{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:32:01Z","timestamp":1732041121303},"reference-count":58,"publisher":"MDPI AG","issue":"2","license":[{"start":{"date-parts":[[2022,1,11]],"date-time":"2022-01-11T00:00:00Z","timestamp":1641859200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Boreal fires have increased during the last years and are projected to become more intense and frequent as a consequence of climate change. Wildfires produce a wide range of effects on the Arctic climate and ecosystem, and understanding these effects is crucial for predicting the future evolution of the Arctic region. This study focuses on the impact of the long-range transport of biomass-burning aerosol into the atmosphere and the corresponding radiative perturbation in the shortwave frequency range. As a case study, we investigate an intense biomass-burning (BB) event which took place in summer 2017 in Canada and subsequent northeastward transport of gases and particles in the plume leading to exceptionally high values (0.86) of Aerosol Optical Depth (AOD) at 500 nm measured in northwestern Greenland on 21 August 2017. This work characterizes the BB plume measured at the Thule High Arctic Atmospheric Observatory (THAAO; 76.53\u2218N, 68.74\u2218W) in August 2017 by assessing the associated shortwave aerosol direct radiative impact over the THAAO and extending this evaluation over the broader region (60\u2218N\u201380\u2218N, 110\u2218W\u20130\u2218E). The radiative transfer simulations with MODTRAN6.0 estimated an aerosol heating rate of up to 0.5 K\/day in the upper aerosol layer (8\u201312 km). The direct aerosol radiative effect (ARE) vertical profile shows a maximum negative value of \u221245.4 Wm\u22122 for a 78\u2218 solar zenith angle above THAAO at 3 km altitude. A cumulative surface ARE of \u2212127.5 TW is estimated to have occurred on 21 August 2017 over a portion (\u223c3.1\u00d7106 km2) of the considered domain (60\u2218N\u201380\u2218N, 110\u2218W\u20130\u2218E). ARE regional mean daily values over the same portion of the domain vary between \u221265 and \u221225 Wm\u22122. Although this is a limited temporal event, this effect can have significant influence on the Arctic radiative budget, especially in the anticipated scenario of increasing wildfires.<\/jats:p>","DOI":"10.3390\/rs14020313","type":"journal-article","created":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T01:33:04Z","timestamp":1641951184000},"page":"313","source":"Crossref","is-referenced-by-count":13,"title":["On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5557-1626","authenticated-orcid":false,"given":"Filippo","family":"Cal\u00ec Quaglia","sequence":"first","affiliation":[{"name":"Department of Environmental Sciences, Informatic and Statistics, University Ca\u2019 Foscari, 30172 Venice, Italy"},{"name":"Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2171-1296","authenticated-orcid":false,"given":"Daniela","family":"Meloni","sequence":"additional","affiliation":[{"name":"ENEA, Laboratory of Observations and Measurements for the Environment and Climate, 00123 Rome, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6326-2612","authenticated-orcid":false,"given":"Giovanni","family":"Muscari","sequence":"additional","affiliation":[{"name":"Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8872-8917","authenticated-orcid":false,"given":"Tatiana","family":"Di Iorio","sequence":"additional","affiliation":[{"name":"ENEA, Laboratory of Observations and Measurements for the Environment and Climate, 00123 Rome, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5527-4960","authenticated-orcid":false,"given":"Virginia","family":"Ciardini","sequence":"additional","affiliation":[{"name":"ENEA, Laboratory of Observations and Measurements for the Environment and Climate, 00123 Rome, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3208-6756","authenticated-orcid":false,"given":"Giandomenico","family":"Pace","sequence":"additional","affiliation":[{"name":"ENEA, Laboratory of Observations and Measurements for the Environment and Climate, 00123 Rome, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3633-4849","authenticated-orcid":false,"given":"Silvia","family":"Becagli","sequence":"additional","affiliation":[{"name":"Department of Chemistry \u201cUgo Schiff\u201d, University of Florence, 50019 Florence, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3765-2179","authenticated-orcid":false,"given":"Annalisa","family":"Di Bernardino","sequence":"additional","affiliation":[{"name":"Department of Physics, University of Rome \u201cSapienza\u201d, 00184 Rome, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9380-6967","authenticated-orcid":false,"given":"Marco","family":"Cacciani","sequence":"additional","affiliation":[{"name":"Department of Physics, University of Rome \u201cSapienza\u201d, 00184 Rome, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4269-1677","authenticated-orcid":false,"given":"James W.","family":"Hannigan","sequence":"additional","affiliation":[{"name":"National Center for Atmospheric Research, Boulder, CO 80301, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0067-617X","authenticated-orcid":false,"given":"Ivan","family":"Ortega","sequence":"additional","affiliation":[{"name":"National Center for Atmospheric Research, Boulder, CO 80301, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2405-2898","authenticated-orcid":false,"given":"Alcide Giorgio","family":"di Sarra","sequence":"additional","affiliation":[{"name":"ENEA, Laboratory of Observations and Measurements for the Environment and Climate, 00123 Rome, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2022,1,11]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1023\/A:1005504031923","article-title":"Observational evidence of recent change in the northern high-latitude environment","volume":"46","author":"Serreze","year":"2000","journal-title":"Clim. Chang."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"045010","DOI":"10.1088\/1748-9326\/aafc1b","article-title":"Key indicators of Arctic climate change: 1971\u20132017 Key indicators of Arctic climate change: 1971\u20132017","volume":"14","author":"Box","year":"2019","journal-title":"Environ. Res. Lett."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"7537","DOI":"10.1038\/ncomms8537","article-title":"Climate-induced variations in global wildfire danger from 1979 to 2013","volume":"6","author":"Jolly","year":"2015","journal-title":"Nat. Commun."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"014019","DOI":"10.1088\/1748-9326\/aa9a76","article-title":"Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001\u20132015","volume":"13","author":"Masrur","year":"2018","journal-title":"Environ. Res. Lett."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"20120490","DOI":"10.1098\/rstb.2012.0490","article-title":"The response of Arctic vegetation and soils following an unusually severe tundra fire","volume":"368","author":"Mack","year":"2013","journal-title":"Philos. Trans. R. Soc. B Biol. Sci."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"3295","DOI":"10.1038\/s41598-019-39942-4","article-title":"Most of the Northern Hemisphere Permafrost Remains under Climate Change","volume":"9","author":"Wang","year":"2019","journal-title":"Sci. Rep."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1641\/B580807","article-title":"Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle","volume":"58","author":"Schuur","year":"2008","journal-title":"BioScience"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1890\/08-2025.1","article-title":"Sensitivity of the carbon cycle in the Arctic to climate change","volume":"79","author":"McGuire","year":"2009","journal-title":"Ecol. Monogr."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1111\/ecog.02205","article-title":"Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change","volume":"40","author":"Young","year":"2017","journal-title":"Ecography"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Higuera, P.E., Brubaker, L.B., Anderson, P.M., Brown, T.A., Kennedy, A.T., and Hu, F.S. (2008). Frequent Fires in Ancient Shrub Tundra: Implications of Paleorecords for Arctic Environmental Change. PLoS ONE, 3.","DOI":"10.1371\/journal.pone.0001744"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"10033","DOI":"10.5194\/acp-15-10033-2015","article-title":"Impact of 2050 climate change on North American wildfire: Consequences for ozone air quality","volume":"15","author":"Yue","year":"2015","journal-title":"Atmos. Chem. Phys."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"248","DOI":"10.1016\/j.atmosenv.2017.10.015","article-title":"Simulations of the effect of intensive biomass burning in July 2015 on Arctic radiative budget","volume":"171","author":"Markowicz","year":"2017","journal-title":"Atmos. Environ."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1393","DOI":"10.5194\/acp-19-1393-2019","article-title":"Open fires in Greenland in summer 2017: Transport, deposition and radiative effects of BC, OC and BrC emissions","volume":"19","author":"Evangeliou","year":"2019","journal-title":"Atmos. Chem. Phys."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1038\/nclimate3329","article-title":"Lightning as a major driver of recent large fire years in North American boreal forests","volume":"7","author":"Veraverbeke","year":"2017","journal-title":"Nat. Clim. Chang."},{"key":"ref_15","first-page":"437","article-title":"Recent changes in the fire regime across the North American boreal region\u2014Spatial and temporal patterns of burning across Canada and Alaska","volume":"33","author":"Kasischke","year":"2006","journal-title":"Geophys. Res. Lett."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"507","DOI":"10.1134\/S1067413617060042","article-title":"Spatiotemporal characteristics of wildfire frequency and relative area burned in larch-dominated forests of Central Siberia","volume":"48","author":"Kharuk","year":"2017","journal-title":"Russ. J. Ecol."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1953","DOI":"10.1007\/s13280-020-01490-x","article-title":"Wildfires in the Siberian taiga","volume":"50","author":"Kharuk","year":"2021","journal-title":"Ambio"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"578","DOI":"10.1111\/j.1365-2486.2008.01679.x","article-title":"Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach","volume":"15","author":"Balshi","year":"2009","journal-title":"Glob. Chang. Biol."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1007\/s10584-015-1521-0","article-title":"Fuel moisture sensitivity to temperature and precipitation: Climate change implications","volume":"134","author":"Flannigan","year":"2016","journal-title":"Clim. Chang."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1038\/s41586-021-03437-y","article-title":"Overwintering fires in boreal forests","volume":"593","author":"Scholten","year":"2021","journal-title":"Nature"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"658","DOI":"10.1038\/s41561-020-00645-5","article-title":"Arctic fires re-emerging","volume":"13","author":"McCarty","year":"2020","journal-title":"Nat. Geosci."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"12813","DOI":"10.5194\/acp-20-12813-2020","article-title":"Detection and attribution of wildfire pollution in the Arctic and northern midlatitudes using a network of Fourier-Transform infrared spectrometers and GEOS-Chem","volume":"20","author":"Lutsch","year":"2020","journal-title":"Atmos. Chem. Phys."},{"key":"ref_23","unstructured":"(2021, November 29). Thule High Arctic Atmospheric Observatory (THAAO). Available online: https:\/\/www.thuleatmos-it.it\/."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Zielinski, T., Bolzacchini, E., Cataldi, M., Ferrero, L., Gra\u00dfl, S., Hansen, G., Mateos, D., Mazzola, M., Neuber, R., and Pakszys, P. (2020). Study of chemical and optical properties of biomass burning aerosols during long-range transport events toward the arctic in summer 2017. Atmosphere, 11.","DOI":"10.3390\/atmos11010084"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1038\/s41612-018-0039-3","article-title":"Wildfire-driven thunderstorms cause a volcano-like stratospheric injection of smoke","volume":"1","author":"Peterson","year":"2018","journal-title":"npj Clim. Atmos. Sci."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Christian, K., Yorks, J., and Das, S. (2020). Differences in the evolution of pyrocumulonimbus and volcanic stratospheric plumes as observed by cats and caliop space-based lidars. Atmosphere, 11.","DOI":"10.3390\/atmos11101035"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"12069","DOI":"10.5194\/acp-21-12069-2021","article-title":"The long-term transport and radiative impacts of the 2017 British Columbia pyrocumulonimbus smoke aerosols in the stratosphere","volume":"21","author":"Das","year":"2021","journal-title":"Atmos. Chem. Phys."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"11831","DOI":"10.5194\/acp-18-11831-2018","article-title":"Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21\u201322 August 2017","volume":"18","author":"Ansmann","year":"2018","journal-title":"Atmos. Chem. Phys."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"8178","DOI":"10.1029\/2019JD030419","article-title":"Unprecedented Atmospheric Ammonia Concentrations Detected in the High Arctic From the 2017 Canadian Wildfires","volume":"124","author":"Lutsch","year":"2019","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"11847","DOI":"10.5194\/acp-18-11847-2018","article-title":"Depolarization and lidar ratios at 355, 532, and 1064 nm and microphysical properties of aged tropospheric and stratospheric Canadian wildfire smoke","volume":"18","author":"Haarig","year":"2018","journal-title":"Atmos. Chem. Phys."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1823","DOI":"10.1029\/92GL01887","article-title":"Observations of correlated behavior of stratospheric ozone and aerosol at Thule during winter 1991\u20131992","volume":"19","author":"Cacciani","year":"1992","journal-title":"Geophys. Res. Lett."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1814","DOI":"10.1175\/2009JTECHA1230.1","article-title":"Semiautonomous FTS Observation System for Remote Sensing of Stratospheric and Tropospheric Gases","volume":"26","author":"Hannigan","year":"2009","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_33","unstructured":"(2021, December 01). Network for the Detection of Atmospheric Composition Change (NDACC). Available online: ndacc-uvvis-wg.aeronomie.be\/tools\/NDACC_UVVIS-WG_NO2settings_v4.pdf."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0034-4257(98)00031-5","article-title":"AERONET\u2014A Federated Instrument Network and Data Archive for Aerosol Characterization","volume":"66","author":"Holben","year":"1998","journal-title":"Remote Sens. Environ."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/S0034-4257(00)00109-7","article-title":"Cloud-screening and quality control algorithms for the AERONET database","volume":"73","author":"Smirnov","year":"2000","journal-title":"Remote Sens. Environ."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"169","DOI":"10.5194\/amt-12-169-2019","article-title":"Advancements in the Aerosol Robotic Network (AERONET) Version 3 database\u2013automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements","volume":"12","author":"Giles","year":"2019","journal-title":"Atmos. Meas. Tech."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"2429","DOI":"10.1002\/2013JD020309","article-title":"Observed influence of liquid cloud microphysical properties on ultraviolet surface radiation","volume":"119","author":"Mateos","year":"2014","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"140511","DOI":"10.1016\/j.scitotenv.2020.140511","article-title":"New insights on metals in the Arctic aerosol in a climate changing world","volume":"741","author":"Becagli","year":"2020","journal-title":"Sci. Total Environ."},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Winker, D.M., Pelon, J.R., and McCormick, M.P. (2003). The CALIPSO mission: Spaceborne lidar for observation of aerosols and clouds. Lidar Remote Sensing for Industry and Environment Monitoring III, International Society for Optics and Photonics.","DOI":"10.1117\/12.466539"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"73","DOI":"10.5194\/amt-5-73-2012","article-title":"Aerosol classification using airborne High Spectral Resolution Lidar measurements\u2014Methodology and examples","volume":"5","author":"Burton","year":"2012","journal-title":"Atmos. Meas. Tech."},{"key":"ref_41","unstructured":"Platnick, S., King, M., and Hubanks, P. (2015). MODIS Atmosphere L3 Daily Product, NASA MODIS Adaptive Processing System, Goddard Space Flight Center."},{"key":"ref_42","unstructured":"Schaaf, C., and Wang, Z. (2015). MCD43A3 MODIS\/Terra+Aqua BRDF\/Albedo Daily L3 Global\u2014500 m V006 [Data Set], USGS."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2004GL021180","article-title":"A parameterization of ocean surface albedo","volume":"31","author":"Jin","year":"2004","journal-title":"Geophys. Res. Lett."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., and van den Bosch, J. (2014). MODTRAN6: A major upgrade of the MODTRAN radiative transfer code. Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery, SPIE.","DOI":"10.1117\/12.2050433"},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"McClatchey, R.A., Fenn, R., Selby, J., Volz, F., and Garing, J. (1972). Optical Properties of the Atmosphere, Air Force Systems Command, United States Air Force. [3rd ed.]. Environmental Research Papers.","DOI":"10.21236\/AD0726116"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"3972","DOI":"10.1364\/AO.45.003972","article-title":"Prelaunch characterization of the Ozone Monitoring Instrument transfer function in the spectral domain","volume":"45","author":"Dirksen","year":"2006","journal-title":"Appl. Opt."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"590","DOI":"10.1175\/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2","article-title":"Variability of absorption and optical properties of key aerosol types observed in worldwide locations","volume":"59","author":"Dubovik","year":"2002","journal-title":"J. Atmos. Sci."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"179","DOI":"10.5194\/amt-10-179-2017","article-title":"Radiative characteristics of aerosol during extreme fire event over Siberia in Summer 2012","volume":"10","author":"Zhuravleva","year":"2017","journal-title":"Atmos. Meas. Tech."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"2597","DOI":"10.5194\/tc-13-2597-2019","article-title":"The surface albedo of the Greenland Ice Sheet between 1982 and 2015 from the CLARA-A2 dataset and its relationship to the ice sheet\u2019s surface mass balance","volume":"13","author":"King","year":"2019","journal-title":"Cryosphere"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"2227","DOI":"10.5194\/acp-15-2227-2015","article-title":"Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models","volume":"15","author":"Viatte","year":"2015","journal-title":"Atmos. Chem. Phys."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.atmosenv.2017.02.037","article-title":"Morphochemical characteristics and mixing state of long range transported wildfire particles at Ny-\u00c5lesund (Svalbard Islands)","volume":"156","author":"Moroni","year":"2017","journal-title":"Atmos. Environ."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.atmosenv.2018.04.033","article-title":"Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber","volume":"185","author":"Kalogridis","year":"2018","journal-title":"Atmos. Environ."},{"key":"ref_53","unstructured":"Bowen, H.J.M. (1979). Environmental Chemistry of the Elements, Academic Press."},{"key":"ref_54","first-page":"D14S16","article-title":"Radiative impact of boreal smoke in the Arctic: Observed and modeled","volume":"113","author":"Stone","year":"2008","journal-title":"J. Geophys. Res."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"953","DOI":"10.1007\/s00382-011-1280-1","article-title":"Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic","volume":"39","author":"Eriksen","year":"2012","journal-title":"Clim. Dyn."},{"key":"ref_56","unstructured":"(2021, November 29). Earth Polychromatic Imaging Camera (EPIC) UVAI, Available online: https:\/\/epic.gsfc.nasa.gov\/science\/products\/uv."},{"key":"ref_57","unstructured":"(2021, November 29). Ozone Mapping and Profiler Suite (OMPS) UVAI, Available online: https:\/\/acd-ext.gsfc.nasa.gov\/People\/Seftor\/OMPS_AI_August_2017.html."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1109\/MCSE.2017.3301549","article-title":"Introduction to PySPLIT: A Python Toolkit for NOAA ARL\u2019s HYSPLIT Model","volume":"20","author":"Warner","year":"2018","journal-title":"Comput. Sci. Eng."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/2\/313\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,24]],"date-time":"2024-07-24T09:37:10Z","timestamp":1721813830000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/14\/2\/313"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,1,11]]},"references-count":58,"journal-issue":{"issue":"2","published-online":{"date-parts":[[2022,1]]}},"alternative-id":["rs14020313"],"URL":"https:\/\/doi.org\/10.3390\/rs14020313","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,1,11]]}}}