{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T09:10:43Z","timestamp":1722417043983},"reference-count":80,"publisher":"MDPI AG","issue":"23","license":[{"start":{"date-parts":[[2021,12,3]],"date-time":"2021-12-03T00:00:00Z","timestamp":1638489600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["42090013 & 41971288"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"China Postdoctoral Science Foundation under Grant","award":["2021M690424","41801237"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Canopy structure parameters (e.g., leaf area index (LAI)) are key variables of most climate and ecology models. Currently, satellite-observed reflectances at a few viewing angles are often directly used for vegetation structure parameter retrieval; therefore, the information content of multi-angular observations that are sensitive to canopy structure in theory cannot be sufficiently considered. In this study, we proposed a novel method to retrieve LAI based on modelled multi-angular reflectances at sufficient sun-viewing geometries, by linking the PROSAIL model with a kernel-driven Ross-Li bi-directional reflectance function (BRDF) model using the MODIS BRDF parameter product. First, BRDF sensitivity to the PROSAIL input parameters was investigated to reduce the insensitive parameters. Then, MODIS BRDF parameters were used to model sufficient multi-angular reflectances. By comparing these reference MODIS reflectances with simulated PROSAIL reflectances within the range of the sensitive input parameters in the same geometries, the optimal vegetation parameters were determined by searching the minimum discrepancies between them. In addition, a significantly linear relationship between the average leaf angle (ALA) and the coefficient of the volumetric scattering kernel of the Ross-Li model in the near-infrared band was built, which can narrow the search scope of the ALA and accelerate the retrieval. In the validation, the proposed method attains a higher consistency (root mean square error (RMSE) = 1.13, bias = \u22120.19, and relative RMSE (RRMSE) = 36.8%) with field-measured LAIs and 30-m LAI maps for crops than that obtained with the MODIS LAI product. The results indicate the vegetation inversion potential of sufficient multi-angular data and the ALA relationship, and this method presents promise for large-scale LAI estimation.<\/jats:p>","DOI":"10.3390\/rs13234911","type":"journal-article","created":{"date-parts":[[2021,12,6]],"date-time":"2021-12-06T08:10:38Z","timestamp":1638778238000},"page":"4911","source":"Crossref","is-referenced-by-count":6,"title":["Retrieval of Leaf Area Index by Linking the PROSAIL and Ross-Li BRDF Models Using MODIS BRDF Data"],"prefix":"10.3390","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1352-5143","authenticated-orcid":false,"given":"Xiaoning","family":"Zhang","sequence":"first","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China"},{"name":"Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China"},{"name":"College of Water Sciences, Beijing Normal University, Beijing 100875, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3701-0830","authenticated-orcid":false,"given":"Ziti","family":"Jiao","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China"},{"name":"Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China"}]},{"given":"Changsen","family":"Zhao","sequence":"additional","affiliation":[{"name":"College of Water Sciences, Beijing Normal University, Beijing 100875, China"}]},{"given":"Siyang","family":"Yin","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China"},{"name":"Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9477-9155","authenticated-orcid":false,"given":"Lei","family":"Cui","sequence":"additional","affiliation":[{"name":"School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China"}]},{"given":"Yadong","family":"Dong","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute of Chinese Academy of Sciences, Beijing 100101, China"}]},{"given":"Hu","family":"Zhang","sequence":"additional","affiliation":[{"name":"School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China"}]},{"given":"Jing","family":"Guo","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China"},{"name":"Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China"}]},{"given":"Rui","family":"Xie","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China"},{"name":"Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China"}]},{"given":"Sijie","family":"Li","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China"},{"name":"Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China"}]},{"given":"Zidong","family":"Zhu","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China"},{"name":"Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China"}]},{"given":"Yidong","family":"Tong","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Beijing Normal University, Beijing 100875, China"},{"name":"Beijing Engineering Research Center for Global Land Remote Sensing Products, Institute of Remote Sensing Science and Engineering, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China"}]}],"member":"1968","published-online":{"date-parts":[[2021,12,3]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"967","DOI":"10.1016\/j.scitotenv.2017.05.012","article-title":"Vegetation Dynamics and Responses to Climate Change and Human Activities in Central Asia","volume":"599\u2013600","author":"Jiang","year":"2017","journal-title":"Sci. Total. Environ."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/S0034-4257(96)00066-1","article-title":"Inversion of a Vegetation Reflectance Model with NOAA AVHRR Data","volume":"58","author":"Privette","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1126\/science.275.5299.502","article-title":"Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere","volume":"275","author":"Sellers","year":"1997","journal-title":"Science"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"3473","DOI":"10.1109\/JSTARS.2014.2328632","article-title":"Near Real-Time Vegetation Monitoring at Global Scale","volume":"7","author":"Verger","year":"2014","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1109\/TGRS.2013.2237780","article-title":"Use of General Regression Neural Networks for Generating the GLASS Leaf Area Index Product from Time-Series MODIS Surface Reflectance","volume":"52","author":"Xiao","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"G04003","DOI":"10.1029\/2012JG002084","article-title":"Retrospective Retrieval of Long-Term Consistent Global Leaf Area Index (1981\u20132011) from Combined AVHRR and MODIS Data","volume":"117","author":"Liu","year":"2012","journal-title":"J. Geophys. Res. Biogeosci."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Yan, K., Park, T., Yan, G., Chen, C., Yang, B., Liu, Z., Nemani, R.R., Knyazikhin, Y., and Myneni, R.B. (2016). Evaluation of MODIS LAI\/FPAR Product Collection 6. Part 1: Consistency and Improvements. Remote Sens., 8.","DOI":"10.3390\/rs8050359"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Yan, K., Park, T., Yan, G., Liu, Z., Yang, B., Chen, C., Nemani, R.R., Knyazikhin, Y., and Myneni, R.B. (2016). Evaluation of MODIS LAI\/FPAR Product Collection 6. Part 2: Validation and Intercomparison. Remote Sens., 8.","DOI":"10.3390\/rs8060460"},{"key":"ref_9","unstructured":"Baret, F., Weiss, M., Verger, A., and Smets, B. (2016). ATBD for LAI, FAPAR and FCOVER from PROBA-V Products at 300M Resolution (Geov3). IMAGINES_RP2.1_ATBD-LAI300m, Implementing Multi-scale AGricultural INdicators Exploiting Sentinels (ImagineS)."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2119","DOI":"10.1109\/TGRS.2017.2775247","article-title":"Generating Global Products of LAI and FPAR from SNPP-VIIRS Data: Theoretical Background and Implementation","volume":"56","author":"Yan","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Zhou, H.M., Wang, J.D., Liang, S.L., and Xiao, Z.Q. (2017). Extended Data-Based Mechanistic Method for Improving Leaf Area Index Time Series Estimation with Satellite Data. Remote Sens., 9.","DOI":"10.3390\/rs9060533"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"3178","DOI":"10.1109\/TGRS.2014.2370071","article-title":"A Framework for Consistent Estimation of Leaf Area Index, Fraction of Absorbed Photosynthetically Active Radiation, and Surface Albedo from MODIS Time-Series Data","volume":"53","author":"Xiao","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"20455","DOI":"10.1029\/92JD01411","article-title":"A Bidirectional Reflectance Model of the Earth\u2019s Surface for the Correction of Remote Sensing Data","volume":"97","author":"Roujean","year":"1992","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_14","first-page":"14","article-title":"Improved Estimation of Leaf Area Index and Leaf Chlorophyll Content of a Potato Crop Using Multi-Angle Spectral Data-Potential of Unmanned Aerial Vehicle Imagery","volume":"66","author":"Roosjen","year":"2018","journal-title":"Int. J. Appl. Earth Obs."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1080\/02757259409532205","article-title":"Sampling the Surface Bidirectional Reflectance Distribution Function (BRDF): 1. Evaluation of Current and Future Satellite Sensors","volume":"8","author":"Barnsley","year":"1994","journal-title":"Remote Sens. Rev."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1080\/014311600211000","article-title":"Theoretical Noise Sensitivity of BRDF and Albedo Retrieval from the EOS-MODIS and MISR Sensors with Respect to Angular Sampling","volume":"21","author":"Lucht","year":"2000","journal-title":"Int. J. Remote Sens."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Chen, A., Bian, L., and Liu, Y. (2007, January 25). Deriving Albedo over Cloudy Areas with Composite Inversion. Proceedings of the SPIE-The International Society for Optical Engineering, Nanjing, China.","DOI":"10.1117\/12.763606"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"21077","DOI":"10.1029\/95JD02371","article-title":"On the Derivation of Kernels for Kernel-Driven Models of Bidirectional Reflectance","volume":"100","author":"Wanner","year":"1995","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., and Limperis, T. (1977). Geometrical Considerations and Nomenclature for Reflectance, National Bureau of Standards.","DOI":"10.6028\/NBS.MONO.160"},{"key":"ref_20","first-page":"549","article-title":"Aqua and Terra MODIS Albedo and Reflectance Anisotropy Products","volume":"Volume 11","author":"Ramachandran","year":"2011","journal-title":"Land Remote Sensing and Global Environmental Change: NASA\u2019s Earth Observing System and the Science of ASTER and MODIS"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/S0034-4257(02)00091-3","article-title":"First Operational BRDF, Albedo Nadir Reflectance Products from MODIS","volume":"83","author":"Schaaf","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"31","DOI":"10.5194\/essd-9-31-2017","article-title":"A BRDF\u2013BPDF Database for the Analysis of Earth Target Reflectances","volume":"9","author":"Maignan","year":"2017","journal-title":"Earth Syst. Sci. Data."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.rse.2005.06.008","article-title":"Variability of Biome Reflectance Directional Signatures as Seen by POLDER","volume":"98","author":"Bacour","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"181","DOI":"10.1016\/j.rse.2017.10.031","article-title":"Evaluating Land Surface Albedo Estimation from Landsat MSS, TM, ETM Plus, and OLI Data Based on the Unified Direct Estimation Approach","volume":"204","author":"He","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1109\/TGRS.2013.2245670","article-title":"Direct-Estimation Algorithm for Mapping Daily Land-Surface Broadband Albedo from MODIS Data","volume":"52","author":"Qu","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"136","DOI":"10.1109\/TGRS.2002.807751","article-title":"A Direct Algorithm for Estimating Land Surface Broadband Albedos from MODIS Imagery","volume":"41","author":"Liang","year":"2003","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1550","DOI":"10.1109\/TGRS.2019.2946598","article-title":"Development of the Direct-Estimation Albedo Algorithm for Snow-Free Landsat TM Albedo Retrievals Using Field Flux Measurements","volume":"58","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"3279","DOI":"10.1109\/JSTARS.2015.2414925","article-title":"An Algorithm for Retrieval of Surface Albedo from Small View-Angle Airborne Observations through the Use of BRDF Archetypes as Prior Knowledge","volume":"8","author":"Jiao","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1016\/j.rse.2018.02.041","article-title":"An Algorithm for the Retrieval of the Clumping Index (CI) from the MODIS BRDF Product Using an Adjusted Version of the Kernel-Driven BRDF Model","volume":"209","author":"Jiao","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"447","DOI":"10.1016\/j.rse.2005.05.003","article-title":"Global Mapping of Foliage Clumping Index Using Multi-Angular Satellite Data","volume":"97","author":"Chen","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.rse.2011.12.008","article-title":"Global Clumping Index Map Derived from the MODIS BRDF Product","volume":"119","author":"He","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.isprsjprs.2014.11.004","article-title":"Intercomparison of Clumping Index Estimates from POLDER, MODIS, and MISR Satellite Data over Reference Sites","volume":"101","author":"Pisek","year":"2015","journal-title":"ISPRS J. Photogramm."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1016\/j.rse.2016.10.039","article-title":"Estimation of Canopy Clumping Index from MISR and MODIS Sensors Using the Normalized Difference Hotspot and Darkspot (NDHD) Method: The Influence of BRDF Models and Solar Zenith Angle","volume":"187","author":"Wei","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"2122","DOI":"10.1109\/TGRS.2011.2172213","article-title":"Foliage Clumping Index over China\u2019s Landmass Retrieved from the MODIS BRDF Parameters Product","volume":"50","author":"Zhu","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1595","DOI":"10.1016\/j.rse.2011.02.010","article-title":"Retrieval of Canopy Height Using Moderate-Resolution Imaging Spectroradiometer (MODIS) Data","volume":"115","author":"Wang","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Cui, L., Jiao, Z., Dong, Y., Sun, M., Zhang, X., Yin, S., Ding, A., Chang, Y., Guo, J., and Xie, R. (2019). Estimating Forest Canopy Height Using MODIS BRDF Data Emphasizing Typical-Angle Reflectances. Remote Sens., 11.","DOI":"10.3390\/rs11192239"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.rse.2015.12.005","article-title":"A Combined GLAS and MODIS Estimation of the Global Distribution of Mean Forest Canopy Height","volume":"174","author":"Wang","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.rse.2018.06.022","article-title":"Fractional Vegetation Cover Estimation by Using Multi-Angle Vegetation Index","volume":"216","author":"Mu","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"8048","DOI":"10.1109\/TGRS.2019.2917923","article-title":"Assessment of the Hotspot Effect for the PROSAIL Model with POLDER Hotspot Observations Based on the Hotspot-Enhanced Kernel-Driven BRDF Model","volume":"57","author":"Dong","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1016\/j.rse.2016.08.007","article-title":"A Method for Improving Hotspot Directional Signatures in BRDF Models Used for MODIS","volume":"186","author":"Jiao","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.isprsjprs.2018.03.005","article-title":"Derivation of Global Vegetation Biophysical Parameters from Eumetsat Polar System","volume":"139","author":"Laparra","year":"2018","journal-title":"ISPRS J. Photogramm."},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Zhang, X., Jiao, Z., Dong, Y., Zhang, H., Li, Y., He, D., Ding, A., Yin, S., Cui, L., and Chang, Y. (2018). Potential Investigation of Linking PROSAIL with the Ross-Li BRDF Model for Vegetation Characterization. Remote Sens., 10.","DOI":"10.3390\/rs10030437"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"3030","DOI":"10.1016\/j.rse.2008.02.012","article-title":"PROSPECT-4 and 5: Advances in the Leaf Optical Properties Model Separating Photosynthetic Pigments","volume":"112","author":"Feret","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"1808","DOI":"10.1109\/TGRS.2007.895844","article-title":"Unified Optical-Thermal Four-Stream Radiative Transfer Theory for Homogeneous Vegetation Canopies","volume":"45","author":"Verhoef","year":"2007","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.rse.2008.01.026","article-title":"PROSPECT+SAIL Models: A Review of Use for Vegetation Characterization","volume":"113","author":"Jacquemoud","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"1730","DOI":"10.1109\/JSTARS.2013.2261474","article-title":"LAI Retrieval Using PROSAIL Model and Optimal Angle Combination of Multi-Angular Data in Wheat","volume":"6","author":"Wang","year":"2013","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1016\/j.isprsjprs.2008.04.004","article-title":"Evaluation of MODIS Surface Reflectance Products for Wheat Leaf Area Index (LAI) Retrieval","volume":"63","author":"Yi","year":"2008","journal-title":"ISPRS J. Photogramm."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1491","DOI":"10.1109\/36.934080","article-title":"Scaling-Up and Model Inversion Methods with Narrowband Optical Indices for Chlorophyll Content Estimation in Closed Forest Canopies with Hyperspectral Data","volume":"39","author":"Miller","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"32239","DOI":"10.1029\/98JD02461","article-title":"Estimation of Vegetation Canopy Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation from Atmosphere-Corrected MISR Data","volume":"103","author":"Knyazikhin","year":"1998","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/0034-4257(95)00238-3","article-title":"Estimating Leaf Biochemistry Using the PROSPECT Leaf Optical Properties Model","volume":"56","author":"Jacquemoud","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1080\/00401706.1999.10485594","article-title":"A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output","volume":"41","author":"Saltelli","year":"1999","journal-title":"Technometrics"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"4014","DOI":"10.1109\/TGRS.2013.2278838","article-title":"Sensitivity Analysis of Vegetation Reflectance to Biochemical and Biophysical Variables at Leaf, Canopy, and Regional Scales","volume":"52","author":"Xiao","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/S0034-4257(01)00240-1","article-title":"Design and Analysis of Numerical Experiments to Compare Four Canopy Reflectance Models","volume":"79","author":"Bacour","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.rse.2006.03.002","article-title":"Reflectance Quantities in Optical Remote Sensing-Definitions and Case Studies","volume":"103","author":"Schaepman","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"111377","DOI":"10.1016\/j.rse.2019.111377","article-title":"Validation of Global Moderate Resolution Leaf Area Index (LAI) Products Over Croplands in Northeastern China","volume":"233","author":"Fang","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"481","DOI":"10.1080\/02757250009532398","article-title":"BRDF Laboratory Measurements","volume":"18","author":"Sandmeier","year":"2000","journal-title":"Remote. Sens. Rev."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1109\/JSTARS.2012.2208264","article-title":"Analysis of BRDF and Albedo Retrieved by Kernel-Driven Models Using Field Measurements","volume":"6","author":"Huang","year":"2013","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2007GL032568","article-title":"Quality Assessment of BRDF\/Albedo Retrievals in MODIS Operational System","volume":"35","author":"Shuai","year":"2008","journal-title":"Geophys. Res. Lett."},{"key":"ref_59","first-page":"4159","article-title":"Consistency of MODIS Surface Bidirectional Reflectance Distribution Function and Albedo Retrievals: 2. Validation","volume":"108","author":"Jin","year":"2003","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/S0034-4257(97)00082-5","article-title":"Validation of Kernel-Driven Semiempirical Models for the Surface Bidirectional Reflectance Distribution Function of Land Surfaces","volume":"62","author":"Hu","year":"1997","journal-title":"Remote Sens. Environ."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"60","DOI":"10.1016\/j.rse.2013.08.025","article-title":"Evaluation of MODIS Albedo Product (MCD43A) over Grassland, Agriculture and Forest Surface Types During Dormant and Snow-Covered Periods","volume":"140","author":"Wang","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_62","first-page":"4158","article-title":"Consistency of MODIS Surface Bidirectional Reflectance Distribution Function and Albedo Retrievals: 1. Algorithm Performance","volume":"108","author":"Jin","year":"2003","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1016\/j.agrformet.2018.02.003","article-title":"Continuous Estimation of Canopy Leaf Area Index (LAI) and Clumping Index over Broadleaf Crop Fields: An Investigation of the PASTIS-57 Instrument and Smartphone Applications","volume":"253","author":"Fang","year":"2018","journal-title":"Agr. Forest Meteorol."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.agrformet.2014.08.005","article-title":"Seasonal Variation of Leaf Area Index (LAI) Over Paddy Rice Fields in NE China: Intercomparison of Destructive Sampling, LAI-2200, Digital Hemispherical Photography (DHP), and AccuPAR Methods","volume":"198","author":"Fang","year":"2014","journal-title":"Agr. Forest Meteorol."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.rse.2013.10.017","article-title":"An Anisotropic Flat Index (AFX) to Derive BRDF Archetypes from MODIS","volume":"141","author":"Jiao","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1051\/agro:2000105","article-title":"Investigation of a Model Inversion Technique to Estimate Canopy Biophysical Variables from Spectral and Directional Reflectance Data","volume":"20","author":"Weiss","year":"2000","journal-title":"Agronomie"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1016\/S0034-4257(00)00139-5","article-title":"Comparison of Four Radiative Transfer Models to Simulate Plant Canopies Reflectance: Direct and Inverse Mode","volume":"74","author":"Jacquemoud","year":"2000","journal-title":"Remote Sens. Environ."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"3789","DOI":"10.1029\/1998JD100042","article-title":"Sensitivity Analysis: Could Better Methods be Used?","volume":"104","author":"Saltelli","year":"1999","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"25907","DOI":"10.1029\/97JD02010","article-title":"A Hotspot Function in a Simple Bidirectional Reflectance Model for Satellite Applications","volume":"102","author":"Chen","year":"1997","journal-title":"J. Geophys. Res. Atmosph."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"328","DOI":"10.1016\/j.rse.2006.02.020","article-title":"Using Bi-Directional Soil Spectral Reflectance to Model Soil Surface Changes Induced by Rainfall and Wind-Tunnel Abrasion","volume":"102","author":"Chappell","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"ref_71","first-page":"1","article-title":"Validation of Moderate Resolution Imaging Spectroradiometer (MODIS) Albedo Retrieval Algorithm: Dependence of Albedo on Solar Zenith Angle","volume":"114","author":"Liu","year":"2009","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"9968","DOI":"10.1109\/TGRS.2020.3030948","article-title":"Assessment of Improved Ross-Li BRDF Models Emphasizing Albedo Estimates at Large Solar Angles Using POLDER Data","volume":"59","author":"Chang","year":"2021","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1016\/j.rse.2015.08.016","article-title":"The Fourth Phase of the Radiative Transfer Model Intercomparison (RAMI) Exercise: Actual Canopy Scenarios and Conformity Testing","volume":"169","author":"Widlowski","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0022-4073(01)00007-3","article-title":"A Two-Layer Canopy Reflectance Model","volume":"71","author":"Kuusk","year":"2001","journal-title":"J. Quant. Spectrosc. Ra."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1080\/02757250009532423","article-title":"A Windows Graphic User Interface (GUI) for the Five-Scale Model for Fast BRDF Simulations","volume":"19","author":"Leblanc","year":"2000","journal-title":"Remote. Sens. Rev."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"2640","DOI":"10.1109\/JSTARS.2017.2685528","article-title":"DART: Recent Advances in Remote Sensing Data Modeling with Atmosphere, Polarization, and Chlorophyll Fluorescence","volume":"10","author":"Lauret","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"695","DOI":"10.1016\/j.rse.2018.11.036","article-title":"LESS: Large-Scale Remote Sensing Data and Image Simulation Framework over Heterogeneous 3D Scenes","volume":"221","author":"Qi","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"20779","DOI":"10.1029\/93JD02071","article-title":"Coupled Surface-Atmosphere Reflectance (CSAR) Model. 1. Model Description and Inversion on Synthetic Data","volume":"98","author":"Rahman","year":"1993","journal-title":"J. Geophys. Res. Atmosph."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"2508","DOI":"10.1109\/36.789646","article-title":"A Conceptual Model for Effective Directional Emissivity from Nonisothermal Surfaces","volume":"37","author":"Li","year":"1999","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.rse.2013.01.013","article-title":"Rapid: A Radiosity Applicable to Porous Individual Objects for Directional Reflectance over Complex Vegetated Scenes","volume":"132","author":"Huang","year":"2013","journal-title":"Remote Sens. Environ."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/23\/4911\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,22]],"date-time":"2024-07-22T11:35:06Z","timestamp":1721648106000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/23\/4911"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,12,3]]},"references-count":80,"journal-issue":{"issue":"23","published-online":{"date-parts":[[2021,12]]}},"alternative-id":["rs13234911"],"URL":"https:\/\/doi.org\/10.3390\/rs13234911","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,12,3]]}}}