{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T18:36:06Z","timestamp":1725993366506},"reference-count":66,"publisher":"MDPI AG","issue":"24","license":[{"start":{"date-parts":[[2021,12,7]],"date-time":"2021-12-07T00:00:00Z","timestamp":1638835200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"publisher","award":["2021R1C1C1012785"],"id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Environmental monitoring using satellite remote sensing is challenging because of data gaps in eddy-covariance (EC)-based in situ flux tower observations. In this study, we obtain the latent heat flux (LE) from an EC station and perform gap filling using two deep learning methods (two-dimensional convolutional neural network (CNN) and long short-term memory (LSTM) neural networks) and two machine learning (ML) models (support vector machine (SVM), and random forest (RF)), and we investigate their accuracies and uncertainties. The average model performance based on ~25 input and hysteresis combinations show that the mean absolute error is in an acceptable range (34.9 to 38.5 Wm\u22122), which indicates a marginal difference among the performances of the four models. In fact, the model performance is ranked in the following order: SVM > CNN > RF > LSTM. We conduct a robust analysis of variance and post-hoc tests, which yielded statistically insignificant results (p-value ranging from 0.28 to 0.76). This indicates that the distribution of means is equal within groups and among pairs, thereby implying similar performances among the four models. The time-series analysis and Taylor diagram indicate that the improved two-dimensional CNN captures the temporal trend of LE the best, i.e., with a Pearson\u2019s correlation of >0.87 and a normalized standard deviation of ~0.86, which are similar to those of in situ datasets, thereby demonstrating its superiority over other models. The factor elimination analysis reveals that the CNN performs better when specific meteorological factors are removed from the training stage. Additionally, a strong coupling between the hysteresis time factor and the accuracy of the ML models is observed.<\/jats:p>","DOI":"10.3390\/rs13244976","type":"journal-article","created":{"date-parts":[[2021,12,8]],"date-time":"2021-12-08T01:23:21Z","timestamp":1638926601000},"page":"4976","source":"Crossref","is-referenced-by-count":10,"title":["Gap-Filling Eddy Covariance Latent Heat Flux: Inter-Comparison of Four Machine Learning Model Predictions and Uncertainties in Forest Ecosystem"],"prefix":"10.3390","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0506-5180","authenticated-orcid":false,"given":"Muhammad Sarfraz","family":"Khan","sequence":"first","affiliation":[{"name":"Department of Civil Engineering, Chosun University, 309 Pilmun-daero, Gwangju 61452, Korea"}]},{"given":"Seung Bae","family":"Jeon","sequence":"additional","affiliation":[{"name":"Department of Civil Engineering, Chosun University, 309 Pilmun-daero, Gwangju 61452, Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4850-8121","authenticated-orcid":false,"given":"Myeong-Hun","family":"Jeong","sequence":"additional","affiliation":[{"name":"Department of Civil Engineering, Chosun University, 309 Pilmun-daero, Gwangju 61452, Korea"}]}],"member":"1968","published-online":{"date-parts":[[2021,12,7]]},"reference":[{"key":"ref_1","unstructured":"Brutsaert, W. (2013). Evaporation into the Atmosphere: Theory, History and Applications, Springer Science & Business Media."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/0168-1923(95)02265-Y","article-title":"Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature","volume":"77","author":"Norman","year":"1995","journal-title":"Agric. For. Meteorol."},{"key":"ref_3","unstructured":"Anemone, R.L. (2018). Ongoing Developments in Geospatial Data, Software, and Hardware with Prospects for Anthropological Applications, University of New Mexico Press."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"58","DOI":"10.3389\/fsufs.2020.00058","article-title":"Remote sensing products and services in support of agricultural public policies in Africa: Overview and challenges","volume":"4","author":"Leroux","year":"2020","journal-title":"Front. Sustain. Food Syst."},{"key":"ref_5","unstructured":"UN-GGIM (2013). UN-GGIM (UN-Global Geospatial Information Management) Inter-Agency and Expert Group on the Sustainable Development Goal Indicators (IAEG-SDGS) Working Group Report on Geospatial Information, United Nations."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1029\/2008EO260001","article-title":"Thermal remote sensing of drought and evapotranspiration","volume":"89","author":"Anderson","year":"2008","journal-title":"Eos Trans. Am. Geophys. Union"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"111594","DOI":"10.1016\/j.rse.2019.111594","article-title":"Evolution of evapotranspiration models using thermal and shortwave remote sensing data","volume":"237","author":"Chen","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"126176","DOI":"10.1016\/j.jhydrol.2021.126176","article-title":"Generation of spatio-temporally continuous evapotranspiration and its components by coupling a two-source energy balance model and a deep neural network over the Heihe River Basin","volume":"597","author":"Cui","year":"2021","journal-title":"J. Hydrol."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"2618","DOI":"10.1002\/2016WR020175","article-title":"The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources","volume":"53","author":"Fisher","year":"2017","journal-title":"Water Resour. Res."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"834","DOI":"10.1002\/wat2.1168","article-title":"A review of remote sensing based actual evapotranspiration estimation","volume":"3","author":"Zhang","year":"2016","journal-title":"Wiley Interdiscip. Rev. Water"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1732","DOI":"10.1016\/j.asr.2021.04.017","article-title":"An improved remote sensing based approach for predicting actual Evapotranspiration by integrating LiDAR","volume":"68","author":"Khan","year":"2021","journal-title":"Adv. Space Res."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"2263","DOI":"10.1029\/2000WR900033","article-title":"Surface flux estimation using radiometric temperature: A dual-temperature-difference method to minimize measurement errors","volume":"36","author":"Norman","year":"2000","journal-title":"Water Resour. Res."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"108582","DOI":"10.1016\/j.agrformet.2021.108582","article-title":"DNN-MET: A deep neural networks method to integrate satellite-derived evapotranspiration products, eddy covariance observations and ancillary information","volume":"308","author":"Shang","year":"2021","journal-title":"Agric. For. Meteorol."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1016\/S0168-1923(00)00199-4","article-title":"A comparison of methods for determining forest evapotranspiration and its components: Sap-flow, soil water budget, eddy covariance and catchment water balance","volume":"106","author":"Wilson","year":"2001","journal-title":"Agric. For. Meteorol."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"126135","DOI":"10.1016\/j.jhydrol.2021.126135","article-title":"Upscaling evapotranspiration from the instantaneous to the daily time scale: Assessing six methods including an optimized coefficient based on worldwide eddy covariance flux network","volume":"596","author":"Jiang","year":"2021","journal-title":"J. Hydrol."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Wang, L., Wu, B., Elnashar, A., Zeng, H., Zhu, W., and Yan, N. (2021). Synthesizing a Regional Territorial Evapotranspiration Dataset for Northern China. Remote Sens., 13.","DOI":"10.3390\/rs13061076"},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Delogu, E., Olioso, A., Alli\u00e8s, A., Demarty, J., and Boulet, G. (2021). Evaluation of Multiple Methods for the Production of Continuous Evapotranspiration Estimates from TIR Remote Sensing. Remote Sens., 13.","DOI":"10.3390\/rs13061086"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.agrformet.2018.01.022","article-title":"Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach","volume":"252","author":"Khan","year":"2018","journal-title":"Agric. For. Meteorol."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.asr.2020.04.037","article-title":"Inter-comparison of evapotranspiration datasets over heterogeneous landscapes across Australia","volume":"66","author":"Khan","year":"2020","journal-title":"Adv. Space Res."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Nisa, Z., Khan, M.S., Govind, A., Marchetti, M., Lasserre, B., Magliulo, E., and Manco, A. (2021). Evaluation of SEBS, METRIC-EEFlux, and QWaterModel Actual Evapotranspiration for a Mediterranean Cropping System in Southern Italy. Agronomy, 11.","DOI":"10.3390\/agronomy11020345"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/S0168-1923(00)00225-2","article-title":"Gap filling strategies for defensible annual sums of net ecosystem exchange","volume":"107","author":"Falge","year":"2001","journal-title":"Agric. For. Meteorol."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1707","DOI":"10.1111\/j.1365-2486.2006.01227.x","article-title":"A semi-parametric gap-filling model for eddy covariance CO2 flux time series data","volume":"12","author":"Stauch","year":"2006","journal-title":"Glob. Chang. Biol."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/S0168-1923(03)00158-8","article-title":"Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations","volume":"121","author":"Hui","year":"2004","journal-title":"Agric. For. Meteorol."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"677","DOI":"10.1007\/s00704-019-02975-w","article-title":"Recommendations for gap-filling eddy covariance latent heat flux measurements using marginal distribution sampling","volume":"139","author":"Fischer","year":"2020","journal-title":"Theor. Appl. Climatol."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"100036","DOI":"10.1016\/j.ifacsc.2019.100036","article-title":"Net Ecosystem Exchange (NEE) simulation in maize using artificial neural networks","volume":"7","author":"Safa","year":"2019","journal-title":"IFAC J. Syst. Control"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Cui, Y., Ma, S., Yao, Z., Chen, X., Luo, Z., Fan, W., and Hong, Y. (2020). Developing a gap-filling algorithm using DNN for the Ts-VI triangle model to obtain temporally continuous daily actual evapotranspiration in an arid area of China. Remote Sens., 12.","DOI":"10.3390\/rs12071121"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"5015","DOI":"10.5194\/bg-15-5015-2018","article-title":"Basic and extensible post-processing of eddy covariance flux data with REddyProc","volume":"15","author":"Wutzler","year":"2018","journal-title":"Biogeosciences"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1038\/s41597-020-0534-3","article-title":"The FLUXNET2015 dataset and the ONEFlux processing pipeline for eddy covariance data","volume":"7","author":"Pastorello","year":"2020","journal-title":"Sci. Data"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/S0304-3800(99)00101-5","article-title":"Water and carbon fluxes above European coniferous forests modelled with artificial neural networks","volume":"120","author":"Bouten","year":"1999","journal-title":"Ecol. Model."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1007\/s10546-007-9249-7","article-title":"Gap Filling and Quality Assessment of CO2 and Water Vapour Fluxes above an Urban Area with Radial Basis Function Neural Networks","volume":"126","author":"Schmidt","year":"2008","journal-title":"Bound.-Layer Meteorol."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.agrformet.2007.08.011","article-title":"Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes","volume":"147","author":"Moffat","year":"2007","journal-title":"Agric. For. Meteorol."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Sun, H., and Xu, Q. (2021). Evaluating Machine Learning and Geostatistical Methods for Spatial Gap-Filling of Monthly ESA CCI Soil Moisture in China. Remote Sens., 13.","DOI":"10.3390\/rs13142848"},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Sarafanov, M., Kazakov, E., Nikitin, N.O., and Kalyuzhnaya, A.V. (2020). A Machine Learning Approach for Remote Sensing Data Gap-Filling with Open-Source Implementation: An Example Regarding Land Surface Temperature, Surface Albedo and NDVI. Remote Sens., 12.","DOI":"10.3390\/rs12233865"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"3590","DOI":"10.1121\/1.5133944","article-title":"Machine learning in acoustics: Theory and applications","volume":"146","author":"Bianco","year":"2019","journal-title":"J. Acoust. Soc. Am."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"2345","DOI":"10.1109\/TCAD.2020.3040078","article-title":"Pin accessibility prediction and optimization with deep learning-based pin pattern recognition","volume":"40","author":"Yu","year":"2020","journal-title":"IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Peppert, F., von Kleist, M., Sch\u00fctte, C., and Sunkara, V. (2021). On the sufficient condition for solving the gap-filling problem using deep convolutional neural networks. IEEE Trans. Neural Netw. Learn. Syst.","DOI":"10.1109\/TNNLS.2021.3072746"},{"key":"ref_37","unstructured":"Nguyen, P., and Halem, M. (2019). Deep Learning Models for Predicting CO2 Flux Employing Multivariate Time Series, Mile TS."},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Huang, I., and Hsieh, C.-I. (2020). Gap-Filling of Surface Fluxes Using Machine Learning Algorithms in Various Ecosystems. Water, 12.","DOI":"10.3390\/w12123415"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"39","DOI":"10.5532\/KJAFM.2009.11.1.039","article-title":"Seasonal variations of evapotranspiration observed in a mixed forest in the Seolmacheon catchment","volume":"11","author":"Kwon","year":"2009","journal-title":"Korean J. Agric. For. Meteorol."},{"key":"ref_40","first-page":"8026","article-title":"Pytorch: An imperative style, high-performance deep learning library","volume":"32","author":"Paszke","year":"2019","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Chirodea, M.C., Novac, O.C., Novac, C.M., Bizon, N., Oproescu, M., and Gordan, C.E. (2021, January 1\u20133). Comparison of Tensorflow and PyTorch in Convolutional Neural Network-based Applications. Proceedings of the 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Pitesti, Romania.","DOI":"10.1109\/ECAI52376.2021.9515098"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"916","DOI":"10.1080\/03650340.2017.1414196","article-title":"Estimation of daily reference evapotranspiration by neuro computing techniques using limited data in a semi-arid environment","volume":"64","author":"Banda","year":"2018","journal-title":"Arch. Agron. Soil Sci."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"256","DOI":"10.1016\/j.proenv.2011.12.040","article-title":"A method of SVM with normalization in intrusion detection","volume":"11","author":"Liu","year":"2011","journal-title":"Procedia Environ. Sci."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Albawi, S., Mohammed, T.A., and Al-Zawi, S. (2017, January 21\u201323). Understanding of a convolutional neural network. Proceedings of the 2017 International Conference on Engineering and Technology (ICET), Antalya, Turkey.","DOI":"10.1109\/ICEngTechnol.2017.8308186"},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Kim, P. (2017). Convolutional neural network. MATLAB Deep Learning, Springer.","DOI":"10.1007\/978-1-4842-2845-6"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"1499","DOI":"10.1111\/gcb.14845","article-title":"Gap-filling approaches for eddy covariance methane fluxes: A comparison of three machine learning algorithms and a traditional method with principal component analysis","volume":"26","author":"Kim","year":"2020","journal-title":"Glob. Chang. Biol."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1109\/LGRS.2017.2780843","article-title":"A CFCC-LSTM model for sea surface temperature prediction","volume":"15","author":"Yang","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Jeong, M.-H., Lee, T.-Y., Jeon, S.-B., and Youm, M. (2021). Highway Speed Prediction Using Gated Recurrent Unit Neural Networks. Appl. Sci., 11.","DOI":"10.3390\/app11073059"},{"key":"ref_51","first-page":"4441","article-title":"Bus Travel Speed Prediction Using Long Short-term Memory Neural Network","volume":"32","author":"Jeon","year":"2020","journal-title":"Sens. Mater"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1735","DOI":"10.1162\/neco.1997.9.8.1735","article-title":"Long short-term memory","volume":"9","author":"Hochreiter","year":"1997","journal-title":"Neural Comput."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"2651","DOI":"10.1016\/j.rse.2010.06.002","article-title":"Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir","volume":"114","author":"Stech","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"e2019JD032364","DOI":"10.1029\/2019JD032364","article-title":"Hysteresis behavior of surface water fluxes in a hydrologic transition of an ephemeral Lake","volume":"125","author":"Cui","year":"2020","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"e2020GL091203","DOI":"10.1029\/2020GL091203","article-title":"Energy Imbalance and Evapotranspiration Hysteresis Under an Advective Environment: Evidence From Lysimeter, Eddy Covariance, and Energy Balance Modeling","volume":"48","author":"Dhungel","year":"2021","journal-title":"Geophys. Res. Lett."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1002\/2013JG002484","article-title":"The hysteretic evapotranspiration\u2014Vapor pressure deficit relation","volume":"119","author":"Zhang","year":"2014","journal-title":"J. Geophys. Res. Biogeosciences"},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Lin, R., Liu, S., Yang, M., Li, M., Zhou, M., and Li, S. (2015, January 17\u201321). Hierarchical recurrent neural network for document modeling. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal.","DOI":"10.18653\/v1\/D15-1106"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1080\/095400999116340","article-title":"A recurrent neural network that learns to count","volume":"11","author":"Rodriguez","year":"1999","journal-title":"Connect. Sci."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"7183","DOI":"10.1029\/2000JD900719","article-title":"Summarizing multiple aspects of model performance in a single diagram","volume":"106","author":"Taylor","year":"2001","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_60","first-page":"1525","article-title":"Root mean square error (RMSE) or mean absolute error (MAE)","volume":"7","author":"Chai","year":"2014","journal-title":"Geosci. Model Dev. Discuss."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Miller, R.G. (1997). Beyond ANOVA: Basics of Applied Statistics, CRC Press.","DOI":"10.1201\/b15236"},{"key":"ref_62","first-page":"21","article-title":"Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests","volume":"2","author":"Razali","year":"2011","journal-title":"J. Stat. Modeling Anal."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"3205","DOI":"10.1080\/01431160500306906","article-title":"The relationship between land surface temperature and NDVI with remote sensing: Application to Shanghai Landsat 7 ETM+ data","volume":"28","author":"Yue","year":"2007","journal-title":"Int. J. Remote Sens."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"1239","DOI":"10.1080\/02626667.2020.1739287","article-title":"Relative contribution of evapotranspiration and soil compaction to the fluctuation of catchment discharge: Case study from a plantation landscape","volume":"65","author":"Tarigan","year":"2020","journal-title":"Hydrol. Sci. J."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1080\/15481603.2020.1857625","article-title":"A physical-based two-source evapotranspiration model with Monin\u2013Obukhov similarity theory","volume":"58","author":"Khan","year":"2021","journal-title":"GIScience Remote Sens."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"D15107","DOI":"10.1029\/2006JD008351","article-title":"A simple method to estimate actual evapotranspiration from a combination of net radiation, vegetation index, and temperature","volume":"112","author":"Wang","year":"2007","journal-title":"J. Geophys. Res. Atmos."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/24\/4976\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,22]],"date-time":"2024-07-22T16:38:01Z","timestamp":1721666281000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/24\/4976"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,7]]},"references-count":66,"journal-issue":{"issue":"24","published-online":{"date-parts":[[2021,12]]}},"alternative-id":["rs13244976"],"URL":"https:\/\/doi.org\/10.3390\/rs13244976","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,12,7]]}}}