{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:15:36Z","timestamp":1726762536162},"reference-count":90,"publisher":"MDPI AG","issue":"19","license":[{"start":{"date-parts":[[2021,9,30]],"date-time":"2021-09-30T00:00:00Z","timestamp":1632960000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Bavarian State Ministry of Science and the Arts","award":["no"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Droughts during the growing season are projected to increase in frequency and severity in Central Europe in the future. Thus, area-wide monitoring of agricultural drought in this region is becoming more and more important. In this context, it is essential to know where and when vegetation growth is primarily water-limited and whether remote sensing-based drought indices can detect agricultural drought in these areas. To answer these questions, we conducted a correlation analysis between the Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) within the growing season from 2001 to 2020 in Bavaria (Germany) and investigated the relationship with land cover and altitude. In the second step, we applied the drought indices Temperature Condition Index (TCI), Vegetation Condition Index (VCI), and Vegetation Health Index (VHI) to primarily water-limited areas and evaluated them with soil moisture and agricultural yield anomalies. We found that, especially in the summer months (July and August), on agricultural land and grassland and below 800 m, NDVI and LST are negatively correlated and thus, water is the primary limiting factor for vegetation growth here. Within these areas and periods, the TCI and VHI correlate strongly with soil moisture and agricultural yield anomalies, suggesting that both indices have the potential to detect agricultural drought in Bavaria.<\/jats:p>","DOI":"10.3390\/rs13193907","type":"journal-article","created":{"date-parts":[[2021,10,9]],"date-time":"2021-10-09T01:26:20Z","timestamp":1633742780000},"page":"3907","source":"Crossref","is-referenced-by-count":38,"title":["Agricultural Drought Detection with MODIS Based Vegetation Health Indices in Southeast Germany"],"prefix":"10.3390","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-9242-1456","authenticated-orcid":false,"given":"Simon","family":"Kloos","sequence":"first","affiliation":[{"name":"TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, 85354 Freising, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7370-3116","authenticated-orcid":false,"given":"Ye","family":"Yuan","sequence":"additional","affiliation":[{"name":"TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, 85354 Freising, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6157-9544","authenticated-orcid":false,"given":"Mariapina","family":"Castelli","sequence":"additional","affiliation":[{"name":"Institute for Earth Observation, Eurac Research, 39100 Bolzano-Bozen, Italy"}]},{"given":"Annette","family":"Menzel","sequence":"additional","affiliation":[{"name":"TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, 85354 Freising, Germany"},{"name":"Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany"}]}],"member":"1968","published-online":{"date-parts":[[2021,9,30]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1149","DOI":"10.1175\/1520-0477-83.8.1149","article-title":"A Review of Twentieth-Century Drought Indices Used in the United States","volume":"83","author":"Heim","year":"2002","journal-title":"Bull. Am. Meteor. Soc."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1002\/wcc.81","article-title":"Drought under global warming: A review","volume":"2","author":"Dai","year":"2011","journal-title":"WIREs Clim Chang."},{"key":"ref_3","unstructured":"Wilhite, D.A. (2000). Drought as a Natural Hazard: Concepts and Definitions. Drought: A Global Assessment, Routledge."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1080\/02508068508686328","article-title":"Understanding: The Drought Phenomenon: The Role of Definitions","volume":"10","author":"Wilhite","year":"1985","journal-title":"Water Int."},{"key":"ref_5","unstructured":"European Environment Agency (2021, May 21). Mapping the Impacts of Natural Hazards and Technological Accidents in Europe: An Overview of the Last Decade, Available online: https:\/\/www.eea.europa.eu\/publications\/mapping-the-impacts-of-natural."},{"key":"ref_6","unstructured":"DG Environment\u2014European Commission (2021, May 21). Water Scarcity and Droughts: Second Interim Report. Available online: https:\/\/ec.europa.eu\/environment\/water\/quantity\/pdf\/comm_droughts\/2nd_int_report.pdf."},{"key":"ref_7","unstructured":"Cammalleri, C., Naumann, G., Mentaschi, L., Formetta, G., Forzieri, G., Gosling, S., Bisselink, B., de Roo, A., and Feyen, L. (2020). Global Warming and Drought Impacts in the EU, Publications Office of the European Union."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"25001","DOI":"10.1088\/1748-9326\/aaa0b4","article-title":"Are Scots pine forest edges particularly prone to drought-induced mortality?","volume":"13","author":"Buras","year":"2018","journal-title":"Environ. Res. Lett."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.baae.2020.04.003","article-title":"A first assessment of the impact of the extreme 2018 summer drought on Central European forests","volume":"45","author":"Schuldt","year":"2020","journal-title":"Basic Appl. Ecol."},{"key":"ref_10","unstructured":"de Bono, A., Peduzzi, P., Kluser, S., and Giuliani, G. (2021, June 01). Impacts of Summer 2003 Heat Wave in Europe. Available online: https:\/\/archive-ouverte.unige.ch\/unige:32255."},{"key":"ref_11","unstructured":"Bavarian State Ministry for the Environment and Consumer Protection (2021, July 20). Klima-Report Bayern 2021: Klimawandel, Auswirkungen, Anpassungs- und Forschungsaktivit\u00e4ten. Available online: https:\/\/www.bestellen.bayern.de\/application\/eshop_app000000?SID=961655746&DIR=eshop&ACTIONxSETVAL(artdtl.htm,APGxNODENR:1325,AARTxNR:stmuv_klima_012,AARTxNODENR:358070,USERxBODYURL:artdtl.htm,KATALOG:StMUG,AKATxNAME:StMUG,ALLE:x)=X."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"5621","DOI":"10.5194\/hess-24-5621-2020","article-title":"The 2018 northern European hydrological drought and its drivers in a historical perspective","volume":"24","author":"Bakke","year":"2020","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1397","DOI":"10.5194\/hess-21-1397-2017","article-title":"The European 2015 drought from a climatological perspective","volume":"21","author":"Ionita","year":"2017","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1038\/nature02300","article-title":"The role of increasing temperature variability in European summer heatwaves","volume":"427","author":"Vidale","year":"2004","journal-title":"Nature"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"12207","DOI":"10.1038\/s41598-020-68872-9","article-title":"Increased future occurrences of the exceptional 2018-2019 Central European drought under global warming","volume":"10","author":"Hari","year":"2020","journal-title":"Sci. Rep."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.advwatres.2019.03.005","article-title":"Assessing seasonal drought variations and trends over Central Europe","volume":"127","author":"Ustrnul","year":"2019","journal-title":"Adv. Water Resour."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.gloplacha.2016.11.013","article-title":"Pan-European seasonal trends and recent changes of drought frequency and severity","volume":"148","author":"Spinoni","year":"2017","journal-title":"Glob. Planet. Chang."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"14045","DOI":"10.1038\/s41598-017-14283-2","article-title":"Observed drought indices show increasing divergence across Europe","volume":"7","author":"Stagge","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_19","first-page":"E690","article-title":"Long-term variability and trends in meteorological droughts in Western Europe (1851\u20132018)","volume":"41","author":"Murphy","year":"2021","journal-title":"Int. J. Climatol."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"3635","DOI":"10.1175\/JCLI-D-19-0084.1","article-title":"Future Global Meteorological Drought Hot Spots: A Study Based on CORDEX Data","volume":"33","author":"Spinoni","year":"2020","journal-title":"J. Clim."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1718","DOI":"10.1002\/joc.5291","article-title":"Will drought events become more frequent and severe in Europe?","volume":"38","author":"Spinoni","year":"2018","journal-title":"Int. J. Climatol."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1177","DOI":"10.1007\/s00382-017-3671-4","article-title":"Seasonal soil moisture and drought occurrence in Europe in CMIP5 projections for the 21st century","volume":"50","author":"Ruosteenoja","year":"2018","journal-title":"Clim. Dyn."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1245","DOI":"10.1016\/j.scitotenv.2019.01.001","article-title":"Increase in severe and extreme soil moisture droughts for Europe under climate change","volume":"660","author":"Grillakis","year":"2019","journal-title":"Sci. Total Environ."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"111291","DOI":"10.1016\/j.rse.2019.111291","article-title":"Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities","volume":"232","author":"West","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"604","DOI":"10.3934\/environsci.2016.4.604","article-title":"Remote sensing of agricultural drought monitoring: A state of art review","volume":"3","author":"Hazaymeh","year":"2016","journal-title":"AIMS Environ. Sci."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"452","DOI":"10.1002\/2014RG000456","article-title":"Remote sensing of drought: Progress, challenges and opportunities","volume":"53","author":"AghaKouchak","year":"2015","journal-title":"Rev. Geophys."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Afshar, M.H., Al-Yaari, A., and Yilmaz, M.T. (2021). Comparative Evaluation of Microwave L-Band VOD and Optical NDVI for Agriculture Drought Detection over Central Europe. Remote Sens., 13.","DOI":"10.3390\/rs13071251"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"34042","DOI":"10.1088\/1748-9326\/aaafda","article-title":"How well do meteorological indicators represent agricultural and forest drought across Europe?","volume":"13","author":"Bachmair","year":"2018","journal-title":"Environ. Res. Lett."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"271","DOI":"10.5194\/hess-14-271-2010","article-title":"Technical Note: Comparing and ranking soil drought indices performance over Europe, through remote-sensing of vegetation","volume":"14","author":"Peled","year":"2010","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"6021","DOI":"10.5194\/hess-24-6021-2020","article-title":"Anatomy of the 2018 agricultural drought in the Netherlands using in situ soil moisture and satellite vegetation indices","volume":"24","author":"Buitink","year":"2020","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"van Hateren, T.C., Chini, M., Matgen, P., and Teuling, A.J. (2021). Ambiguous Agricultural Drought: Characterising Soil Moisture and Vegetation Droughts in Europe from Earth Observation. Remote Sens., 13.","DOI":"10.3390\/rs13101990"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"33","DOI":"10.1175\/WCAS-D-17-0127.1","article-title":"Comparing the Hedging Effectiveness of Weather Derivatives Based on Remotely Sensed Vegetation Health Indices and Meteorological Indices","volume":"11","author":"Buchholz","year":"2019","journal-title":"Weather Clim. Soc."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1655","DOI":"10.5194\/bg-17-1655-2020","article-title":"Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003","volume":"17","author":"Buras","year":"2020","journal-title":"Biogeosciences"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"3519","DOI":"10.5194\/nhess-12-3519-2012","article-title":"Development of a Combined Drought Indicator to detect agricultural drought in Europe","volume":"12","author":"Horion","year":"2012","journal-title":"Nat. Hazards Earth Syst. Sci."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"5941","DOI":"10.1002\/joc.6557","article-title":"Czech Drought Monitor System for monitoring and forecasting agricultural drought and drought impacts","volume":"40","author":"Trnka","year":"2020","journal-title":"Int. J. Climatol."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Karnieli, A., Ohana-Levi, N., Silver, M., Paz-Kagan, T., Panov, N., Varghese, D., Chrysoulakis, N., and Provenzale, A. (2019). Spatial and Seasonal Patterns in Vegetation Growth-Limiting Factors over Europe. Remote Sens., 11.","DOI":"10.3390\/rs11202406"},{"key":"ref_37","unstructured":"LP DAAC (2021, April 13). MOD13Q1 v006: MODIS\/Terra Vegetation Indices 16-Day L3 Global 250 m SIN Grid, Available online: https:\/\/lpdaac.usgs.gov\/products\/mod13q1v006\/."},{"key":"ref_38","unstructured":"LP DAAC (2021, April 13). MOD11A2 v006: MODIS\/Terra Land Surface Temperature\/Emissivity 8-Day L3 Global 1 km SIN Grid, Available online: https:\/\/lpdaac.usgs.gov\/products\/mod11a2v006\/."},{"key":"ref_39","unstructured":"LP DAAC (2021, April 13). MCD12Q1 v006: MODIS\/Terra+Aqua Land Cover Type Yearly L3 Global 500 m SIN Grid, Available online: https:\/\/lpdaac.usgs.gov\/products\/mcd12q1v006\/."},{"key":"ref_40","unstructured":"European Environment Agency (2021, April 13). CLC 2018, Available online: https:\/\/land.copernicus.eu\/pan-european\/corine-land-cover\/clc2018?tab=metadata."},{"key":"ref_41","unstructured":"European Environment Agency (2021, April 13). EU-DEM v1.1, Available online: https:\/\/land.copernicus.eu\/imagery-in-situ\/eu-dem\/eu-dem-v1.1?tab=metadata."},{"key":"ref_42","unstructured":"UFZ Drought Monitor\/Helmholtz Centre for Environmental Research (2021, April 13). D\u00fcrremonitor Deutschland. Available online: https:\/\/www.ufz.de\/index.php?de=37937."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"74002","DOI":"10.1088\/1748-9326\/11\/7\/074002","article-title":"The German drought monitor","volume":"11","author":"Zink","year":"2016","journal-title":"Environ. Res. Lett."},{"key":"ref_44","unstructured":"Statistical Offices of the Federation and the States (2021, April 13). Ertr\u00e4ge ausgew\u00e4hlter landwirtschaftlicher Feldfr\u00fcchte\u2014Jahressumme\u2014regionale Tiefe: Kreise und krfr. St\u00e4dte, Available online: https:\/\/www.regionalstatistik.de\/genesis\/online?operation=previous&levelindex=2&levelid=1618314159666&levelid=1618314123639&step=1#abreadcrumb."},{"key":"ref_45","unstructured":"Bavarian State Office for Statistics (2021, April 13). Bodennutzung der landwirtschaftlichen Betriebe in Bayern 2016: Totalerhebung, Available online: https:\/\/www.statistik.bayern.de\/mam\/produkte\/veroffentlichungen\/statistische_berichte\/c1101c_201651_25313.pdf."},{"key":"ref_46","unstructured":"DWD Climate Data Center (2021, April 20). Phenological Observations of Crops from Sowing to Harvest (Annual Reporters, Historical). Available online: https:\/\/opendata.dwd.de\/climate_environment\/CDC\/observations_germany\/phenology\/annual_reporters\/crops\/historical\/."},{"key":"ref_47","unstructured":"Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. (1973). Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, Remote Sensing Centre, TEXAS A&M University."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/0034-4257(79)90013-0","article-title":"Red and photographic infrared linear combinations for monitoring vegetation","volume":"8","author":"Tucker","year":"1979","journal-title":"Remote Sens. Environ."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1016\/j.foreco.2016.06.027","article-title":"Review of broad-scale drought monitoring of forests: Toward an integrated data mining approach","volume":"380","author":"Norman","year":"2016","journal-title":"For. Ecol. Manag."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1139\/er-2013-0006","article-title":"Monitoring and estimating drought-induced impacts on forest structure, growth, function, and ecosystem services using remote-sensing data: Recent progress and future challenges","volume":"21","author":"Zhang","year":"2013","journal-title":"Environ. Rev."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/S0034-4257(03)00174-3","article-title":"Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices","volume":"87","author":"Ji","year":"2003","journal-title":"Remote Sens. Environ."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1029\/2008EO260001","article-title":"Thermal Remote Sensing of Drought and Evapotranspiration","volume":"89","author":"Anderson","year":"2008","journal-title":"Eos Trans. Am. Geophys. Union"},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Anderson, M.C., Norman, J.M., Mecikalski, J.R., Otkin, J.A., and Kustas, W.P. (2007). A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res., 112.","DOI":"10.1029\/2006JD007507"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1175\/2009JCLI2900.1","article-title":"Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations","volume":"23","author":"Karnieli","year":"2010","journal-title":"J. Clim."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Sun, D., and Kafatos, M. (2007). Note on the NDVI-LST relationship and the use of temperature-related drought indices over North America. Geophys. Res. Lett., 34.","DOI":"10.1029\/2007GL031485"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1007\/s10584-016-1730-1","article-title":"The El Ni\u00f1o\u2014La Ni\u00f1a cycle and recent trends in supply and demand of net primary productivity in African drylands","volume":"138","author":"Abdi","year":"2016","journal-title":"Clim. Chang."},{"key":"ref_57","first-page":"135","article-title":"Leitlinien f\u00fcr eine gesamtdeutsche \u00f6kologische Klassifikation der Wald-Naturr\u00e4ume","volume":"45","author":"Walentowski","year":"2006","journal-title":"Arch. F\u00fcr Nat. Und Landsch."},{"key":"ref_58","first-page":"17","article-title":"Landschaft, Flora und Vegetation der Nordostalpen (Bayern\u2013Wiener Becken)","volume":"152","author":"Burga","year":"2007","journal-title":"Vierteljahrsschr. Der Nat. Ges. Z\u00fcrich"},{"key":"ref_59","unstructured":"Bayerische Staatsforsten A\u00f6R (2021, April 15). Waldbauhandbuch Bayerische Staatsforsten: Richtlinie f\u00fcr die Waldbewirtschaftung im Hochgebirge. Available online: https:\/\/www.baysf.de\/fileadmin\/user_upload\/04-wald_verstehen\/Publikationen\/WNJF-RL-006_Bergwaldrichtlinie.pdf."},{"key":"ref_60","unstructured":"Walentowski, H., Gulder, H.-J., K\u00f6lling, C., Ewald, J., and T\u00fcrk, W. (2001). Die Regionale Nat\u00fcrliche Waldzusammensetzung Bayerns, Bayerische Landesanstalt f\u00fcr Wald und Forstwirtschaft (LWF)."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1175\/1520-0477(1997)078<0621:GDWFS>2.0.CO;2","article-title":"Global Drought Watch from Space","volume":"78","author":"Kogan","year":"1997","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/0273-1177(95)00079-T","article-title":"Application of Vegetation Index and Brightness Temperature for Drought Detection","volume":"15","author":"Kogan","year":"1995","journal-title":"Adv. Space Res."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"445","DOI":"10.1016\/S0034-4257(00)00137-1","article-title":"Satellite-Observed Sensitivity of World Land Ecosystems to El Nino\/La Nina","volume":"74","author":"Kogan","year":"2000","journal-title":"Remote Sens. Environ."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"886","DOI":"10.1080\/19475705.2015.1009178","article-title":"Modelling and prediction of crop losses from NOAA polar-orbiting operational satellites","volume":"7","author":"Kogan","year":"2016","journal-title":"Geomat. Nat. Hazards Risk"},{"key":"ref_65","doi-asserted-by":"crossref","unstructured":"Gidey, E., Dikinya, O., Sebego, R., Segosebe, E., and Zenebe, A. (2018). Analysis of the long-term agricultural drought onset, cessation, duration, frequency, severity and spatial extent using Vegetation Health Index (VHI) in Raya and its environs, Northern Ethiopia. Environ. Syst. Res., 7.","DOI":"10.1186\/s40068-018-0115-z"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.agrformet.2017.10.001","article-title":"Monitoring the vegetation activity in China using vegetation health indices","volume":"248","author":"Pei","year":"2018","journal-title":"Agric. For. Meteorol."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"107707","DOI":"10.1016\/j.agrformet.2019.107707","article-title":"Agricultural drought monitoring using European Space Agency Sentinel 3A land surface temperature and normalized difference vegetation index imageries","volume":"279","author":"Hu","year":"2019","journal-title":"Agric. For. Meteorol."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"6200","DOI":"10.1038\/s41467-020-19924-1","article-title":"Excess forest mortality is consistently linked to drought across Europe","volume":"11","author":"Senf","year":"2020","journal-title":"Nat. Commun."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"2057","DOI":"10.1080\/01431161003762363","article-title":"Temporal analysis of normalized difference vegetation index (NDVI) and land surface temperature (LST) parameters to detect changes in the Iberian land cover between 1981 and 2001","volume":"32","author":"Julien","year":"2011","journal-title":"Int. J. Remote Sens."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"1884","DOI":"10.1016\/j.rse.2007.09.008","article-title":"Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI","volume":"112","author":"Raynolds","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"2017","DOI":"10.1080\/01431160500121727","article-title":"Comments on the use of the Vegetation Health Index over Mongolia","volume":"27","author":"Karnieli","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"563","DOI":"10.3390\/cli3030563","article-title":"Regional Landsat-Based Drought Monitoring from 1982 to 2014","volume":"3","author":"Ghaleb","year":"2015","journal-title":"Climate"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"12047","DOI":"10.1088\/1755-1315\/500\/1\/012047","article-title":"Application of vegetation health index (VHI) to identify distribution of agricultural drought in Indramayu Regency, West Java Province","volume":"500","author":"Zuhro","year":"2020","journal-title":"IOP Conf. Ser. Earth Environ. Sci."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1016\/j.jhydrol.2012.10.042","article-title":"Evaluation of drought indices via remotely sensed data with hydrological variables","volume":"476","author":"Choi","year":"2013","journal-title":"J. Hydrol."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1016\/j.ecoinf.2017.03.005","article-title":"Characterization of droughts during 2001\u20132014 based on remote sensing: A case study of Northeast China","volume":"39","author":"Cong","year":"2017","journal-title":"Ecol. Inform."},{"key":"ref_76","doi-asserted-by":"crossref","unstructured":"Li, Y., Dong, Y., Yin, D., Liu, D., Wang, P., Huang, J., Liu, Z., and Wang, H. (2020). Evaluation of Drought Monitoring Effect of Winter Wheat in Henan Province of China Based on Multi-Source Data. Sustainability, 12.","DOI":"10.3390\/su12072801"},{"key":"ref_77","doi-asserted-by":"crossref","unstructured":"Chang, S., Chen, H., Wu, B., Nasanbat, E., Yan, N., and Davdai, B. (2021). A Practical Satellite-Derived Vegetation Drought Index for Arid and Semi-Arid Grassland Drought Monitoring. Remote Sens., 13.","DOI":"10.3390\/rs13030414"},{"key":"ref_78","doi-asserted-by":"crossref","unstructured":"Chang, S., Wu, B., Yan, N., Davdai, B., and Nasanbat, E. (2017). Suitability Assessment of Satellite-Derived Drought Indices for Mongolian Grassland. Remote Sens., 9.","DOI":"10.3390\/rs9070650"},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"17473","DOI":"10.1038\/s41598-017-17810-3","article-title":"Spatial-Temporal Variation of Drought in China from 1982 to 2010 Based on a modified Temperature Vegetation Drought Index (mTVDI)","volume":"7","author":"Zhao","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_80","doi-asserted-by":"crossref","unstructured":"Le Du, T.T., Du Bui, D., Nguyen, M.D., and Lee, H. (2018). Satellite-Based, Multi-Indices for Evaluation of Agricultural Droughts in a Highly Dynamic Tropical Catchment, Central Vietnam. Water, 10.","DOI":"10.3390\/w10050659"},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1111\/nyas.13912","article-title":"Land-atmospheric feedbacks during droughts and heatwaves: State of the science and current challenges","volume":"1436","author":"Miralles","year":"2019","journal-title":"Ann. N. Y. Acad. Sci."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"1109","DOI":"10.1080\/01431160110070744","article-title":"Modelling of crop growth conditions and crop yield in Poland using AVHRR-based indices","volume":"23","author":"Kogan","year":"2002","journal-title":"Int. J. Remote Sens."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1016\/j.agwat.2018.10.030","article-title":"Comparison of meteorological and satellite-based drought indices as yield predictors of Spanish cereals","volume":"213","author":"Contreras","year":"2019","journal-title":"Agric. Water Manag."},{"key":"ref_84","doi-asserted-by":"crossref","unstructured":"Panek, E., and Gozdowski, D. (2021). Relationship between MODIS Derived NDVI and Yield of Cereals for Selected European Countries. Agronomy, 11.","DOI":"10.3390\/agronomy11020340"},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1080\/02757259509532298","article-title":"A review of vegetation indices","volume":"13","author":"Bannari","year":"1995","journal-title":"Remote Sens. Rev."},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"1353691","DOI":"10.1155\/2017\/1353691","article-title":"Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications","volume":"2017","author":"Xue","year":"2017","journal-title":"J. Sens."},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"2136","DOI":"10.3390\/s8042136","article-title":"Relationship Between Remotely-sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us About the Landscape","volume":"8","author":"Glenn","year":"2008","journal-title":"Sensors"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11676-020-01155-1","article-title":"A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing","volume":"32","author":"Huang","year":"2021","journal-title":"J. For. Res."},{"key":"ref_89","doi-asserted-by":"crossref","unstructured":"Kumari, N., Srivastava, A., and Dumka, U.C. (2021). A Long-Term Spatiotemporal Analysis of Vegetation Greenness over the Himalayan Region Using Google Earth Engine. Climate, 9.","DOI":"10.3390\/cli9070109"},{"key":"ref_90","doi-asserted-by":"crossref","unstructured":"Shahzaman, M., Zhu, W., Bilal, M., Habtemicheal, B.A., Mustafa, F., Arshad, M., Ullah, I., Ishfaq, S., and Iqbal, R. (2021). Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries. Remote Sens., 13.","DOI":"10.3390\/rs13112059"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/19\/3907\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,19]],"date-time":"2024-07-19T12:49:43Z","timestamp":1721393383000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/19\/3907"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,30]]},"references-count":90,"journal-issue":{"issue":"19","published-online":{"date-parts":[[2021,10]]}},"alternative-id":["rs13193907"],"URL":"https:\/\/doi.org\/10.3390\/rs13193907","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,9,30]]}}}