{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T16:15:38Z","timestamp":1740154538140,"version":"3.37.3"},"reference-count":71,"publisher":"MDPI AG","issue":"17","license":[{"start":{"date-parts":[[2021,9,2]],"date-time":"2021-09-02T00:00:00Z","timestamp":1630540800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The overarching aim of this research was to develop a method for deriving crop maps from a time series of Sentinel-2 images between 2017 and 2018 to address global challenges in agriculture and food security. This study is the first step towards improving crop mapping based on phenological features retrieved from an object-based time series on a national scale. Five main crops in Israel were classified: wheat, barley, cotton, carrot, and chickpea. To optimize the object-based classification process, different characteristics and inputs of the mean shift segmentation algorithm were tested, including vegetation indices, three-band combinations, and high\/low emphasis on the spatial and spectral characteristics. Four known vegetation indices (VIs)-based time series were tested. Additionally, we compared two widely used machine learning methods for crop classification, support vector machine (SVM) and random forest (RF), in addition to a newer classifier, extreme gradient boosting (XGBoost). Lastly, we examined two accuracy measures\u2014overall accuracy (OA) and area under the curve (AUC)\u2014in order to optimally estimate the accuracy in the case of imbalanced class representation. Mean shift best performed when emphasizing both the spectral and spatial characteristics while using the green, red, and near-infrared (NIR) bands as input. Both accuracy measures showed that RF and XGBoost classified different types of crops with significantly greater success than achieved by SVM. Nevertheless, AUC was better able to represent the significant differences between the classification algorithms than OA was. None of the VIs showed a significantly higher contribution to the classification. However, normalized difference infrared index (NDII) with XGBoost classifier showed the highest AUC results (88%). This study demonstrates that the short-wave infrared (SWIR) band with XGBoost improves crop type classification results. Furthermore, the study emphasizes the importance of addressing imbalanced classification datasets by using a proper accuracy measure. Since object-based classification and phenological features derived from a VI-based time series are widely used to produce crop maps, the current study is also relevant for operational agricultural management and informatics at large scales.<\/jats:p>","DOI":"10.3390\/rs13173488","type":"journal-article","created":{"date-parts":[[2021,9,3]],"date-time":"2021-09-03T03:05:12Z","timestamp":1630638312000},"page":"3488","source":"Crossref","is-referenced-by-count":7,"title":["Generating Up-to-Date Crop Maps Optimized for Sentinel-2 Imagery in Israel"],"prefix":"10.3390","volume":"13","author":[{"given":"Keren","family":"Goldberg","sequence":"first","affiliation":[{"name":"Agricultural Research Organization, Volcani Institute, Institute of Soil, Water and Environmental Sciences, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel"},{"name":"The Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1136-1883","authenticated-orcid":false,"given":"Ittai","family":"Herrmann","sequence":"additional","affiliation":[{"name":"The Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel"}]},{"given":"Uri","family":"Hochberg","sequence":"additional","affiliation":[{"name":"Agricultural Research Organization, Volcani Institute, Institute of Soil, Water and Environmental Sciences, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel"}]},{"given":"Offer","family":"Rozenstein","sequence":"additional","affiliation":[{"name":"Agricultural Research Organization, Volcani Institute, Institute of Soil, Water and Environmental Sciences, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel"}]}],"member":"1968","published-online":{"date-parts":[[2021,9,2]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"3232","DOI":"10.1073\/pnas.1109936109","article-title":"The water footprint of humanity","volume":"109","author":"Hoekstra","year":"2012","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.agwat.2018.05.017","article-title":"Estimating cotton water consumption using a time series of Sentinel-2 imagery","volume":"207","author":"Rozenstein","year":"2018","journal-title":"Agric. Water Manag."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Rozenstein, O., Haymann, N., Kaplan, G., and Tanny, J. (2019). Validation of the cotton crop coefficient estimation model based on Sentinel-2 imagery and eddy covariance measurements. Agric. Water Manag., 223.","DOI":"10.1016\/j.agwat.2019.105715"},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Manivasagam, V.S., and Rozenstein, O. (2020). Practices for upscaling crop simulation models from field scale to large regions. Comput. Electron. Agric., 175.","DOI":"10.1016\/j.compag.2020.105554"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1093\/jpe\/rtm005","article-title":"Remote sensing imagery in vegetation mapping: A review","volume":"1","author":"Xie","year":"2008","journal-title":"J. Plant Ecol."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1016\/j.rse.2017.10.005","article-title":"Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis","volume":"204","author":"Belgiu","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1016\/j.compag.2009.06.004","article-title":"Object-and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery","volume":"68","year":"2009","journal-title":"Comput. Electron. Agric."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1301","DOI":"10.1016\/j.rse.2011.01.009","article-title":"Object-based crop identification using multiple vegetation indices, textural features and crop phenology","volume":"115","author":"Ngugi","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.apgeog.2010.11.006","article-title":"Comparison of methods for land-use classification incorporating remote sensing and GIS inputs","volume":"31","author":"Rozenstein","year":"2011","journal-title":"Appl. Geogr."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.rse.2018.02.045","article-title":"A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach","volume":"210","author":"Cai","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"2293","DOI":"10.1080\/01431160701408444","article-title":"Monitoring farmers\u2019 decisions on Mediterranean irrigated crops using satellite image time series","volume":"29","author":"Serra","year":"2008","journal-title":"Int. J. Remote Sens."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Belda, S., Pipia, L., Morcillo-Pallar\u00e9s, P., Rivera-Caicedo, J.P., Amin, E., De Grave, C., and Verrelst, J. (2020). DATimeS: A machine learning time series GUI toolbox for gap-filling and vegetation phenology trends detection. Environ. Model. Softw., 127.","DOI":"10.1016\/j.envsoft.2020.104666"},{"key":"ref_13","unstructured":"Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., and Harlan, J.C. (1974). Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, Remote Sensing Center, Texas A & M University. NASA\/GSFC Type III Final Report, Greenbelt, Md, 371."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Xue, J., and Su, B. (2017). Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens., 2017.","DOI":"10.1155\/2017\/1353691"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"2141","DOI":"10.1016\/j.rse.2011.04.018","article-title":"LAI assessment of wheat and potato crops by VEN\u03bcS and Sentinel-2 bands","volume":"115","author":"Herrmann","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"8763","DOI":"10.1080\/01431161.2010.550647","article-title":"Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems","volume":"32","author":"Conrad","year":"2011","journal-title":"Int. J. Remote Sens."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"16091","DOI":"10.3390\/rs71215820","article-title":"Object-Based Crop Classification with Landsat-MODIS Enhanced Time-Series Data","volume":"7","author":"Li","year":"2015","journal-title":"Remote Sens."},{"key":"ref_18","first-page":"103","article-title":"A support vector machine to identify irrigated crop types using time-series Landsat NDVI data","volume":"34","author":"Zheng","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"1897","DOI":"10.1016\/S2095-3119(19)62812-1","article-title":"Early-season crop type mapping using 30-m reference time series","volume":"19","author":"Hao","year":"2020","journal-title":"J. Integr. Agric."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/0034-4257(95)00186-7","article-title":"Optimization of soil-adjusted vegetation indices","volume":"55","author":"Rondeaux","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Mercier, A., Betbeder, J., Rumiano, F., Baudry, J., Gond, V., Blanc, L., Bourgoin, C., Cornu, G., Ciudad, C., and Marchamalo, M. (2019). Evaluation of Sentinel-1 and 2 Time Series for Land Cover Classification of Forest\u2013Agriculture Mosaics in Temperate and Tropical Landscapes. Remote Sens., 11.","DOI":"10.3390\/rs11080979"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1017\/S0021859617000879","article-title":"Classification of multi-temporal spectral indices for crop type mapping: A case study in Coalville, UK","volume":"156","author":"Palchowdhuri","year":"2018","journal-title":"J. Agric. Sci."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Sonobe, R., Yamaya, Y., Tani, H., Wang, X., Kobayashi, N., and Mochizuki, K.I. (2018). Crop classification from Senti-nel-2-derived vegetation indices using ensemble learning. J. Appl. Remote Sens., 12.","DOI":"10.1117\/1.JRS.12.026019"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Clevers, J.G.P.W., Kooistra, L., and Van den Brande, M.M. (2017). Using Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens., 9.","DOI":"10.3390\/rs9050405"},{"key":"ref_25","unstructured":"Barnes, E.M., Clarke, T.R., Richards, S.E., Colaizzi, P.D., Haberland, J., Kostrzewski, M., and Moran, M.S. (2000, January 16\u201319). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"3640","DOI":"10.1016\/j.rse.2011.09.002","article-title":"Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland","volume":"115","author":"Eitel","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_27","first-page":"195","article-title":"Crop Type Classification Using Vegetation Indices of RapidEye Imagery","volume":"XL-7","author":"Ustuner","year":"2014","journal-title":"ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci."},{"key":"ref_28","first-page":"77","article-title":"The influence of soil salinity, growth form, and leaf moisture on the spectral radiance of Spartina alterniflora canopies, Photogram","volume":"49","author":"Hardisky","year":"1983","journal-title":"Eng. Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Xu, C., Zhu, X., Pan, Y., Zhu, W., and Lei, Y. (2008). Comparison study on NDII and NDVI based on rice extraction from rice and ginkgo mixed area. IGARSS 2008\u20142008 IEEE International Geoscience and Remote Sensing Symposium, IEEE.","DOI":"10.1109\/IGARSS.2008.4779443"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"885","DOI":"10.1080\/0143116021000009921","article-title":"Calculating environmental moisture for per-field discrimination of rice crops","volume":"24","author":"McVicar","year":"2003","journal-title":"Int. J. Remote Sens."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Immitzer, M., Vuolo, F., and Atzberger, C. (2016). First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens., 8.","DOI":"10.3390\/rs8030166"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"531","DOI":"10.1016\/j.compag.2016.07.019","article-title":"Crop type mapping in a highly fragmented and heterogeneous agri-cultural landscape: A case of central Iran using multi-temporal Landsat 8 imagery","volume":"127","author":"Asgarian","year":"2016","journal-title":"Comput. Electron. Agric."},{"key":"ref_33","first-page":"133","article-title":"Mapping croplands, cropping patterns, and crop types using MODIS time-series data","volume":"69","author":"Chen","year":"2018","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_34","first-page":"185","article-title":"Support vector machine classification of object-based data for crop mapping, using multi-temporal Landsat imagery","volume":"39","author":"Devadas","year":"2012","journal-title":"ISPAR"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1080\/15481603.2013.817150","article-title":"Object-oriented crop classification using multitemporal ETM+ SLC-off imagery and random forest","volume":"50","author":"Long","year":"2013","journal-title":"GISci. Remote Sens."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1080\/22797254.2018.1455540","article-title":"A rule-based approach for crop identification using multi-temporal and multi-sensor phenological metrics","volume":"51","author":"Ghazaryan","year":"2018","journal-title":"Eur. J. Remote Sens."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/j.rse.2018.12.026","article-title":"Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques","volume":"222","author":"Wang","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_38","first-page":"122","article-title":"How much does multi-temporal Sentinel-2 data improve crop type classification?","volume":"72","author":"Vuolo","year":"2018","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_39","unstructured":"(2021, September 01). Ministry of Agriculture and Rural Development. Available online: https:\/\/moag.maps.arcgis.com\/apps\/webappviewer\/index.html?id=deb443ad1b1f44a2baa74a4880d0ec27."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1109\/TIT.1975.1055330","article-title":"The estimation of the gradient of a density function, with applications in pattern recognition","volume":"21","author":"Fukunaga","year":"1975","journal-title":"IEEE Trans. Inf. Theory"},{"key":"ref_41","first-page":"547","article-title":"\u00c9tude comparative de la distribution florale dans une portion des Alpes et du Jura","volume":"37","author":"Jaccard","year":"1901","journal-title":"Bull. Soc. Vaudoise Sci. Nat."},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Fisher, R.A. (1992). Statistical methods for research workers. Breakthroughs in Statistics, Springer.","DOI":"10.1007\/978-1-4612-4380-9_6"},{"key":"ref_43","unstructured":"Tukey, J.W. (1953). The Problem of Multiple Comparisons, Princeton University."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Seabold, S., and Perktold, J. (2010, January 28\u201330). Statsmodels: Econometric and statistical modeling with python. Proceedings of the 9th Python in Science Conference, Austin, TX, USA.","DOI":"10.25080\/Majora-92bf1922-011"},{"key":"ref_45","unstructured":"McKinney, W. (July, January 28). Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference, Austin, TX, USA."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1017\/S0013091500077853","article-title":"On a New Method of Graduation","volume":"41","author":"Whittaker","year":"1922","journal-title":"Proc. Edinb. Math. Soc."},{"key":"ref_47","unstructured":"RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC. Available online: http:\/\/www.rstudio.com\/."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"703","DOI":"10.2307\/3235884","article-title":"Measuring phenological variability from satellite imagery","volume":"5","author":"Reed","year":"1994","journal-title":"J. Veg. Sci."},{"key":"ref_49","first-page":"100","article-title":"Algorithm AS 136: A K-Means Clustering Algorithm","volume":"28","author":"Hartigan","year":"1979","journal-title":"J. R. Stat. Soc. Ser. C (Appl. Stat.)"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"509","DOI":"10.1145\/361002.361007","article-title":"Multidimensional binary search trees used for associative searching","volume":"18","author":"Bentley","year":"1975","journal-title":"Commun. ACM"},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Gautheron, L., Habrard, A., Morvant, E., and Sebban, M. (2019, January 4\u20136). Metric Learning from Imbalanced Data. Proceedings of the 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI), Portland, OR, USA.","DOI":"10.1109\/ICTAI.2019.00131"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1016\/j.patrec.2005.10.010","article-title":"An introduction to ROC analysis","volume":"27","author":"Fawcett","year":"2006","journal-title":"Pattern Recognit. Lett."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"1747","DOI":"10.1016\/j.patrec.2007.05.001","article-title":"Approximating the multiclass ROC by pairwise analysis","volume":"28","author":"Landgrebe","year":"2007","journal-title":"Pattern Recognit. Lett."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.aci.2018.08.003","article-title":"Classification assessment methods","volume":"17","author":"Tharwat","year":"2021","journal-title":"Appl. Comput. Inform."},{"key":"ref_55","first-page":"2825","article-title":"Scikit-learn: Machine learning in Python","volume":"12","author":"Pedregosa","year":"2011","journal-title":"J. Mach. Learn. Res."},{"key":"ref_56","unstructured":"(2021, September 01). Environmental Systems Research Institute. Available online: https:\/\/pro.arcgis.com\/en\/pro-app\/2.7\/help\/analysis\/raster-functions\/segment-mean-shift-function.htm."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.isprsjprs.2015.04.010","article-title":"Scale parameter selection by spatial statistics for GeOBIA: Using mean-shift based multi-scale segmentation as an example","volume":"106","author":"Ming","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"12356","DOI":"10.3390\/rs70912356","article-title":"Assessment of an Operational System for Crop Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery","volume":"7","author":"Inglada","year":"2015","journal-title":"Remote Sens."},{"key":"ref_59","doi-asserted-by":"crossref","unstructured":"Peterson, J.J., Yahyah, M., Lief, K., and Hodnett, N. (2017). Predictive Distributions for Constructing the ICH Q8 Design Space. Comprehensive Quality by Design for Pharmaceutical Product Development and Manufacture, Wiley.","DOI":"10.1002\/9781119356189.ch4"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1016\/j.rse.2018.11.032","article-title":"Deep learning based multi-temporal crop classification","volume":"221","author":"Zhong","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_61","first-page":"683","article-title":"Crop Classification on Single Date Sentinel-2 Imagery Using Random Forest and Suppor Vector Machine","volume":"XLII-5","author":"Saini","year":"2018","journal-title":"ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci."},{"key":"ref_62","unstructured":"Ling, C.X., Huang, J., and Zhang, H. AUC: A Better Measure than Accuracy in Comparing Learning Algorithms. Proceedings of the Canadian Society for Computational Studies of Intelligence."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"1679","DOI":"10.1016\/j.agrformet.2008.05.020","article-title":"Estimating crop water stress with ETM+ NIR and SWIR data","volume":"148","author":"Ghulam","year":"2008","journal-title":"Agric. For. Meteorol."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"5127","DOI":"10.1080\/01431160903283892","article-title":"SWIR-based spectral indices for assessing nitrogen content in potato fields","volume":"31","author":"Herrmann","year":"2010","journal-title":"Int. J. Remote Sens."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/0034-4257(93)90020-X","article-title":"Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data","volume":"44","author":"Roberts","year":"1993","journal-title":"Remote Sens. Environ."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"369","DOI":"10.1016\/j.rse.2017.06.022","article-title":"A new method for crop classification combining time series of radar images and crop phenology information","volume":"198","author":"Bargiel","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Chakhar, A., Ortega-Terol, D., Hern\u00e1ndez-L\u00f3pez, D., Ballesteros, R., Ortega, J.F., and Moreno, M.A. (2020). Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data. Remote Sens., 12.","DOI":"10.3390\/rs12111735"},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Htitiou, A., Boudhar, A., Lebrini, Y., Hadria, R., Lionboui, H., and Benabdelouahab, T. (2020). A comparative analysis of dif-ferent phenological information retrieved from Sentinel-2 time series images to improve crop classification: A machine learning approach. Geocarto Int., 1\u201324.","DOI":"10.1080\/10106049.2020.1768593"},{"key":"ref_69","doi-asserted-by":"crossref","unstructured":"Zhang, H., Kang, J., Xu, X., and Zhang, L. (2020). Accessing the temporal and spectral features in crop type mapping using multi-temporal Sentinel-2 imagery: A case study of Yi\u2019an County, Heilongjiang province, China. Comput. Electron. Agric., 176.","DOI":"10.1016\/j.compag.2020.105618"},{"key":"ref_70","doi-asserted-by":"crossref","unstructured":"Van Tricht, K., Gobin, A., Gilliams, S., and Piccard, I. (2018). Synergistic Use of Radar Sentinel-1 and Optical Sentinel-2 Imagery for Crop Mapping: A Case Study for Belgium. Remote Sens., 10.","DOI":"10.20944\/preprints201808.0066.v1"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"7847","DOI":"10.1080\/01431161.2010.531783","article-title":"Classification of MODIS EVI time series for crop mapping in the state of Mato Grosso, Brazil","volume":"32","author":"Arvor","year":"2011","journal-title":"Int. J. Remote Sens."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/17\/3488\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,18]],"date-time":"2024-07-18T03:20:49Z","timestamp":1721272849000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/17\/3488"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,9,2]]},"references-count":71,"journal-issue":{"issue":"17","published-online":{"date-parts":[[2021,9]]}},"alternative-id":["rs13173488"],"URL":"https:\/\/doi.org\/10.3390\/rs13173488","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2021,9,2]]}}}