{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,18]],"date-time":"2024-07-18T20:10:35Z","timestamp":1721333435521},"reference-count":10,"publisher":"MDPI AG","issue":"18","license":[{"start":{"date-parts":[[2021,9,16]],"date-time":"2021-09-16T00:00:00Z","timestamp":1631750400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Ground Penetrating Radar (GPR) has become one of the key technologies in subsurface sensing and, in general, in Non-Destructive Testing (NDT), since it is able to detect both metallic and nonmetallic targets [...]<\/jats:p>","DOI":"10.3390\/rs13183696","type":"journal-article","created":{"date-parts":[[2021,9,16]],"date-time":"2021-09-16T01:47:11Z","timestamp":1631756831000},"page":"3696","source":"Crossref","is-referenced-by-count":1,"title":["Editorial for the Special Issue \u201cAdvanced Techniques for Ground Penetrating Radar Imaging\u201d"],"prefix":"10.3390","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3625-4515","authenticated-orcid":false,"given":"Yuri \u00c1lvarez","family":"L\u00f3pez","sequence":"first","affiliation":[{"name":"Area of Signal Theory and Communications, University of Oviedo, Edificio Polivalente, 1st Floor, Campus Universitario de Gij\u00f3n, 33203 Gijon, Spain"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8935-1912","authenticated-orcid":false,"given":"Mar\u00eda","family":"Garc\u00eda-Fern\u00e1ndez","sequence":"additional","affiliation":[{"name":"Area of Signal Theory and Communications, University of Oviedo, Edificio Polivalente, 1st Floor, Campus Universitario de Gij\u00f3n, 33203 Gijon, Spain"}]}],"member":"1968","published-online":{"date-parts":[[2021,9,16]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Garcia-Fernandez, M., Alvarez-Lopez, Y., and Las Heras, F. (2019). Autonomous Airborne 3D SAR Imaging System for Subsurface Sensing: UWB-GPR on Board a UAV for Landmine and IED Detection. Remote Sens., 11.","DOI":"10.3390\/rs11202357"},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Garc\u00eda-Fern\u00e1ndez, M., \u00c1lvarez-Narciandi, G., \u00c1lvarez-L\u00f3pez, Y., and Fernando Las-Heras Andr\u00e9s, F. (2021). Analysis and validation of a hybrid Forward-Looking Down-Looking Ground Penetrating Radar architecture. Remote Sens., 13.","DOI":"10.3390\/rs13061206"},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Alonso, R., Garc\u00eda Del Pozo, J.-M., Buis\u00e1n, S., and \u00c1lvarez, J.-A. (2021). Analysis of Snow Water Equivalent in AEMet-Formigal Field Laboratory (Spanish Pyrenees) During the 2019\/2020 Winter Season Using a Stepped Frequency Continuous Wave Radar (SFCW). Remote Sens., 13.","DOI":"10.3390\/rs13040616"},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Iftimie, N., Savin, A., Steigmann, R., and Dobrescu, G.S. (2021). Underground Pipeline Identification into a Non-Destructive Case Study Based on Ground-Penetrating Radar Imaging. Remote Sens., 13.","DOI":"10.3390\/rs13173494"},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Feng, D., Wang, X., Wang, X., Ding, S., and Zhang, H. (2021). Deep Convolutional Denoising Autoencoders with Network Structure Optimization for the High-Fidelity Attenuation of Random GPR Noise. Remote Sens., 13.","DOI":"10.3390\/rs13091761"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Oliveira, R.J., Caldeira, B., Teixid\u00f3, T., and Borges, J.F. (2021). GPR Clutter Reflection Noise-Filtering through Singular Value Decomposition in the Bidimensional Spectral Domain. Remote Sens., 13.","DOI":"10.20944\/preprints202105.0118.v1"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Stucchi, E., Ribolini, A., and Tognarelli, A. (2020). High-Resolution Coherency Functionals for Improving the Velocity Analysis of Ground-Penetrating Radar Data. Remote Sens., 12.","DOI":"10.3390\/rs12132146"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Trinks, I., and Hinterleitner, A. (2020). Beyond Amplitudes: Multi-Trace Coherence Analysis for Ground-Penetrating Radar Data Imaging. Remote Sens., 12.","DOI":"10.3390\/rs12101583"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Dai, Y., Jin, T., Song, Y., Sun, S., and Wu, C. (2020). Convolutional Neural Network with Spatial-Variant Convolution Kernel. Remote Sens., 12.","DOI":"10.3390\/rs12172811"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Jin, Y., and Duan, Y. (2020). Wavelet Scattering Network-Based Machine Learning for Ground Penetrating Radar Imaging: Application in Pipeline Identification. Remote Sens., 12.","DOI":"10.3390\/rs12213655"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/18\/3696\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,18]],"date-time":"2024-07-18T19:45:50Z","timestamp":1721331950000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/18\/3696"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,16]]},"references-count":10,"journal-issue":{"issue":"18","published-online":{"date-parts":[[2021,9]]}},"alternative-id":["rs13183696"],"URL":"https:\/\/doi.org\/10.3390\/rs13183696","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,9,16]]}}}