{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T11:52:31Z","timestamp":1742385151942,"version":"3.37.3"},"reference-count":127,"publisher":"MDPI AG","issue":"15","license":[{"start":{"date-parts":[[2021,7,26]],"date-time":"2021-07-26T00:00:00Z","timestamp":1627257600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Waterlogging is an increasingly important issue in irrigated agriculture that has a detrimental impact on crop productivity. The above-ground effect of waterlogging on crops is hard to distinguish from water deficit stress with remote sensing, as responses such as stomatal closure and leaf wilting occur in both situations. Currently, waterlogging as a source of crop stress is not considered in remote sensing-based evaporation algorithms and this may therefore lead to erroneous interpretation for irrigation scheduling. Monitoring waterlogging can improve evaporation models to assist irrigation management. In addition, frequent spatial information on waterlogging will provide agriculturalists information on land trafficability, assist drainage design, and crop choice. This article provides a scientific perspective on the topic of waterlogging by consulting literature in the disciplines of agronomy, hydrology, and remote sensing. We find the solution to monitor waterlogging lies in a multi-sensor approach. Future scientific routes should focus on monitoring waterlogging by combining remote sensing and ancillary data. Here, drainage parameters deduced from high spatial resolution Digital Elevation Models (DEMs) can play a crucial role. The proposed approaches may provide a solution to monitor and prevent waterlogging in irrigated agriculture.<\/jats:p>","DOI":"10.3390\/rs13152929","type":"journal-article","created":{"date-parts":[[2021,7,26]],"date-time":"2021-07-26T13:25:52Z","timestamp":1627305952000},"page":"2929","source":"Crossref","is-referenced-by-count":21,"title":["Towards Monitoring Waterlogging with Remote Sensing for Sustainable Irrigated Agriculture"],"prefix":"10.3390","volume":"13","author":[{"given":"Nadja","family":"den Besten","sequence":"first","affiliation":[{"name":"VanderSat B.V., Agricultural, Food and Commodity Unit, Wilhelminastraat 43a, 2011 VK Haarlem, The Netherlands"},{"name":"Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8644-3077","authenticated-orcid":false,"given":"Susan","family":"Steele-Dunne","sequence":"additional","affiliation":[{"name":"Department of Geoscience & Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands"}]},{"given":"Richard","family":"de Jeu","sequence":"additional","affiliation":[{"name":"VanderSat B.V., Agricultural, Food and Commodity Unit, Wilhelminastraat 43a, 2011 VK Haarlem, The Netherlands"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1215-2656","authenticated-orcid":false,"given":"Pieter","family":"van der Zaag","sequence":"additional","affiliation":[{"name":"Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands"},{"name":"IHE Delft Institute for Water Education, 2611 AX Delft, The Netherlands"}]}],"member":"1968","published-online":{"date-parts":[[2021,7,26]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/j.agwat.2006.04.007","article-title":"The agricultural impacts of irrigation induced waterlogging and soil salinity in the Arkansas Basin","volume":"85","author":"Houk","year":"2006","journal-title":"Agric. Water Manag."},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Wallender, W.W., and Tanji, K.K. (2011). Agricultural Salinity Assessment and Management, American Society of Civil Engineers (ASCE).","DOI":"10.1061\/9780784411698"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"549","DOI":"10.1071\/CP13080","article-title":"Waterlogging in Australian agricultural landscapes: A review of plant responses and crop models","volume":"64","author":"Shaw","year":"2013","journal-title":"Crop. Pasture Sci."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"89","DOI":"10.1093\/jexbot\/51.342.89","article-title":"Molecular strategies for improving waterlogging tolerance in plants","volume":"51","author":"Dennis","year":"2000","journal-title":"J. Exp. Bot."},{"key":"ref_5","unstructured":"FAO (2021, April 13). Coping with Water Scarcity in Agriculture a Global Framework for Action in a Changing Climate. Available online: http:\/\/www.fao.org\/3\/a-i6459e.pdf."},{"key":"ref_6","unstructured":"Steduto, P., Hoogeveen, J., Winpenny, J., and Burke, J. (2017). Coping with Water Scarcity: An Action Framework for Agriculture and Food Security, Food and Agriculture Organization of the United Nations."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/S0378-3774(01)00157-3","article-title":"Water use and root growth by annual and perennial pastures and subsequent crops in a phase rotation","volume":"53","author":"Ward","year":"2002","journal-title":"Agric. Water Manag."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1007\/s002710100048","article-title":"Subsurface drainage design and management in irrigated areas of Australia","volume":"21","author":"Christen","year":"2001","journal-title":"Irrig. Sci."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1430","DOI":"10.1016\/j.jhydrol.2016.08.044","article-title":"Hydrological problems of water resources in irrigated agriculture: A management perspective","volume":"541","author":"Singh","year":"2016","journal-title":"J. Hydrol."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1002\/ird.551","article-title":"Comparing irrigation management reforms in Australia and India\u2014A special reference to participatory irrigation management","volume":"60","author":"Poddar","year":"2011","journal-title":"Irrig. Drain."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1625","DOI":"10.1080\/03650340.2014.905676","article-title":"Drainage, waterlogging, and salinity","volume":"60","author":"Valipour","year":"2014","journal-title":"Arch. Agron. Soil Sci."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"703","DOI":"10.1016\/j.agsy.2011.08.004","article-title":"Exploring global irrigation patterns: A multilevel modelling approach","volume":"104","author":"Neumann","year":"2011","journal-title":"Agric. Syst."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"770","DOI":"10.1016\/j.foodpol.2011.09.001","article-title":"What is the irrigation potential for Africa? A combined biophysical and socioeconomic approach","volume":"36","author":"You","year":"2011","journal-title":"Food Policy"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"034015","DOI":"10.1088\/1748-9326\/8\/3\/034015","article-title":"Redefining agricultural yields from tonnes to people nourished per hectare","volume":"8","author":"Cassidy","year":"2013","journal-title":"Environ. Res. Lett."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"254","DOI":"10.1038\/nature11420","article-title":"Closing yield gaps through nutrient and water management","volume":"490","author":"Mueller","year":"2012","journal-title":"Nature"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"4206","DOI":"10.1016\/j.scitotenv.2011.07.019","article-title":"Projected water consumption in future global agriculture: Scenarios and related impacts","volume":"409","author":"Pfister","year":"2011","journal-title":"Sci. Total. Environ."},{"key":"ref_17","first-page":"220","article-title":"Increasing productivity through irrigation: Problems and solutions implemented in Africa and Asia","volume":"22","author":"Mashnik","year":"2017","journal-title":"Sustain. Energy Technol. Assess."},{"key":"ref_18","unstructured":"FAO (2019, October 27). AQUASTAT Main Database, Food and Agriculture Organization of the United Nations (FAO). Available online: http:\/\/www.fao.org\/nr\/water\/aquastat\/data\/."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"1083","DOI":"10.1016\/j.techfore.2006.05.021","article-title":"Climate change impacts on irrigation water requirements: Effects of mitigation, 1990\u20132080","volume":"74","author":"Fischer","year":"2007","journal-title":"Technol. Forecast. Soc. Chang."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"044022","DOI":"10.1088\/1748-9326\/7\/4\/044022","article-title":"Human impacts on terrestrial hydrology: Climate change versus pumping and irrigation","volume":"7","author":"Ferguson","year":"2012","journal-title":"Environ. Res. Lett."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"64","DOI":"10.3389\/fenvs.2016.00064","article-title":"Achieving sustainable development goals from a water perspective","volume":"4","author":"Bhaduri","year":"2016","journal-title":"Front. Environ. Sci."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/S0378-3774(00)00080-9","article-title":"Remote sensing for irrigated agriculture: Examples from research and possible applications","volume":"46","author":"Bastiaanssen","year":"2000","journal-title":"Agric. Water Manag."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"949","DOI":"10.3390\/rs5020949","article-title":"Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs","volume":"5","author":"Atzberger","year":"2013","journal-title":"Remote Sens."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"82","DOI":"10.1016\/j.agwat.2014.08.004","article-title":"Satellite-based irrigation advisory services: A common tool for different experiences from Europe to Australia","volume":"147","author":"Vuolo","year":"2015","journal-title":"Agric. Water Manag."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"452","DOI":"10.1016\/j.rse.2018.06.035","article-title":"Capability of Sentinel-2 data for estimating maximum evapotranspiration and irrigation requirements for tomato crop in Central Italy","volume":"215","author":"Vanino","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Calera, A., Campos, I., Osann, A., D Urso, G., and Menenti, M. (2017). Remote sensing for crop water management from ET modelling to services for the end users. Sensors, 17.","DOI":"10.3390\/s17051104"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1633","DOI":"10.2135\/cropsci2004.1633","article-title":"Sugarcane photosynthesis, transpiration, and stomatal conductance due to flooding and water table","volume":"44","author":"Glaz","year":"2004","journal-title":"Crop Sci."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/j.fcr.2005.01.023","article-title":"Water relations in sugarcane and response to water deficits","volume":"92","author":"Smith","year":"2005","journal-title":"Field Crop. Res."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1007\/s11119-007-9036-y","article-title":"Multi-temporal wheat disease detection by multi-spectral remote sensing","volume":"8","author":"Franke","year":"2007","journal-title":"Precis. Agric."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"31","DOI":"10.17660\/ActaHortic.2018.1197.5","article-title":"Opportunities and pitfalls in the use of thermal sensing for monitoring water stress and transpiration","volume":"1197","author":"Jones","year":"2018","journal-title":"Acta Hortic."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1080\/10106049.2016.1240720","article-title":"Monitoring dual-season hydrological dynamics of seasonally flooded wetlands in the lower reach of Mayurakshi River, Eastern India","volume":"33","author":"Mondal","year":"2018","journal-title":"Geocarto Int."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1561","DOI":"10.1007\/s12665-013-2562-1","article-title":"Geomorphology and the controls of geohydrology on waterlogging in Gangetic Plains, North Bihar, India","volume":"71","author":"Singh","year":"2014","journal-title":"Environ. Earth Sci."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1007\/BF03025910","article-title":"Detection and delineation of waterlogging by remote sensing techniques","volume":"25","author":"Choubey","year":"1997","journal-title":"J. Indian Soc. Remote. Sens."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"754","DOI":"10.1016\/j.agwat.2008.02.009","article-title":"Assessment of surface and sub-surface waterlogged areas in irrigation command areas of Bihar state using remote sensing and GIS","volume":"95","author":"Chowdary","year":"2008","journal-title":"Agric. Water Manag."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1002\/hyp.9218","article-title":"The use of GIS and remote sensing for the assessment of waterlogging in the dryland irrigated catchments of Farafra Oasis, Egypt","volume":"27","author":"Ali","year":"2013","journal-title":"Hydrol. Process."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.agwat.2016.05.014","article-title":"Drain for Gain: Managing salinity in irrigated lands\u2014A review","volume":"176","author":"Ritzema","year":"2016","journal-title":"Agric. Water Manag."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"340","DOI":"10.3389\/fpls.2019.00340","article-title":"Submergence and waterlogging stress in plants A review highlighting research opportunities and understudied aspects","volume":"10","author":"Fukao","year":"2019","journal-title":"Front. Plant Sci."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1104\/pp.15.00387","article-title":"Ethylene-mediated acclimations to flooding stress","volume":"169","author":"Sasidharan","year":"2015","journal-title":"Plant Physiol."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1007\/s10535-008-0084-6","article-title":"Physiology and biochemistry of waterlogging tolerance in plants","volume":"52","author":"Sairam","year":"2008","journal-title":"Biol. Plant."},{"key":"ref_40","first-page":"20","article-title":"An overview of plant responses to soil waterlogging","volume":"2","author":"Parent","year":"2008","journal-title":"Plant Stress"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1007\/s00709-009-0098-8","article-title":"Physiological and biochemical changes in plants under waterlogging","volume":"241","author":"Irfan","year":"2010","journal-title":"Protoplasma"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1475","DOI":"10.1002\/agj2.20093","article-title":"Impacts and management strategies for crop production in waterlogged or flooded soils: A review","volume":"112","author":"Kaur","year":"2020","journal-title":"Agron. J."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"228","DOI":"10.1016\/j.plaphy.2020.01.020","article-title":"Plant waterlogging\/flooding stress responses: From seed germination to maturation","volume":"148","author":"Zhou","year":"2020","journal-title":"Plant Physiol. Biochem."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1007\/s12355-014-0319-0","article-title":"Adaptive responses of sugarcane to waterlogging stress: An over view","volume":"17","author":"Gomathi","year":"2015","journal-title":"Sugar Tech"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"639","DOI":"10.1146\/annurev-arplant-050213-035645","article-title":"Adventitious roots and lateral roots: Similarities and differences","volume":"65","author":"Bellini","year":"2014","journal-title":"Annu. Rev. Plant Biol."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"706","DOI":"10.1556\/0806.44.2016.026","article-title":"Grain yield of durum wheat as affected by waterlogging at tillering","volume":"44","author":"Pampana","year":"2016","journal-title":"Cereal Res. Commun."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1111\/jac.12118","article-title":"Wheat yield as affected by length of exposure to waterlogging during stem elongation","volume":"201","author":"Marti","year":"2015","journal-title":"J. Agron. Crop. Sci."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.fcr.2016.04.040","article-title":"Performance of soft red winter wheat subjected to field soil waterlogging: Grain yield and yield components","volume":"194","author":"Arguello","year":"2016","journal-title":"Field Crop. Res."},{"key":"ref_49","first-page":"44","article-title":"Waterlogging stress adversely affects growth and development of Tomato","volume":"2","author":"Tareq","year":"2020","journal-title":"Asian J. Crop"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1590\/S1677-04202010000200007","article-title":"Flooding tolerance of tomato genotypes during vegetative and reproductive stages","volume":"22","author":"Ezin","year":"2010","journal-title":"Braz. J. Plant Physiol."},{"key":"ref_51","first-page":"760","article-title":"Impact of short term water logging on flowering, fruit setting, yield and yield attributes in tomato (Solanum lycopersicum L. Mill)","volume":"9","author":"Mohanty","year":"2020","journal-title":"J. Pharmacogn. Phytochem."},{"key":"ref_52","first-page":"59","article-title":"Morphological and yield responses of maize (Zea mays L.) genotypes subjected to root zone excess soil moisture stress","volume":"6","author":"Shah","year":"2012","journal-title":"Plant Stress"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"97","DOI":"10.2134\/agronj2016.07.0411","article-title":"Soil waterlogging and nitrogen fertilizer management effects on corn and soybean yields","volume":"109","author":"Kaur","year":"2017","journal-title":"Agron. J."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1060","DOI":"10.2134\/agronj2015.0547","article-title":"Root and shoot responses of summer maize to waterlogging at different stages","volume":"108","author":"Ren","year":"2016","journal-title":"Agron. J."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"135","DOI":"10.1007\/s00271-009-0168-x","article-title":"Yield and nutritional responses to waterlogging of soybean cultivars","volume":"28","author":"Rhine","year":"2010","journal-title":"Irrig. Sci."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"93","DOI":"10.2135\/cropsci2001.41193x","article-title":"Evaluating on-farm flooding impacts on soybean","volume":"41","author":"Sullivan","year":"2001","journal-title":"Crop Sci."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"1576","DOI":"10.2135\/cropsci1998.0011183X003800060028x","article-title":"Waterlogging effects on growth and yield components in late-planted soybean","volume":"38","author":"Linkemer","year":"1998","journal-title":"Crop Sci."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"03007","DOI":"10.1051\/e3sconf\/202014203007","article-title":"Tolerance Screening of Sugarcane Varieties Toward Waterlogging Stress","volume":"Volume 142","author":"Avivi","year":"2020","journal-title":"E3S Web of Conferences"},{"key":"ref_59","first-page":"173","article-title":"Effect of irrigation-induced salinity and sodicity on sugarcane yield","volume":"76","author":"Rietz","year":"2002","journal-title":"Proc. S. Afr. Sugar Technol. Assoc."},{"key":"ref_60","unstructured":"Warrence, N.J., Bauder, J.W., and Pearson, K.E. (2002). Basics of Salinity and Sodicity Effects on Soil Physical Properties, Montana State University-Bozeman."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"den Besten, N., Kassing, R., Muchanga, E., Earnshaw, C., de Jeu, R., Karimi, P., and van der Zaag, P. (2020). A novel approach to the use of earth observation to estimate daily evaporation in a sugarcane plantation in Xinavane, Mozambique. Phys. Chem. Earth Parts A\/B\/C, 102940.","DOI":"10.1016\/j.pce.2020.102940"},{"key":"ref_62","unstructured":"Vilanculos, M., and Mafalacusser, J. (2012). Soil Survey Report of Acucareira de Xinavane, SA, Instituto de Investigacao Agraria de Mocambique. Technical Report."},{"key":"ref_63","first-page":"1","article-title":"Unstable crop yields reveal opportunities for site-specific adaptations to climate variability","volume":"10","author":"Basso","year":"2020","journal-title":"Sci. Rep."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1016\/j.agwat.2007.09.012","article-title":"Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers\u2019 fields","volume":"95","author":"Ritzema","year":"2008","journal-title":"Agric. Water Manag."},{"key":"ref_65","doi-asserted-by":"crossref","unstructured":"Wang, Z., Wang, K., Liu, K., Cheng, L., Wang, L., and Ye, A. (2019). Interactions between Lake-Level Fluctuations and Waterlogging Disasters around a Large-Scale Shallow Lake: An Empirical Analysis from China. Water, 11.","DOI":"10.3390\/w11020318"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"125325","DOI":"10.1016\/j.jhydrol.2020.125325","article-title":"Development of a waterlogging analysis system for paddy fields in irrigation districts","volume":"591","author":"Chen","year":"2020","journal-title":"J. Hydrol."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1007\/s12524-010-0051-5","article-title":"Delineation and characterization of waterlogged salt affected soils in IGNP using remote sensing and GIS","volume":"39","author":"Mandal","year":"2011","journal-title":"J. Indian Soc. Remote. Sens."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1007\/BF02990781","article-title":"Temporal behaviour of surface waterlogged areas using spaceborne multispectral multitemporal measurements","volume":"35","author":"Dwivedi","year":"2007","journal-title":"J. Indian Soc. Remote. Sens."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"1791","DOI":"10.1016\/S2095-3119(13)60563-8","article-title":"Monitoring perennial sub-surface waterlogged croplands based on MODIS in Jianghan Plain, middle reaches of the Yangtze River","volume":"13","author":"Fei","year":"2014","journal-title":"J. Integr. Agric."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"111402","DOI":"10.1016\/j.rse.2019.111402","article-title":"Remote sensing for agricultural applications: A meta-review","volume":"236","author":"Weiss","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_71","doi-asserted-by":"crossref","unstructured":"Martens, B., de Jeu, R., Verhoest, N., Schuurmans, H., Kleijer, J., and Miralles, D. (2018). Towards Estimating Land Evaporation at Field Scales Using GLEAM. Remote Sens., 10.","DOI":"10.3390\/rs10111720"},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"111201","DOI":"10.1016\/j.rse.2019.05.020","article-title":"Satellite data-driven modeling of field scale evapotranspiration in croplands using the MOD16 algorithm framework","volume":"230","author":"He","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"741","DOI":"10.4314\/wsa.v35i5.49201","article-title":"Review of commonly used remote sensing and ground-based technologies to measure plant water stress","volume":"35","author":"Govender","year":"2009","journal-title":"Water Sa"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"265","DOI":"10.1146\/annurev.py.24.090186.001405","article-title":"Remote sensing of biotic and abiotic plant stress","volume":"24","author":"Jackson","year":"1986","journal-title":"Annu. Rev. Phytopathol."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"4671","DOI":"10.1093\/jxb\/ers165","article-title":"Estimating evapotranspiration and drought stress with ground-based thermal remote sensing in agriculture: A review","volume":"63","author":"Maes","year":"2012","journal-title":"J. Exp. Bot."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.compag.2017.05.001","article-title":"An overview of current and potential applications of thermal remote sensing in precision agriculture","volume":"139","author":"Khanal","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"223","DOI":"10.1007\/s00271-007-0088-6","article-title":"ET mapping for agricultural water management: Present status and challenges","volume":"26","author":"Gowda","year":"2008","journal-title":"Irrig. Sci."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/s90100001","article-title":"A one-layer satellite surface energy balance for estimating evapotranspiration rates and crop water stress indexes","volume":"9","author":"Barbagallo","year":"2009","journal-title":"Sensors"},{"key":"ref_79","first-page":"111490N","article-title":"The influence of shallow groundwater on the actual transpiration flux of irrigated fields using satellite observations","volume":"Volume 11149","author":"Schellekens","year":"2019","journal-title":"Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI"},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"519","DOI":"10.1016\/j.rse.2007.04.015","article-title":"Development of a global evapotranspiration algorithm based on MODIS and global meteorology data","volume":"111","author":"Mu","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1016\/S0022-1694(98)00253-4","article-title":"A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation","volume":"212","author":"Bastiaanssen","year":"1998","journal-title":"J. Hydrol."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.jhydrol.2009.03.002","article-title":"Up-scaling of SEBAL derived evapotranspiration maps from Landsat (30 m) to MODIS (250 m) scale","volume":"370","author":"Hong","year":"2009","journal-title":"J. Hydrol."},{"key":"ref_83","doi-asserted-by":"crossref","unstructured":"Miralles, D., Holmes, T., De Jeu, R., Gash, J., Meesters, A., and Dolman, A. (2011). Global Land-Surface Evaporation Estimated from Satellite-Based Observations. [Ph.D. Thesis, VU University Amsterdam].","DOI":"10.5194\/hessd-7-8479-2010"},{"key":"ref_84","doi-asserted-by":"crossref","unstructured":"Anderson, M.C., Norman, J.M., Mecikalski, J.R., Otkin, J.A., and Kustas, W.P. (2007). A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res. Atmos., 112.","DOI":"10.1029\/2006JD007506"},{"key":"ref_85","first-page":"5957","article-title":"Mapping daily evapotranspiration at field to global scales using geostationary and polar orbiting satellite imagery","volume":"7","author":"Anderson","year":"2010","journal-title":"Hydrol. Earth Syst. Sci. Discuss"},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1016\/S0034-4257(03)00036-1","article-title":"Estimating subpixel surface temperatures and energy fluxes from the vegetation index\u2013radiometric temperature relationship","volume":"85","author":"Kustas","year":"2003","journal-title":"Remote Sens. Environ."},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"979","DOI":"10.3390\/s7060979","article-title":"A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields","volume":"7","author":"Senay","year":"2007","journal-title":"Sensors"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"665","DOI":"10.13031\/2013.28855","article-title":"Lysimetric evaluation of Simplified Surface Energy Balance approach in the Texas high plains","volume":"25","author":"Gowda","year":"2009","journal-title":"Appl. Eng. Agric."},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1016\/0168-1923(95)02265-Y","article-title":"Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature","volume":"77","author":"Norman","year":"1995","journal-title":"Agric. For. Meteorol."},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1016\/j.rse.2014.11.003","article-title":"Remote sensing of evapotranspiration over cotton using the TSEB and METRIC energy balance models","volume":"158","author":"French","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"380","DOI":"10.1061\/(ASCE)0733-9437(2007)133:4(380)","article-title":"Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)\u2014Model","volume":"133","author":"Allen","year":"2007","journal-title":"J. Irrig. Drain. Eng."},{"key":"ref_92","unstructured":"FAO (2018). Database Methodology: Level 2 Data, Food and Agriculture Organization of the United Nations. Technical Report."},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"901","DOI":"10.1016\/j.rse.2007.06.025","article-title":"Global estimates of the land\u2013atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites","volume":"112","author":"Fisher","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_94","doi-asserted-by":"crossref","unstructured":"Prigent, C., Lettenmaier, D.P., Aires, F., and Papa, F. (2016). Toward a high-resolution monitoring of continental surface water extent and dynamics, at global scale: From GIEMS (Global Inundation Extent from Multi-Satellites) to SWOT (Surface Water Ocean Topography). Surveys in Geophysics, Springer.","DOI":"10.1007\/978-3-319-32449-4_7"},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"1673","DOI":"10.1080\/01431168908903998","article-title":"Observation of hydrological features with Nimbus-7 37 GHz data, applied to South America","volume":"10","author":"Giddings","year":"1989","journal-title":"Int. J. Remote Sens."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/0034-4257(94)90115-5","article-title":"Determination of inundation area in the Amazon River floodplain using the SMMR 37 GHz polarization difference","volume":"48","author":"Sippel","year":"1994","journal-title":"Remote Sens. Environ."},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1175\/1525-7541(2001)002<0297:UTSSMI>2.0.CO;2","article-title":"Using the Special Sensor Microwave Imager to monitor surface wetness","volume":"2","author":"Basist","year":"2001","journal-title":"J. Hydrometeorol."},{"key":"ref_98","unstructured":"Ulaby, F.T., Moore, R.K., and Fung, A.K. (1981). Microwave Remote Sensing: Active and Passive. Volume 1-Microwave Remote Sensing Fundamentals and Radiometry, Artech House."},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"20665","DOI":"10.1029\/2000JD900801","article-title":"Joint characterization of vegetation by satellite observations from visible to microwave wavelengths: A sensitivity analysis","volume":"106","author":"Prigent","year":"2001","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"1579","DOI":"10.1080\/01431168908903993","article-title":"Monitoring global land surface using Nimbus-7 37 GHz data theory and examples","volume":"10","author":"Choudhury","year":"1989","journal-title":"Int. J. Remote. Sens."},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"3055","DOI":"10.1080\/014311698214181","article-title":"Passive microwave observations of inundation area and the area\/stage relation in the Amazon River floodplain","volume":"19","author":"Sippe","year":"1998","journal-title":"Int. J. Remote. Sens."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1127\/archiv-hydrobiol\/137\/1996\/1","article-title":"Inundation patterns in the Pantanal wetland of South America determined from passive microwave remote sensing","volume":"137","author":"Hamilton","year":"1996","journal-title":"Arch. F\u00dcR Hydrobiol."},{"key":"ref_103","unstructured":"Shang, H. (2017). Applications of Passive Microwave Data to Monitor Inundated Areas and Model Stream Flow. [Ph.D. Thesis, Delft University of Technology]."},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1080\/02757259609532320","article-title":"The satellite forecasting funnel approach for predicting flash floods","volume":"14","author":"Scofield","year":"1996","journal-title":"Remote Sens. Rev."},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2006JD007847","article-title":"Global inundation dynamics inferred from multiple satellite observations, 1993\u20132000","volume":"112","author":"Prigent","year":"2007","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_106","doi-asserted-by":"crossref","unstructured":"Parrens, M., Al Bitar, A., Frappart, F., Papa, F., Calmant, S., Cr\u00e9taux, J.F., Wigneron, J.P., and Kerr, Y. (2017). Mapping dynamic water fraction under the tropical rain forests of the Amazonian Basin from SMOS brightness temperatures. Water, 9.","DOI":"10.3390\/w9050350"},{"key":"ref_107","doi-asserted-by":"crossref","unstructured":"Chaubell, J., Yueh, S., Entekhabi, D., and Peng, J. (2016, January 10\u201315). Resolution enhancement of SMAP radiometer data using the Backus Gilbert optimum interpolation technique. Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China.","DOI":"10.1109\/IGARSS.2016.7729065"},{"key":"ref_108","unstructured":"de Jeu, R.A.M., de Nijs, A.H.A., and van Klink, M.H.W. (2020). Method and System for Improving the Resolution of Sensor Data. (10,643,098), U.S. Patent."},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"180","DOI":"10.1016\/j.rse.2016.11.026","article-title":"The merging of radiative transfer based surface soil moisture data from SMOS and AMSR-E","volume":"189","author":"Kerr","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_110","unstructured":"Lillesand, T., Kiefer, R.W., and Chipman, J. (2015). Remote Sensing and Image Interpretation, John Wiley & Sons."},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1038\/nature20584","article-title":"High-resolution mapping of global surface water and its long-term changes","volume":"540","author":"Pekel","year":"2016","journal-title":"Nature"},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"e2019JD030711","DOI":"10.1029\/2019JD030711","article-title":"Satellite-derived global surface water extent and dynamics over the last 25 years (GIEMS-2)","volume":"125","author":"Prigent","year":"2020","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1016\/j.rse.2006.11.012","article-title":"Mapping of flood dynamics and spatial distribution of vegetation in the Amazon floodplain using multitemporal SAR data","volume":"108","author":"Martinez","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"2650","DOI":"10.1109\/JSTARS.2017.2711960","article-title":"Mapping flooded vegetation using COSMO-SkyMed: Comparison with polarimetric and optical data over rice fields","volume":"10","author":"Pierdicca","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens."},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"2255","DOI":"10.1080\/01431161.2017.1420938","article-title":"SAR-based detection of flooded vegetation\u2014A review of characteristics and approaches","volume":"39","author":"Tsyganskaya","year":"2018","journal-title":"Int. J. Remote. Sens."},{"key":"ref_116","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.rse.2011.05.028","article-title":"GMES Sentinel-1 mission","volume":"120","author":"Torres","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_117","unstructured":"Davidson, M., Chini, M., Dierking, W., Djavidnia, S., Haarpaintner, J., Hajduch, G., Laurin, G., Lavalle, M., L\u00f3pez-Mart\u00ednez, C., and Nagler, T. (2021, April 13). Copernicus L-band SAR Mission Requirements Document. Available online: https:\/\/esamultimedia.esa.int\/docs\/EarthObservation\/Copernicus_L-band_SAR_mission_ROSE-L_MRD_v2.0_issued.pdf."},{"key":"ref_118","doi-asserted-by":"crossref","unstructured":"Jensen, K., McDonald, K., Podest, E., Rodriguez-Alvarez, N., Horna, V., and Steiner, N. (2018). Assessing L-band GNSS-reflectometry and imaging radar for detecting sub-canopy inundation dynamics in a tropical wetlands complex. Remote Sens., 10.","DOI":"10.3390\/rs10091431"},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"16688","DOI":"10.3390\/rs71215843","article-title":"Development and evaluation of a multi-year fractional surface water data set derived from active\/passive microwave remote sensing data","volume":"7","author":"Schroeder","year":"2015","journal-title":"Remote Sens."},{"key":"ref_120","first-page":"58","article-title":"High resolution mapping of inundation area in the Amazon basin from a combination of L-band passive microwave, optical and radar datasets","volume":"81","author":"Parrens","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_121","doi-asserted-by":"crossref","unstructured":"Papa, F., Prigent, C., Aires, F., Jimenez, C., Rossow, W., and Matthews, E. (2010). Interannual variability of surface water extent at the global scale, 1993\u20132004. J. Geophys. Res. Atmos., 115.","DOI":"10.1029\/2009JD012674"},{"key":"ref_122","first-page":"NH23E\u20132833","article-title":"Mapping Daily and Maximum Flood Extents at 90-m Resolution During Hurricanes Harvey and Irma Using Passive Microwave Remote Sensing","volume":"2017","author":"Galantowicz","year":"2017","journal-title":"AGU Fall Meet. Abstr."},{"key":"ref_123","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1175\/JHM-D-12-093.1","article-title":"A long-term, high-resolution wetland dataset over the Amazon Basin, downscaled from a multiwavelength retrieval using SAR data","volume":"14","author":"Aires","year":"2013","journal-title":"J. Hydrometeorol."},{"key":"ref_124","unstructured":"Galantowicz, J.F. (2002, January 24\u201328). High-resolution flood mapping from low-resolution passive microwave data. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada."},{"key":"ref_125","doi-asserted-by":"crossref","first-page":"1305","DOI":"10.1175\/JHM-D-16-0155.1","article-title":"A global dynamic long-term inundation extent dataset at high spatial resolution derived through downscaling of satellite observations","volume":"18","author":"Aires","year":"2017","journal-title":"J. Hydrometeorol."},{"key":"ref_126","doi-asserted-by":"crossref","first-page":"225","DOI":"10.3389\/feart.2018.00225","article-title":"The need for a high-accuracy, open-access global DEM","volume":"6","author":"Schumann","year":"2018","journal-title":"Front. Earth Sci."},{"key":"ref_127","doi-asserted-by":"crossref","unstructured":"Wang, X., Deng, Z., Zhang, W., Meng, Z., Chang, X., and Lv, M. (2017). Effect of waterlogging duration at different growth stages on the growth, yield and quality of cotton. PLoS ONE, 12.","DOI":"10.1371\/journal.pone.0169029"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/15\/2929\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,16]],"date-time":"2024-07-16T02:58:00Z","timestamp":1721098680000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/15\/2929"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7,26]]},"references-count":127,"journal-issue":{"issue":"15","published-online":{"date-parts":[[2021,8]]}},"alternative-id":["rs13152929"],"URL":"https:\/\/doi.org\/10.3390\/rs13152929","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2021,7,26]]}}}