"10.1007\/s10291-003-0055-5","article-title":"In-flight performance analysis of the CHAMP BlackJack GPS Receiver","volume":"7","author":"Montenbruck","year":"2003","journal-title":"GPS Solut."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1017\/S0373463302001789","article-title":"Ionospheric Correction for GPS Tracking of LEO Satellites","volume":"55","author":"Montenbruck","year":"2002","journal-title":"J. Navig."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1007\/s00190-012-0604-1","article-title":"Mitigating the impact of ionospheric cycle slips in GNSS observations","volume":"87","author":"Banville","year":"2012","journal-title":"J. Geod."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1007\/s10291-009-0145-0","article-title":"Quality assessment of FORMOSAT-3\/COSMIC and GRACE GPS observables: Analysis of multipath, ionospheric delay and phase residual in orbit determination","volume":"14","author":"Hwang","year":"2009","journal-title":"GPS Solut."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1007\/s10291-014-0402-8","article-title":"Using ionospheric corrections from the space-based augmentation systems for low earth orbiting satellites","volume":"19","author":"Kim","year":"2014","journal-title":"GPS Solut."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1016\/j.actaastro.2017.05.022","article-title":"Enhanced GPS-based GRACE baseline determination by using a new strategy for ambiguity resolution and relative phase center variation corrections","volume":"138","author":"Gu","year":"2017","journal-title":"Acta Astronaut."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"987","DOI":"10.1016\/j.asr.2009.07.006","article-title":"Epochwise prediction of GPS single differenced ionospheric delays of formation flying spacecraft","volume":"44","author":"Montenbruck","year":"2009","journal-title":"Adv. Space Res."},{"key":"ref_33","unstructured":"Grace, S.R. (2018). Follow-On Laser Ranging Interferometer Phase Jump Removal, NASA Jet Propulsion Laboratory\/California Institute of Technology."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1029\/GL017i003p00199","article-title":"An Automatic Editing Algorithm for GPS data","volume":"17","author":"Blewitt","year":"1990","journal-title":"Geophys. Res. Lett."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1007\/s00190-010-0426-y","article-title":"A new automated cycle slip detection and repair method for a single dual-frequency GPS receiver","volume":"85","author":"Liu","year":"2010","journal-title":"J. Geodesy"},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Landerer, F.W., Flechtner, F.M., Save, H., Webb, F.H., Bandikova, T., Bertiger, W.I., Bettadpur, S.V., Byun, S.H., Dahle, C., and Dobslaw, H. (2020). Extending the Global Mass Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophys. Res. Lett., 47.","DOI":"10.1029\/2020GL088306"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1007\/s00190-006-0073-5","article-title":"Precise orbit determination for the GRACE mission using only GPS data","volume":"80","author":"Kang","year":"2006","journal-title":"J. Geodesy"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/4\/993\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,26]],"date-time":"2024-07-26T07:12:32Z","timestamp":1721977952000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/4\/993"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,2,17]]},"references-count":37,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2022,2]]}},"alternative-id":["rs14040993"],"URL":"https:\/\/doi.org\/10.3390\/rs14040993","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,2,17]]}}}