{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T12:28:47Z","timestamp":1723379327443},"reference-count":57,"publisher":"MDPI AG","issue":"15","license":[{"start":{"date-parts":[[2021,7,27]],"date-time":"2021-07-27T00:00:00Z","timestamp":1627344000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100002803","name":"Fondazione Cariplo","doi-asserted-by":"publisher","award":["2017-1176"],"id":[{"id":"10.13039\/501100002803","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Snow cover is particularly important in the Alps for tourism and the production of hydroelectric energy. In this study, we investigate the spatiotemporal variability in three snow cover metrics, i.e., the length of season (LOS), start of season (SOS) and end of season (EOS), obtained by gap-filling of MOD10A1 and MYD10A1, daily snow cover products of MODIS (Moderate-resolution Imaging Spectroradiometer). We analyze the period 2000\u20132019, evaluate snow cover patterns in the greater Alpine region (GAR) as a whole and further subdivide it into four subregions based on geographical and climate divides to investigate the drivers of local variability. We found differences both in space and time, with the northeastern region having generally the highest LOS (74 \u00b1 4 days), compared to the southern regions, which exhibit a much shorter snow duration (48\/49 \u00b1 2 days). Spatially, the variability in LOS and the other metrics is clearly related to elevation (r2 = 0.85 for the LOS), while other topographic (slope, aspect and shading) and geographic variables (latitude and longitude) play a less important role at the MODIS scale. A high interannual variability was also observed from 2000 to 2019, as the average LOS in the GAR ranged between 41 and 85 days. As a result of high variability, no significant trends in snow cover metrics were seen over the GAR when considering all grid cells. Considering 500-m elevation bands and subregions, as well as individual grid points, we observed significant negative trends above 3000 m a.s.l., with an average of \u221217 days per decade. While some trends appeared to be caused by glacierized areas, removing grid cells covered by glaciers leads to an even higher frequency of grid cells with significant trends above 3000 m a.s.l., reaching 100% at 4000 m a.s.l. Trends are however to be considered with caution because of the limited length of the observation period.<\/jats:p>","DOI":"10.3390\/rs13152945","type":"journal-article","created":{"date-parts":[[2021,7,28]],"date-time":"2021-07-28T02:35:02Z","timestamp":1627439702000},"page":"2945","source":"Crossref","is-referenced-by-count":15,"title":["Snow Cover Variability in the Greater Alpine Region in the MODIS Era (2000\u20132019)"],"prefix":"10.3390","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4523-9085","authenticated-orcid":false,"given":"Davide","family":"Fugazza","sequence":"first","affiliation":[{"name":"Department of Environmental Science and Policy, Universit\u00e0 degli studi di Milano, Via Celoria 2, 20139 Milano, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9652-4228","authenticated-orcid":false,"given":"Veronica","family":"Manara","sequence":"additional","affiliation":[{"name":"Department of Environmental Science and Policy, Universit\u00e0 degli studi di Milano, Via Celoria 2, 20139 Milano, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7190-3272","authenticated-orcid":false,"given":"Antonella","family":"Senese","sequence":"additional","affiliation":[{"name":"Department of Environmental Science and Policy, Universit\u00e0 degli studi di Milano, Via Celoria 2, 20139 Milano, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3883-9309","authenticated-orcid":false,"given":"Guglielmina","family":"Diolaiuti","sequence":"additional","affiliation":[{"name":"Department of Environmental Science and Policy, Universit\u00e0 degli studi di Milano, Via Celoria 2, 20139 Milano, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4110-9737","authenticated-orcid":false,"given":"Maurizio","family":"Maugeri","sequence":"additional","affiliation":[{"name":"Department of Environmental Science and Policy, Universit\u00e0 degli studi di Milano, Via Celoria 2, 20139 Milano, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2021,7,27]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1038\/ngeo1062","article-title":"Radiative forcing and albedo feedback from the Northern Hemisphere cryosphere between 1979 and 2008","volume":"4","author":"Flanner","year":"2011","journal-title":"Nat. Geosci."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1038\/nature04141","article-title":"Potential impacts of a warming climate on water availability in snow-dominated regions","volume":"438","author":"Barnett","year":"2005","journal-title":"Nature"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"924","DOI":"10.1038\/s41558-018-0318-3","article-title":"Estimating snow-cover trends from space","volume":"8","author":"Bormann","year":"2018","journal-title":"Nat. Clim. Chang."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"103007","DOI":"10.1016\/j.coldregions.2020.103007","article-title":"The non-woven geotextiles as strategies for mitigating the impacts of climate change on glaciers","volume":"173","author":"Senese","year":"2020","journal-title":"Cold Reg. Sci. Technol."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1029\/2004RG000157","article-title":"Influence of the seasonal snow cover on the ground thermal regime: An overview","volume":"43","author":"Zhang","year":"2005","journal-title":"Rev. Geophys."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1080\/11956860.2004.11682819","article-title":"Responses of alpine snowbed vegetation to long-term experimental warming","volume":"11","author":"Sandvik","year":"2004","journal-title":"\u00c9coscience"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1080\/11250000601017233","article-title":"Winter activity of spiders and pseudoscorpions in the South-Eastern Alps (Italy)","volume":"74","author":"Vanin","year":"2007","journal-title":"Ital. J. Zool."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"281","DOI":"10.14411\/eje.2010.037","article-title":"A review of Fennoscandian arthropods living on and in snow","volume":"107","year":"2010","journal-title":"Eur. J. \u00c8ntomol."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"942","DOI":"10.1038\/s41558-018-0327-2","article-title":"Arctic plants threatened by winter snow loss","volume":"8","author":"Phoenix","year":"2018","journal-title":"Nat. Clim. Chang."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2669","DOI":"10.1007\/s10531-019-01786-9","article-title":"Snow cover phenology is the main driver of foraging habitat selection for a high-alpine passerine during breeding: Implications for species persistence in the face of climate change","volume":"28","author":"Vignali","year":"2019","journal-title":"Biodivers. Conserv."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.coldregions.2017.12.010","article-title":"Recent area and volume loss of Alpine glaciers in the Adda River of Italy and their contribution to hydropower production","volume":"148","author":"Bocchiola","year":"2018","journal-title":"Cold Reg. Sci. Technol."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"615","DOI":"10.1016\/j.renene.2018.07.104","article-title":"The role of glacier retreat for Swiss hydropower production","volume":"132","author":"Schaefli","year":"2019","journal-title":"Renew. Energy"},{"key":"ref_13","unstructured":"Rixen, C., and Rolando, A. (2013). Climate Change and Snow Cover in the European Alps. The Impact of Skiing on Mountain Environments, Bentham Science Publishers."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1885","DOI":"10.1007\/s00382-011-1089-y","article-title":"Causes of recent changes in western North American snowpack","volume":"38","author":"Kapnick","year":"2011","journal-title":"Clim. Dyn."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1599","DOI":"10.5194\/nhess-9-1599-2009","article-title":"Reconstructing snow avalanches in the Southeastern Pyrenees","volume":"9","author":"Oller","year":"2009","journal-title":"Nat. Hazards Earth Syst. Sci."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"3738","DOI":"10.1002\/hyp.13843","article-title":"Inter-annual variability in snow cover depletion patterns and atmospheric circulation indices in the Upper Irtysh basin, Central Asia","volume":"34","author":"Fugazza","year":"2020","journal-title":"Hydrol. Process."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1016\/j.coldregions.2010.08.008","article-title":"Recent snow cover variability in the Italian Alps","volume":"64","author":"Valt","year":"2010","journal-title":"Cold Reg. Sci. Technol."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1007\/s00704-009-0186-x","article-title":"Evidence of climate change within the Adamello Glacier of Italy","volume":"100","author":"Bocchiola","year":"2009","journal-title":"Theor. Appl. Clim."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"71","DOI":"10.5194\/essd-11-71-2019","article-title":"57 years (1960\u20132017) of snow and meteorological observations from a mid-altitude mountain site (Col de Porte, France, 1325 m of altitude)","volume":"11","author":"Lejeune","year":"2019","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Marty, C. (2008). Regime shift of snow days in Switzerland. Geophys. Res. Lett., 35.","DOI":"10.1029\/2008GL033998"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1343","DOI":"10.5194\/tc-15-1343-2021","article-title":"Observed snow depth trends in the European Alps: 1971 to 2019","volume":"15","author":"Matiu","year":"2021","journal-title":"Cryosphere"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"S60","DOI":"10.1016\/j.scitotenv.2013.09.056","article-title":"Missing (in-situ) snow cover data hampers climate change and runoff studies in the Greater Himalayas","volume":"468\u2013469","author":"Rohrer","year":"2013","journal-title":"Sci. Total. Environ."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"73","DOI":"10.5194\/tc-8-73-2014","article-title":"A satellite-based snow cover climatology (1985\u20132011) for the European Alps derived from AVHRR data","volume":"8","author":"Jonas","year":"2014","journal-title":"Cryosphere"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"12752","DOI":"10.3390\/rs61212752","article-title":"Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data","volume":"6","author":"Dietz","year":"2014","journal-title":"Remote Sens."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1534","DOI":"10.1002\/hyp.6715","article-title":"Accuracy assessment of the MODIS snow products","volume":"21","author":"Hall","year":"2007","journal-title":"Hydrol. Process."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"3189","DOI":"10.5194\/hess-23-3189-2019","article-title":"Characterising spatio-temporal variability in seasonal snow cover at a regional scale from MODIS data: The Clutha Catchment, New Zealand","volume":"23","author":"Redpath","year":"2019","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Ma, X., Yan, W., Zhao, C., and Kundzewicz, Z.W. (2019). Snow-Cover Area and Runoff Variation under Climate Change in the West Kunlun Mountains. Water, 11.","DOI":"10.3390\/w11112246"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"2432","DOI":"10.3390\/rs4082432","article-title":"European Snow Cover Characteristics between 2000 and 2011 Derived from Improved MODIS Daily Snow Cover Products","volume":"4","author":"Dietz","year":"2012","journal-title":"Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"111781","DOI":"10.1016\/j.rse.2020.111781","article-title":"Hotspots of snow cover changes in global mountain regions over 2000\u20132018","volume":"243","author":"Notarnicola","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"2197","DOI":"10.1002\/joc.1857","article-title":"Climate variability and change in the Greater Alpine Region over the last two centuries based on multi-variable analysis","volume":"29","author":"Brunetti","year":"2009","journal-title":"Int. J. Clim."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1029\/2005JD006674","article-title":"Precipitation variability and changes in the greater Alpine region over the 1800\u20132003 period","volume":"111","author":"Brunetti","year":"2006","journal-title":"J. Geophys. Res. Space Phys."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"849","DOI":"10.1007\/s00704-018-2521-6","article-title":"1990\u20132016 surface solar radiation variability and trend over the Piedmont region (northwest Italy)","volume":"136","author":"Manara","year":"2019","journal-title":"Theor. Appl. Clim."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"116861","DOI":"10.1016\/j.atmosenv.2019.116861","article-title":"1951\u20132017 changes in the frequency of days with visibility higher than 10 km and 20 km in Italy","volume":"214","author":"Manara","year":"2019","journal-title":"Atmos. Environ."},{"key":"ref_34","unstructured":"Hall, D.K., Riggs, G.A., and Solomonson, V. (2021, July 26). NASA MODAPS SIPS MODIS\/Terra Snow Cover Daily L3 Global 500m SIN Grid, 2015. Available online: http:\/\/nsidc.org\/data\/MOD10A1\/versions\/6."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"459","DOI":"10.1109\/TGRS.2002.808301","article-title":"The MODIS cloud products: Algorithms and examples from terra","volume":"41","author":"Platnick","year":"2003","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"502","DOI":"10.1109\/TGRS.2016.2610522","article-title":"The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua","volume":"55","author":"Platnick","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"71","DOI":"10.5194\/isprsannals-II-4-71-2014","article-title":"Precise Global DEM Generation by ALOS PRISM","volume":"II-4","author":"Tadono","year":"2014","journal-title":"ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci."},{"key":"ref_38","first-page":"89","article-title":"Modelling Shortwave and Longwave Downward Radiation and Air Temperature Driving Ablation at the Forni Glacier (Stelvio National Park, Italy)","volume":"39","author":"Senese","year":"2016","journal-title":"Geogr. Fis. Din. Quat."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1007\/s007040170044","article-title":"Alpine cloud climatology using long-term NOAA-AVHRR satellite data","volume":"68","author":"Kriebel","year":"2001","journal-title":"Theor. Appl. Clim."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"180300","DOI":"10.1038\/sdata.2018.300","article-title":"A cloud-free MODIS snow cover dataset for the contiguous United States from 2000 to 2017","volume":"6","author":"Tran","year":"2019","journal-title":"Sci. Data"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"2401","DOI":"10.5194\/hess-23-2401-2019","article-title":"The recent developments in cloud removal approaches of MODIS snow cover product","volume":"23","author":"Li","year":"2019","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"391","DOI":"10.1007\/s10584-011-0181-y","article-title":"An analysis of snow cover changes in the Himalayan region using MODIS snow products and in-situ temperature data","volume":"108","author":"Maskey","year":"2011","journal-title":"Clim. Chang."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"1361","DOI":"10.5194\/hess-13-1361-2009","article-title":"Cloud removal methodology from MODIS snow cover product","volume":"13","author":"Gafurov","year":"2009","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"5227","DOI":"10.5194\/hess-23-5227-2019","article-title":"Evaluation of MODIS and VIIRS cloud-gap-filled snow-cover products for production of an Earth science data record","volume":"23","author":"Hall","year":"2019","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.jhydrol.2009.03.028","article-title":"New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua","volume":"371","author":"Wang","year":"2009","journal-title":"J. Hydrol."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1127\/metz\/1\/1992\/247","article-title":"\u00dcber den Einsatz von statistischen Methoden zum objektiven Nachweis von Klimaschwankungen","volume":"1","author":"Sneyers","year":"1992","journal-title":"Meteorol. Z."},{"key":"ref_47","unstructured":"Raj, B., and Koerts, J. (1992). A Rank-Invariant Method of Linear and Polynomial Regression Analysis. Henri Theil\u2019s Contributions to Economics and Econometrics: Econometric Theory and Methodology, Springer. Advanced Studies in Theoretical and Applied Econometrics."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1805","DOI":"10.5194\/essd-12-1805-2020","article-title":"Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2","volume":"12","author":"Paul","year":"2020","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"537","DOI":"10.3189\/2014JoG13J176","article-title":"The Randolph Glacier Inventory: A globally complete inventory of glaciers","volume":"60","author":"Pfeffer","year":"2014","journal-title":"J. Glaciol."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1177\/0309133317749434","article-title":"Evaluating high-resolution remote sensing data for reconstructing the recent evolution of supra glacial debris","volume":"42","author":"Azzoni","year":"2018","journal-title":"Prog. Phys. Geogr. Earth Environ."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.gloplacha.2019.04.014","article-title":"New evidence of glacier darkening in the Ortles-Cevedale group from Landsat observations","volume":"178","author":"Fugazza","year":"2019","journal-title":"Glob. Planet. Chang."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1016\/j.rse.2017.01.023","article-title":"A 38-year (1978\u20132015) Northern Hemisphere daily snow cover extent product derived using consistent objective criteria from satellite-borne optical sensors","volume":"191","author":"Hori","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"773","DOI":"10.3390\/w2040773","article-title":"Snow Precipitation and Snow Cover Climatic Variability for the Period 1971\u20132009 in the Southwestern Italian Alps: The 2008\u20132009 Snow Season Case Study","volume":"2","author":"Terzago","year":"2010","journal-title":"Water"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"3162","DOI":"10.1002\/joc.3653","article-title":"Snow variability in the Swiss Alps 1864\u20132009","volume":"33","author":"Scherrer","year":"2013","journal-title":"Int. J. Clim."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"451","DOI":"10.5194\/tc-9-451-2015","article-title":"Snow-cover reconstruction methodology for mountainous regions based on historic in situ observations and recent remote sensing data","volume":"9","author":"Gafurov","year":"2015","journal-title":"Cryosphere"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"1999","DOI":"10.1002\/qj.3803","article-title":"The ERA5 global reanalysis","volume":"146","author":"Hersbach","year":"2020","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"2221","DOI":"10.5194\/tc-13-2221-2019","article-title":"Evaluation of snow depth and snow cover over the Tibetan Plateau in global reanalyses using in situ and satellite remote sensing observations","volume":"13","author":"Orsolini","year":"2019","journal-title":"Cryosphere"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/15\/2945\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,16]],"date-time":"2024-07-16T04:14:56Z","timestamp":1721103296000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/15\/2945"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7,27]]},"references-count":57,"journal-issue":{"issue":"15","published-online":{"date-parts":[[2021,8]]}},"alternative-id":["rs13152945"],"URL":"https:\/\/doi.org\/10.3390\/rs13152945","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,7,27]]}}}