{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T19:03:23Z","timestamp":1735585403754},"reference-count":111,"publisher":"MDPI AG","issue":"22","license":[{"start":{"date-parts":[[2021,11,9]],"date-time":"2021-11-09T00:00:00Z","timestamp":1636416000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100007698","name":"University of Florida","doi-asserted-by":"publisher","award":["P0081941","00129098"],"id":[{"id":"10.13039\/100007698","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"This study evaluates the skills of two types of drone-based point clouds, derived from LiDAR and photogrammetric techniques, in estimating ground elevation, vegetation height, and vegetation density on a highly vegetated salt marsh. The proposed formulation is calibrated and tested using data measured on a Spartina alterniflora-dominated salt marsh in Little Sapelo Island, USA. The method produces high-resolution (ground sampling distance = 0.40 m) maps of ground elevation and vegetation characteristics and captures the large gradients in the proximity of tidal creeks. Our results show that LiDAR-based techniques provide more accurate reconstructions of marsh vegetation (height: MAEVH = 12.6 cm and RMSEVH = 17.5 cm; density: MAEVD = 6.9 stems m\u22122 and RMSEVD = 9.4 stems m\u22122) and morphology (MAEM = 4.2 cm; RMSEM = 5.9 cm) than Digital Aerial Photogrammetry (DAP) (MAEVH = 31.1 cm; RMSEVH = 38.1 cm; MAEVD = 12.7 stems m\u22122; RMSEVD = 16.6 stems m\u22122; MAEM = 11.3 cm; RMSEM = 17.2 cm). The accuracy of the classification procedure for vegetation calculation negligibly improves when RGB images are used as input parameters together with the LiDAR-UAV point cloud (MAEVH = 6.9 cm; RMSEVH = 9.4 cm; MAEVD = 10.0 stems m\u22122; RMSEVD = 14.0 stems m\u22122). However, it improves when used together with the DAP-UAV point cloud (MAEVH = 21.7 cm; RMSEVH = 25.8 cm; MAEVD = 15.2 stems m\u22122; RMSEVD = 18.7 stems m\u22122). Thus, we discourage using DAP-UAV-derived point clouds for high-resolution vegetation mapping of coastal areas, if not coupled with other data sources.<\/jats:p>","DOI":"10.3390\/rs13224506","type":"journal-article","created":{"date-parts":[[2021,11,10]],"date-time":"2021-11-10T02:39:07Z","timestamp":1636511947000},"page":"4506","source":"Crossref","is-referenced-by-count":26,"title":["Estimating Ground Elevation and Vegetation Characteristics in Coastal Salt Marshes Using UAV-Based LiDAR and Digital Aerial Photogrammetry"],"prefix":"10.3390","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6334-5792","authenticated-orcid":false,"given":"Daniele","family":"Pinton","sequence":"first","affiliation":[{"name":"Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32603, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3264-3169","authenticated-orcid":false,"given":"Alberto","family":"Canestrelli","sequence":"additional","affiliation":[{"name":"Department of Civil and Coastal Engineering, University of Florida, Gainesville, FL 32603, USA"}]},{"given":"Benjamin","family":"Wilkinson","sequence":"additional","affiliation":[{"name":"School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611, USA"}]},{"given":"Peter","family":"Ifju","sequence":"additional","affiliation":[{"name":"Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA"}]},{"given":"Andrew","family":"Ortega","sequence":"additional","affiliation":[{"name":"Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA"}]}],"member":"1968","published-online":{"date-parts":[[2021,11,9]]},"reference":[{"key":"ref_1","first-page":"EP061-0016","article-title":"Managing Dyke Retreat: Importance of Channel Network Evolution and Mainland Slope on Storm Surge Dissipation Over Salt Marshes","volume":"2020","author":"Pinton","year":"2020","journal-title":"AGU Fall Meeting"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1371","DOI":"10.1002\/lno.10104","article-title":"Observations of tidal and storm surge attenuation in a large tidal marsh","volume":"60","author":"Stark","year":"2015","journal-title":"Limnol. Oceanogr."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"460","DOI":"10.2307\/1351627","article-title":"Dependence of Fishery Species on Salt Marshes: The Role of Food and Refuge","volume":"7","author":"Boesch","year":"1984","journal-title":"Estuaries"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1890\/10-1510.1","article-title":"The value of estuarine and coastal ecosystem services","volume":"81","author":"Barbier","year":"2011","journal-title":"Ecol. Monogr."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Pendleton, L., Donato, D.C., Murray, B.C., Crooks, S., Jenkins, W.A., Sifleet, S., Craft, C.B., Fourqurean, J., Kauffman, J.B., and Marb\u00e0, N. (2012). Estimating Global \u201cBlue Carbon\u201d Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE, 7.","DOI":"10.1371\/journal.pone.0043542"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"453","DOI":"10.2307\/1310341","article-title":"Remote Sensing of Coastal Wetlands","volume":"36","author":"Hardisky","year":"1986","journal-title":"BioScience"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Alizad, K., Hagen, S.C., Medeiros, S.C., Bilskie, M.V., Morris, J.T., Balthis, L., and Buckel, C.A. (2018). Dynamic responses and implications to coastal wetlands and the surrounding regions under sea level rise. PLoS ONE, 13.","DOI":"10.1371\/journal.pone.0205176"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.ecoleng.2010.11.021","article-title":"Vegetation death and rapid loss of surface elevation in two contrasting Mississippi delta salt marshes: The role of sedimentation, autocompaction and sea-level rise","volume":"37","author":"Day","year":"2011","journal-title":"Ecol. Eng."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"78","DOI":"10.5670\/oceanog.2013.48","article-title":"Salt Marsh Primary Production and Its Responses to Relative Sea Level and Nutrients in Estuaries at Plum Island, Massachusetts, and North Inlet, South Carolina, USA","volume":"26","author":"Morris","year":"2013","journal-title":"Oceanography"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1038\/nclimate2909","article-title":"Overestimation of marsh vulnerability to sea level rise","volume":"6","author":"Kirwan","year":"2016","journal-title":"Nat. Clim. Chang."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Saintilan, N., Kovalenko, K., Guntenspergen, G., Rogers, K., Lynch, J., Cahoon, D., and Gamage, V.P. (2021). Global patterns and drivers of tidal marsh response to accelerating sea-level rise. Res. Sq., in review.","DOI":"10.21203\/rs.3.rs-363398\/v1"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"111676","DOI":"10.1016\/j.jenvman.2020.111676","article-title":"Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne LiDAR data in the City of St. John\u2019s, NL, Canada","volume":"280","author":"Mahdianpari","year":"2020","journal-title":"J. Environ. Manag."},{"key":"ref_13","unstructured":"US Census Bureau (2020, November 07). Coastline America No. June, Available online: https:\/\/www.census.gov\/library\/visualizations\/2019\/demo\/coastline-america.html."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1040","DOI":"10.1029\/2001WR001051","article-title":"On the drainage density of tidal networks","volume":"39","author":"Marani","year":"2003","journal-title":"Water Resour. Res."},{"key":"ref_15","first-page":"77","article-title":"The relationship between marsh surface topography, hydroperiod, and growth of Spartina alterniflora in a deteriorating Louisiana salt marsh","volume":"8","author":"Reed","year":"1992","journal-title":"J. Coast. Res."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"983","DOI":"10.1111\/j.1752-1688.1995.tb03414.x","article-title":"Comparison of bank erosion at vegetated and non-vegetated channel bends","volume":"31","author":"Beeson","year":"1995","journal-title":"JAWRA J. Am. Water Resour. Assoc."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.advwatres.2016.09.006","article-title":"A semi-empirical model to predict the probability of capture of buoyant particles by a cylindrical collector through capillarity","volume":"97","author":"Peruzzo","year":"2016","journal-title":"Adv. Water Resour."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"RG1002","DOI":"10.1029\/2011RG000359","article-title":"Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors","volume":"50","author":"Fagherazzi","year":"2012","journal-title":"Rev. Geophys."},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Pinton, D., Canestrelli, A., and Fantuzzi, L. (2020). A UAV-Based Dye-Tracking Technique to Measure Surface Velocities over Tidal Channels and Salt Marshes. J. Mar. Sci. Eng., 8.","DOI":"10.3390\/jmse8050364"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.coastaleng.2016.04.005","article-title":"Application and validation of a three-dimensional hydrodynamic model of a macrotidal salt marsh","volume":"114","author":"Ashall","year":"2016","journal-title":"Coast. Eng."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"7029","DOI":"10.1002\/2017WR020461","article-title":"Long-term morphodynamics of muddy backbarrier basins: Fill in or empty out?","volume":"53","author":"Mariotti","year":"2017","journal-title":"Water Resour. Res."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Bennett, W.G., Van Veelen, T.J., Fairchild, T.P., Griffin, J.N., and Karunarathna, H. (2020). Computational Modelling of the Impacts of Saltmarsh Management Interventions on Hydrodynamics of a Small Macro-Tidal Estuary. J. Mar. Sci. Eng., 8.","DOI":"10.3390\/jmse8050373"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"3687","DOI":"10.1002\/esp.4992","article-title":"A new algorithm for estimating ground elevation and vegetation characteristics in coastal salt marshes from high-resolution UAV-based LiDAR point clouds","volume":"45","author":"Pinton","year":"2020","journal-title":"Earth Surf. Process. Landforms"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"264","DOI":"10.1016\/j.rse.2014.09.035","article-title":"Evaluation of field-measured vertical obscuration and full waveform lidar to assess salt marsh vegetation biophysical parameters","volume":"156","author":"Rogers","year":"2015","journal-title":"Remote. Sens. Environ."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1029\/CE059p0005","article-title":"Salt-Marsh Vegetation and Morphology: Basic Physiology, Modelling and Remote Sensing Observations","volume":"Volume 59","author":"Silvestri","year":"2013","journal-title":"The Ecogeomorphology of Tidal Marshes"},{"key":"ref_26","unstructured":"Gross, M.F., Hardisky, M.A., and Klemas, V. (1989). Applications to coastal wetlands vegetation. Theory and Applications of Optical Remote Sensing, John Wiley Sons."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1039","DOI":"10.1890\/1051-0761(1997)007[1039:MPCSMU]2.0.CO;2","article-title":"Monitoring Pacific coast salt marshes using remote sensing","volume":"7","author":"Zhang","year":"1997","journal-title":"Ecol. Appl."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"920","DOI":"10.1002\/ecy.1730","article-title":"A survival guide to Landsat preprocessing","volume":"98","author":"Young","year":"2017","journal-title":"Ecology"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"012102","DOI":"10.1088\/1755-1315\/653\/1\/012102","article-title":"Crop stage classification using supervised algorithm based on UAV and Landsat 8 image","volume":"653","author":"Hardanto","year":"2021","journal-title":"IOP Conf. Ser. Earth Environ. Sci."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"5322","DOI":"10.1109\/JSTARS.2017.2746185","article-title":"Development of an Adaptive Approach for Precision Agriculture Monitoring with Drone and Satellite Data","volume":"10","author":"Murugan","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Guo, M., Li, J., Sheng, C., Xu, J., and Wu, L. (2017). A Review of Wetland Remote Sensing. Sensors, 17.","DOI":"10.3390\/s17040777"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1007\/s13157-011-0179-2","article-title":"Geographically Comprehensive Assessment of Salt-Meadow Vegetation-Elevation Relations Using LiDAR","volume":"31","author":"Moeslund","year":"2011","journal-title":"Wetlands"},{"key":"ref_33","unstructured":"Pinton, D., Canestrelli, A., Angelini, C., Wilkinson, B., Ifju, P., and Ortega, A. (2020, January 22\u201326). Estimating the spatial distribution of vegetation height and ground level elevation in a mesotidal salt marsh from UAV LiDAR derived point cloud. Proceedings of the GEOMORPHOMETRY, Perugia, Italy."},{"key":"ref_34","first-page":"115","article-title":"3D Shoreline Mapping Using an Unmanned Aerial Vehicle where","volume":"2018","author":"Uysal","year":"2018","journal-title":"FIG Congr."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"807","DOI":"10.1109\/JSTARS.2020.2973490","article-title":"Model Sensitivity to Topographic Uncertainty in Meso- and Microtidal Marshes","volume":"13","author":"Alizad","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_36","first-page":"1115004","article-title":"A low-cost small unmanned surface vehicle (sUSV) for very high-resolution mapping and monitoring of shallow marine habitats","volume":"11150","author":"Raber","year":"2019","journal-title":"Remote Sens. Ocean. Sea Ice Coast. Waters Large Water Reg."},{"key":"ref_37","first-page":"1207","article-title":"UAVs in Agriculture: Perceptions, Prospects, and \"Probably Not\"","volume":"1","author":"Engel","year":"2008","journal-title":"Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"105385","DOI":"10.1016\/j.compag.2020.105385","article-title":"An automatic method for weed mapping in oat fields based on UAV imagery","volume":"173","author":"Zrinjski","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"2971","DOI":"10.3390\/rs70302971","article-title":"Intercomparison of UAV, Aircraft and Satellite Remote Sensing Platforms for Precision Viticulture","volume":"7","author":"Matese","year":"2015","journal-title":"Remote Sens."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/j.ijleo.2017.10.016","article-title":"Estimating the height of wetland vegetation using airborne discrete-return LiDAR data","volume":"154","author":"Nie","year":"2018","journal-title":"Optik"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"112382","DOI":"10.1016\/j.rse.2021.112382","article-title":"Individual tree identification using a new cluster-based approach with discrete-return airborne LiDAR data","volume":"258","author":"Liu","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"112307","DOI":"10.1016\/j.rse.2021.112307","article-title":"Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach","volume":"256","author":"Yun","year":"2021","journal-title":"Remote Sens. Environ."},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Micha\u0142owska, M., and Rapi\u0144ski, J. (2021). A Review of Tree Species Classification Based on Airborne LiDAR Data and Applied Classifiers. Remote Sens., 13.","DOI":"10.3390\/rs13030353"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"118695","DOI":"10.1016\/j.foreco.2020.118695","article-title":"Airborne lidar provides reliable estimates of canopy base height and canopy bulk density in southwestern ponderosa pine forests","volume":"481","author":"Chamberlain","year":"2020","journal-title":"For. Ecol. Manag."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"G03005","DOI":"10.1029\/2009JG000972","article-title":"Analysis of airborne LiDAR surveys to quantify the characteristic morphologies of northern forested wetlands","volume":"115","author":"Richardson","year":"2010","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.rse.2013.10.020","article-title":"Wetland inundation mapping and change monitoring using Landsat and airborne LiDAR data","volume":"141","author":"Huang","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s13157-021-01422-9","article-title":"Mapping Vernal Pools Using LiDAR Data and Multitemporal Satellite Imagery","volume":"41","author":"Varin","year":"2021","journal-title":"Wetlands"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1672\/18-20","article-title":"Hyperspectral image data for mapping wetland vegetation","volume":"23","author":"Hirano","year":"2003","journal-title":"Wetlands"},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Wang, J., Liu, Z., Yu, H., and Li, F. (2017). Mapping Spartina alterniflora Biomass Using LiDAR and Hyperspectral Data. Remote Sens., 9.","DOI":"10.3390\/rs9060589"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"647","DOI":"10.1080\/10106049.2011.620179","article-title":"Integrating multispectral ASTER and LiDAR data to characterize coastal wetland landscapes in the northeastern United States","volume":"26","author":"Pavri","year":"2011","journal-title":"Geocarto Int."},{"key":"ref_51","first-page":"56","article-title":"Combined use of LiDAR data and multispectral earth observation imagery for wetland habitat mapping","volume":"37","author":"Rapinel","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"104665","DOI":"10.1016\/j.envsoft.2020.104665","article-title":"Deep learning Using Physically-Informed Input Data for Wetland Identification","volume":"126","author":"Goodall","year":"2020","journal-title":"Environ. Model. Softw."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.rse.2007.03.011","article-title":"Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis","volume":"111","author":"Bork","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1332","DOI":"10.1080\/01431161.2012.718463","article-title":"Distinguishing wetland vegetation and channel features with object-based image segmentation","volume":"34","author":"Moffett","year":"2012","journal-title":"Int. J. Remote Sens."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Schut, A.G.T., Wardell-Johnson, G.W., Yates, C.J., Keppel, G., Baran, I., Franklin, S.E., Hopper, S.D., Van Niel, K.P., Mucina, L., and Byrne, M. (2014). Rapid Characterisation of Vegetation Structure to Predict Refugia and Climate Change Impacts across a Global Biodiversity Hotspot. PLoS ONE, 9.","DOI":"10.1371\/journal.pone.0082778"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"108756","DOI":"10.1016\/j.measurement.2020.108756","article-title":"Filtering airborne LiDAR point clouds based on a scale-irrelevant and terrain-adaptive approach","volume":"171","author":"Chen","year":"2020","journal-title":"Measurement"},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Hartley, R., Leonardo, E., Massam, P., Watt, M., Estarija, H., Wright, L., Melia, N., and Pearse, G. (2020). An Assessment of High-Density UAV Point Clouds for the Measurement of Young Forestry Trials. Remote Sens., 12.","DOI":"10.3390\/rs12244039"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"96370A","DOI":"10.1117\/12.2194779","article-title":"Complementing airborne laser bathymetry with UAV-based lidar for capturing alluvial landscapes","volume":"9637","author":"Mandlburger","year":"2015","journal-title":"Remote Sens. Agric. Ecosyst. Hydrol."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1111\/j.1477-9730.2011.00647.x","article-title":"Terrestrial laser scan error in the presence of dense ground vegetation","volume":"26","author":"Coveney","year":"2011","journal-title":"Photogramm. Rec."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1111\/2041-210X.12157","article-title":"Creating vegetation density profiles for a diverse range of ecological habitats using terrestrial laser scanning","volume":"5","author":"Ashcroft","year":"2014","journal-title":"Methods Ecol. Evol."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1002\/esp.3787","article-title":"Assessing the performance of structure-from-motion photogrammetry and terrestrial LiDAR for reconstructing soil surface microtopography of naturally vegetated plots","volume":"41","author":"Nouwakpo","year":"2015","journal-title":"Earth Surf. Process. Landforms"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.rse.2017.06.023","article-title":"Structure from motion will revolutionize analyses of tidal wetland landscapes","volume":"199","author":"Kalacska","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.geomorph.2015.02.021","article-title":"A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology","volume":"242","author":"Gomez","year":"2015","journal-title":"Geomorphology"},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.compag.2018.10.005","article-title":"Unsupervised detection of vineyards by 3D point-cloud UAV photogrammetry for precision agriculture","volume":"155","author":"Comba","year":"2018","journal-title":"Comput. Electron. Agric."},{"key":"ref_65","first-page":"37","article-title":"Use of Photogrammetry in 3D modeling and visualization of buildings","volume":"2","author":"Shashi","year":"2007","journal-title":"J. Eng. Appl. Sci."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.rse.2016.05.019","article-title":"Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry","volume":"183","author":"Cunliffe","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"7538","DOI":"10.1080\/01431161.2019.1591651","article-title":"Unmanned aerial vehicle (UAV) derived structure-from-motion photogrammetry point clouds for oil palm (Elaeis guineensis) canopy segmentation and height estimation","volume":"40","author":"Fawcett","year":"2019","journal-title":"Int. J. Remote Sens."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"1087","DOI":"10.1080\/01431161.2012.717183","article-title":"Airborne photogrammetry and lidar for DSM extraction and 3D change detection over an urban area \u2013 a comparative study","volume":"34","author":"Stal","year":"2012","journal-title":"Int. J. Remote Sens."},{"key":"ref_69","doi-asserted-by":"crossref","unstructured":"James, M., and Robson, S. (2012). Straightforward reconstruction of 3D surfaces and topography with a camera: Accuracy and geoscience application. J. Geophys. Res. Space Phys., 117.","DOI":"10.1029\/2011JF002289"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1016\/j.isprsjprs.2012.08.006","article-title":"Forest variable estimation using a high-resolution digital surface model","volume":"74","author":"Pekkarinen","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"518","DOI":"10.3390\/f4030518","article-title":"The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning","volume":"4","author":"White","year":"2013","journal-title":"Forests"},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.rse.2019.01.029","article-title":"Comparison and integration of lidar and photogrammetric point clouds for mapping pre-fire forest structure","volume":"224","author":"Filippelli","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.apgeog.2019.02.002","article-title":"Comparison of leaf-off and leaf-on combined UAV imagery and airborne LiDAR for assessment of a post-mining site terrain and vegetation structure: Prospects for monitoring hazards and restoration success","volume":"104","author":"Fogl","year":"2019","journal-title":"Appl. Geogr."},{"key":"ref_74","doi-asserted-by":"crossref","unstructured":"Gatziolis, D., Lienard, J.F., Vogs, A., and Strigul, N.S. (2015). 3D Tree Dimensionality Assessment Using Photogrammetry and Small Unmanned Aerial Vehicles. PLoS ONE, 10.","DOI":"10.1101\/023259"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"1672","DOI":"10.1080\/17538947.2020.1791267","article-title":"Sensitivity analysis of parameters and contrasting performance of ground filtering algorithms with UAV photogrammetry-based and LiDAR point clouds","volume":"13","author":"Fogl","year":"2020","journal-title":"Int. J. Digit. Earth"},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"3343","DOI":"10.1080\/01431160701469040","article-title":"Mapping canopy height using a combination of digital stereo-photogrammetry and lidar","volume":"29","author":"Vega","year":"2008","journal-title":"Int. J. Remote Sens."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.rse.2019.03.027","article-title":"Comparing the accuracies of forest attributes predicted from airborne laser scanning and digital aerial photogrammetry in operational forest inventories","volume":"226","author":"Noordermeer","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"16030","DOI":"10.1117\/1.JRS.10.016030","article-title":"Comparison of mosaicking techniques for airborne images from consumer-grade cameras","volume":"10","author":"Song","year":"2016","journal-title":"J. Appl. Remote Sens."},{"key":"ref_79","doi-asserted-by":"crossref","unstructured":"DiGiacomo, A., Bird, C., Pan, V., Dobroski, K., Atkins-Davis, C., Johnston, D., and Ridge, J. (2020). Modeling Salt Marsh Vegetation Height Using Unoccupied Aircraft Systems and Structure from Motion. Remote Sens., 12.","DOI":"10.3390\/rs12142333"},{"key":"ref_80","first-page":"396","article-title":"A comparison between LiDAR and photogrammetry digital terrain models in a forest area on Tenerife Island","volume":"39","author":"Gil","year":"2013","journal-title":"Can. J. Remote Sens."},{"key":"ref_81","doi-asserted-by":"crossref","unstructured":"Cao, L., Liu, H., Fu, X., Zhang, Z., Shen, X., and Ruan, H. (2019). Comparison of UAV LiDAR and Digital Aerial Photogrammetry Point Clouds for Estimating Forest Structural Attributes in Subtropical Planted Forests. Forests, 10.","DOI":"10.3390\/f10020145"},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"461","DOI":"10.26471\/cjees\/2020\/015\/145","article-title":"The use of aerial lidar and structure from motion (sfm) photogrammetry data in analyzing microtopographic changes on hiking trails on the example of kielce (poland)","volume":"15","year":"2020","journal-title":"Carpathian J. Earth Environ. Sci."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"5211","DOI":"10.1080\/01431161.2018.1486519","article-title":"Comparison of ALS- and UAV(SfM)-derived high-density point clouds for individual tree detection in Eucalyptus plantations","volume":"39","author":"Cosenza","year":"2018","journal-title":"Int. J. Remote Sens."},{"key":"ref_84","doi-asserted-by":"crossref","unstructured":"Goodbody, T.R., Coops, N.C., Hermosilla, T., Tompalski, P., and Pelletier, G. (2018). Vegetation Phenology Driving Error Variation in Digital Aerial Photogrammetrically Derived Terrain Models. Remote Sens., 10.","DOI":"10.3390\/rs10101554"},{"key":"ref_85","doi-asserted-by":"crossref","unstructured":"Graham, A., Coops, N.C., Wilcox, M., and Plowright, A. (2019). Evaluation of Ground Surface Models Derived from Unmanned Aerial Systems with Digital Aerial Photogrammetry in a Disturbed Conifer Forest. Remote Sens., 11.","DOI":"10.3390\/rs11010084"},{"key":"ref_86","doi-asserted-by":"crossref","unstructured":"Guerra-Hern\u00e1ndez, J., Gonz\u00e1lez-Ferreiro, E., Monle\u00f3n, V.J., Faias, S.P., Tom\u00e9, M., and D\u00edaz-Varela, R.A. (2017). Use of Multi-Temporal UAV-Derived Imagery for Estimating Individual Tree Growth in Pinus pinea Stands. Forests, 8.","DOI":"10.3390\/f8080300"},{"key":"ref_87","doi-asserted-by":"crossref","unstructured":"Jensen, J.L.R., and Mathews, A.J. (2016). Assessment of Image-Based Point Cloud Products to Generate a Bare Earth Surface and Estimate Canopy Heights in a Woodland Ecosystem. Remote Sens., 8.","DOI":"10.3390\/rs8010050"},{"key":"ref_88","doi-asserted-by":"crossref","unstructured":"Doughty, C.L., and Cavanaugh, K.C. (2019). Mapping Coastal Wetland Biomass from High Resolution Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens., 11.","DOI":"10.3390\/rs11050540"},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1016\/j.rse.2013.08.003","article-title":"Salt marsh elevation and habitat mapping using hyperspectral and LIDAR data","volume":"139","author":"Hladik","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"88","DOI":"10.5670\/oceanog.2013.50","article-title":"Landscape Estimates of Habitat Types, Plant Biomass, and Invertebrate Densities in a Georgia Salt Marsh","volume":"26","author":"Schalles","year":"2013","journal-title":"Oceanography"},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2307\/3544339","article-title":"Productivity Gradients in Salt Marshes: The Response of Spartina alterniflora to Experimentally Manipulated Soil Water Movement","volume":"41","author":"Wiegert","year":"1983","journal-title":"Oikos"},{"key":"ref_92","doi-asserted-by":"crossref","unstructured":"Wang, D., Xin, X., Shao, Q., Brolly, M., Zhu, Z., and Chen, J. (2017). Modeling Aboveground Biomass in Hulunber Grassland Ecosystem by Using Unmanned Aerial Vehicle Discrete Lidar. Sensors, 17.","DOI":"10.3390\/s17010180"},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1002\/fld.4180","article-title":"A mass-conservative staggered immersed boundary model for solving the shallow water equations on complex geometries","volume":"81","author":"Canestrelli","year":"2015","journal-title":"Int. J. Numer. Methods Fluids"},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1016\/j.advwatres.2009.12.006","article-title":"Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed","volume":"33","author":"Canestrelli","year":"2010","journal-title":"Adv. Water Resour."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"3178","DOI":"10.1021\/ie049626e","article-title":"Genetic Programming for the Identification of Nonlinear Input\u2212Output Models","volume":"44","author":"Abonyi","year":"2005","journal-title":"Ind. Eng. Chem. Res."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/S0921-9366(06)80006-X","article-title":"Chapter 5 Genetic algorithms","volume":"Volume 4","author":"Yang","year":"1995","journal-title":"Advances in Exploration Geophysics"},{"key":"ref_97","unstructured":"Huang, B. (2017). Multicriteria Analysis. Comprehensive Geographic Information Systems, Elsevier."},{"key":"ref_98","doi-asserted-by":"crossref","unstructured":"Shen, X., Cao, L., Yang, B., Xu, Z., and Wang, G. (2019). Estimation of Forest Structural Attributes Using Spectral Indices and Point Clouds from UAS-Based Multispectral and RGB Imageries. Remote Sens., 11.","DOI":"10.3390\/rs11070800"},{"key":"ref_99","first-page":"W2","article-title":"Wetland grass to plantation forest\u2014Estimating vegetation height from the standard deviation of lidar frequency distributions","volume":"36","author":"Hopkinson","year":"2004","journal-title":"Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci."},{"key":"ref_100","doi-asserted-by":"crossref","unstructured":"Chen, S., McDermid, G.J., Castilla, G., and Linke, J. (2017). Measuring Vegetation Height in Linear Disturbances in the Boreal Forest with UAV Photogrammetry. Remote Sens., 9.","DOI":"10.3390\/rs9121257"},{"key":"ref_101","doi-asserted-by":"crossref","unstructured":"Miura, N., Yokota, S., Koyanagi, T.F., and Yamada, S. (2018, January 22\u201327). Herbaceous Vegetation Height Map on Riverdike Derived from UAV LiDAR Data. Proceedings of the IGARSS 2018\u20142018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain.","DOI":"10.1109\/IGARSS.2018.8517847"},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1016\/j.aquabot.2017.10.004","article-title":"Estimating Spartina alterniflora fractional vegetation cover and aboveground biomass in a coastal wetland using SPOT6 satellite and UAV data","volume":"144","author":"Zhou","year":"2018","journal-title":"Aquat. Bot."},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"4059","DOI":"10.3390\/f6114059","article-title":"Forest Parameter Prediction Using an Image-Based Point Cloud: A Comparison of Semi-ITC with ABA","volume":"6","author":"Rahlf","year":"2015","journal-title":"Forests"},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"9632","DOI":"10.3390\/rs70809632","article-title":"Inventory of Small Forest Areas Using an Unmanned Aerial System","volume":"7","author":"Puliti","year":"2015","journal-title":"Remote Sens."},{"key":"ref_105","first-page":"289","article-title":"Salt marsh communities","volume":"11","author":"Pennings","year":"2001","journal-title":"Mar. Community Ecol."},{"key":"ref_106","doi-asserted-by":"crossref","unstructured":"Weigert, R.G., and Freeman, B.J. (1990). Tidal Salt Marshes ofthe Southeast Atlantic Coast: A Community Profile.","DOI":"10.2172\/5032823"},{"key":"ref_107","doi-asserted-by":"crossref","unstructured":"Simpson, J.E., Smith, T.E.L., and Wooster, M.J. (2017). Assessment of Errors Caused by Forest Vegetation Structure in Airborne LiDAR-Derived DTMs. Remote Sens., 9.","DOI":"10.3390\/rs9111101"},{"key":"ref_108","doi-asserted-by":"crossref","unstructured":"Toma\u0161t\u00edk, J., Mokro\u0161, M., Salo\u0148, S., Chud\u00fd, F., and Tun\u00e1k, D. (2017). Accuracy of Photogrammetric UAV-Based Point Clouds under Conditions of Partially-Open Forest Canopy. Forests, 8.","DOI":"10.3390\/f8050151"},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"1144","DOI":"10.1080\/19475705.2017.1300608","article-title":"Estimating tree heights with images from an unmanned aerial vehicle","volume":"8","author":"Birdal","year":"2017","journal-title":"Geomat. Nat. Hazards Risk"},{"key":"ref_110","doi-asserted-by":"crossref","unstructured":"Mandlburger, G., Pfennigbauer, M., Schwarz, R., Fl\u00f6ry, S., and Nussbaumer, L. (2020). Concept and Performance Evaluation of a Novel UAV-Borne Topo-Bathymetric LiDAR Sensor. Remote Sens., 12.","DOI":"10.3390\/rs12060986"},{"key":"ref_111","first-page":"1299","article-title":"Integration of bathymetric and topographic Lidar: A preliminary investigation","volume":"XXXVII","author":"Quadros","year":"2008","journal-title":"Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. Beijing"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/22\/4506\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,21]],"date-time":"2024-07-21T09:28:09Z","timestamp":1721554089000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/22\/4506"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,11,9]]},"references-count":111,"journal-issue":{"issue":"22","published-online":{"date-parts":[[2021,11]]}},"alternative-id":["rs13224506"],"URL":"https:\/\/doi.org\/10.3390\/rs13224506","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,11,9]]}}}