{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T18:23:00Z","timestamp":1732040580144},"reference-count":75,"publisher":"MDPI AG","issue":"12","license":[{"start":{"date-parts":[[2021,6,19]],"date-time":"2021-06-19T00:00:00Z","timestamp":1624060800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Spatial information embedded in a crop model can improve yield prediction. Leaf area index (LAI) is a well-known crop variable often estimated from remote-sensing data and used as an input into crop models. In this study, we evaluated the assimilation of LAI derived from high-resolution (both spatial and temporal) satellite imagery into a mechanistic crop model, a simple algorithm for yield estimate (SAFY), to assess the within-field crop yield. We tested this approach on spring wheat grown in Israel. Empirical LAI models were derived from the biophysical processor for Sentinel-2 LAI and spectral vegetation indices from Sentinel-2 and PlanetScope images. The predicted grain yield obtained from the SAFY model was compared against the harvester\u2019s yield map. LAI derived from PlanetScope and Sentinel-2 fused images achieved higher yield prediction (RMSE = 69 g\/m2) accuracy than that of Sentinel-2 LAI (RMSE = 88 g\/m2). Even though the spatial yield estimation was only moderately correlated to the ground truth (R2 = 0.45), this is consistent with current studies in this field, and the potential to capture within-field yield variations using high-resolution imagery has been demonstrated. Accordingly, this is the first application of PlanetScope and Sentinel-2 images conjointly used to obtain a high-density time series of LAI information to model within-field yield variability.<\/jats:p>","DOI":"10.3390\/rs13122395","type":"journal-article","created":{"date-parts":[[2021,6,21]],"date-time":"2021-06-21T01:50:15Z","timestamp":1624240215000},"page":"2395","source":"Crossref","is-referenced-by-count":22,"title":["Studying the Feasibility of Assimilating Sentinel-2 and PlanetScope Imagery into the SAFY Crop Model to Predict Within-Field Wheat Yield"],"prefix":"10.3390","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6186-8941","authenticated-orcid":false,"given":"V.S.","family":"Manivasagam","sequence":"first","affiliation":[{"name":"Agricultural Research Organization, Volcani Institute, Institute of Soil, Water and Environmental Sciences, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel"},{"name":"Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham, J. P. Nagar, Arasampalayam, Myleripalayam, Coimbatore 642 109, Tamil Nadu, India"}]},{"given":"Yuval","family":"Sadeh","sequence":"additional","affiliation":[{"name":"School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7873-5619","authenticated-orcid":false,"given":"Gregoriy","family":"Kaplan","sequence":"additional","affiliation":[{"name":"Agricultural Research Organization, Volcani Institute, Institute of Soil, Water and Environmental Sciences, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel"}]},{"given":"David J.","family":"Bonfil","sequence":"additional","affiliation":[{"name":"Field Crops and Natural Resources Department, Agricultural Research Organization, Gilat Research Center, M.P. Negev 8531100, Israel"}]},{"given":"Offer","family":"Rozenstein","sequence":"additional","affiliation":[{"name":"Agricultural Research Organization, Volcani Institute, Institute of Soil, Water and Environmental Sciences, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7528809, Israel"}]}],"member":"1968","published-online":{"date-parts":[[2021,6,19]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1016\/bs.agron.2018.11.002","article-title":"Seasonal crop yield forecast: Methods, applications, and accuracies","volume":"Volume 154","author":"Basso","year":"2019","journal-title":"Advances in Agronomy"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1443","DOI":"10.1016\/j.agrformet.2010.07.008","article-title":"On the use of statistical models to predict crop yield responses to climate change","volume":"150","author":"Lobell","year":"2010","journal-title":"Agric. For. Meteorol."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/j.rse.2015.04.021","article-title":"A scalable satellite-based crop yield mapper","volume":"164","author":"Lobell","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.compag.2017.09.037","article-title":"A review on the practice of big data analysis in agriculture","volume":"143","author":"Kamilaris","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"533","DOI":"10.1016\/j.apgeog.2010.11.006","article-title":"Comparison of methods for land-use classification incorporating remote sensing and GIS inputs","volume":"31","author":"Rozenstein","year":"2011","journal-title":"Appl. Geogr."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.agwat.2005.02.013","article-title":"Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices","volume":"79","author":"Duchemin","year":"2006","journal-title":"Agric. Water Manag."},{"doi-asserted-by":"crossref","unstructured":"Kaplan, G., and Rozenstein, O. (2021). Spaceborne Estimation of Leaf Area Index in Cotton, Tomato, and Wheat Using Sentinel-2. Land, 10.","key":"ref_7","DOI":"10.3390\/land10050505"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"105554","DOI":"10.1016\/j.compag.2020.105554","article-title":"Practices for upscaling crop simulation models from field scale to large regions","volume":"175","author":"Manivasagam","year":"2020","journal-title":"Comput. Electron. Agric."},{"key":"ref_9","first-page":"41","article-title":"Wheat phenomics in the field by RapidScan: NDVI vs. NDRE","volume":"64","author":"Bonfil","year":"2017","journal-title":"Isr. J. Plant Sci."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"709","DOI":"10.1002\/jsfa.7359","article-title":"An overview of available crop growth and yield models for studies and assessments in agriculture","volume":"96","author":"Valentini","year":"2016","journal-title":"J. Sci. Food Agric."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.eja.2017.11.002","article-title":"A review of data assimilation of remote sensing and crop models","volume":"92","author":"Jin","year":"2018","journal-title":"Eur. J. Agron."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1016\/j.rse.2017.04.014","article-title":"Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries","volume":"202","author":"Azzari","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1016\/j.rse.2013.07.018","article-title":"Assimilation of remotely sensed soil moisture and vegetation with a crop simulation model for maize yield prediction","volume":"138","author":"Ines","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_14","first-page":"140","article-title":"Estimating green LAI in four crops: Potential of determining optimal spectral bands for a universal algorithm","volume":"192\u2013193","author":"Peng","year":"2014","journal-title":"Agric. For. Meteorol."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1016\/j.mcm.2011.10.038","article-title":"Assimilation of MODIS-LAI into the WOFOST model for forecasting regional winter wheat yield","volume":"58","author":"Ma","year":"2013","journal-title":"Math. Comput. Model."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.fcr.2012.02.012","article-title":"Using Leaf Area Index, retrieved from optical imagery, in the STICS crop model for predicting yield and biomass of field crops","volume":"131","author":"Pattey","year":"2012","journal-title":"Field Crop. Res."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.agrformet.2015.02.001","article-title":"Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model","volume":"204","author":"Huang","year":"2015","journal-title":"Agric. For. Meteorol."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1080\/2150704X.2012.683117","article-title":"Forecasting wheat yield in Punjab state of India by combining crop simulation model WOFOST and remotely sensed inputs","volume":"4","author":"Tripathy","year":"2013","journal-title":"Remote Sens. Lett."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"251","DOI":"10.13031\/2013.29490","article-title":"Assimilating Leaf Area Index Estimates from Remote Sensing into the Simulations of a Cropping Systems Model","volume":"53","author":"Thorp","year":"2010","journal-title":"Trans. ASABE"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"876","DOI":"10.1016\/j.envsoft.2007.10.003","article-title":"A simple algorithm for yield estimates: Evaluation for semi-arid irrigated winter wheat monitored with green leaf area index","volume":"23","author":"Duchemin","year":"2008","journal-title":"Environ. Model. Softw."},{"doi-asserted-by":"crossref","unstructured":"Zhang, C., Liu, J., Dong, T., Pattey, E., Shang, J., Tang, M., Cai, H., and Saddique, Q. (2019). Coupling hyperspectral remote sensing data with a crop model to study winter wheat water demand. Remote Sens., 11.","key":"ref_21","DOI":"10.3390\/rs11141684"},{"doi-asserted-by":"crossref","unstructured":"Silvestro, P.C., Pignatti, S., Pascucci, S., Yang, H., Li, Z., Yang, G., Huang, W., and Casa, R. (2017). Estimating wheat yield in China at the field and district scale from the assimilation of satellite data into the Aquacrop and simple algorithm for yield (SAFY) models. Remote Sens., 9.","key":"ref_22","DOI":"10.3390\/rs9050509"},{"doi-asserted-by":"crossref","unstructured":"Silvestro, P.C., Pignatti, S., Yang, H., Yang, G., Pascucci, S., Castaldi, F., and Casa, R. (2017). Sensitivity analysis of the Aquacrop and SAFYE crop models for the assessment of water limited winter wheat yield in regional scale applications. PLoS ONE, 12.","key":"ref_23","DOI":"10.1371\/journal.pone.0187485"},{"key":"ref_24","first-page":"63","article-title":"Estimating winter wheat biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data","volume":"49","author":"Dong","year":"2016","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1004","DOI":"10.1080\/01431161.2013.875629","article-title":"Estimation of the dynamics and yields of cereals in a semi-arid area using remote sensing and the SAFY growth model","volume":"35","author":"Chahbi","year":"2014","journal-title":"Int. J. Remote Sens."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"844","DOI":"10.1016\/j.rse.2012.04.005","article-title":"Maize and sunflower biomass estimation in southwest France using high spatial and temporal resolution remote sensing data","volume":"124","author":"Claverie","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"668","DOI":"10.1016\/j.rse.2016.07.030","article-title":"Estimating maize biomass and yield over large areas using high spatial and temporal resolution Sentinel-2 like remote sensing data","volume":"184","author":"Battude","year":"2016","journal-title":"Remote Sens. Environ."},{"doi-asserted-by":"crossref","unstructured":"Kang, Y., \u00d6zdo\u011fan, M., Zipper, S.C., Rom\u00e1n, M.O., Walker, J., Hong, S.Y., Marshall, M., Magliulo, V., Moreno, J., and Alonso, L. (2016). How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? A global assessment. Remote Sens., 8.","key":"ref_28","DOI":"10.3390\/rs8070597"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.fcr.2018.12.003","article-title":"Early prediction of wheat grain yield production from root-zone soil water content at heading using Crop RS-Met","volume":"232","author":"Helman","year":"2019","journal-title":"Field Crop. Res."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41598-019-51715-7","article-title":"High temporal resolution of leaf area data improves empirical estimation of grain yield","volume":"9","author":"Waldner","year":"2019","journal-title":"Sci. Rep."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"568","DOI":"10.1016\/j.compag.2019.01.042","article-title":"Sowing date detection at the field scale using CubeSats remote sensing","volume":"157","author":"Sadeh","year":"2019","journal-title":"Comput. Electron. Agric."},{"doi-asserted-by":"crossref","unstructured":"Helman, D., Bahat, I., Netzer, Y., Ben-Gal, A., Alchanatis, V., Peeters, A., and Cohen, Y. (2018). Using time series of high-resolution planet satellite images to monitor grapevine stem water potential in commercial vineyards. Remote Sens., 10.","key":"ref_32","DOI":"10.3390\/rs10101615"},{"doi-asserted-by":"crossref","unstructured":"Houborg, R., and McCabe, M.F. (2016). High-Resolution NDVI from planet\u2019s constellation of earth observing nano-satellites: A new data source for precision agriculture. Remote Sens., 8.","key":"ref_33","DOI":"10.3390\/rs8090768"},{"doi-asserted-by":"crossref","unstructured":"Houborg, R., and McCabe, M.F. (2018). Daily retrieval of NDVI and LAI at 3 m resolution via the fusion of CubeSat, Landsat, and MODIS data. Remote Sens., 10.","key":"ref_34","DOI":"10.3390\/rs10060890"},{"key":"ref_35","first-page":"102260","article-title":"Fusion of Sentinel-2 and PlanetScope time-series data into daily 3 m surface reflectance and wheat LAI monitoring","volume":"96","author":"Sadeh","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"111410","DOI":"10.1016\/j.rse.2019.111410","article-title":"High resolution wheat yield mapping using Sentinel-2","volume":"233","author":"Hunt","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"2189","DOI":"10.1073\/pnas.1616919114","article-title":"Satellite-based assessment of yield variation and its determinants in smallholder African systems","volume":"114","author":"Burke","year":"2017","journal-title":"Proc. Natl. Acad. Sci. USA"},{"doi-asserted-by":"crossref","unstructured":"Jin, Z., Azzari, G., Burke, M., Aston, S., and Lobell, D.B. (2017). Mapping smallholder yield heterogeneity at multiple scales in eastern Africa. Remote Sens., 9.","key":"ref_38","DOI":"10.3390\/rs9090931"},{"doi-asserted-by":"crossref","unstructured":"Zhao, Y., Potgieter, A.B., Zhang, M., Wu, B., and Hammer, G.L. (2020). Predicting wheat yield at the field scale by combining high-resolution Sentinel-2 satellite imagery and crop modelling. Remote Sens., 12.","key":"ref_39","DOI":"10.3390\/rs12061024"},{"doi-asserted-by":"crossref","unstructured":"Fieuzal, R., Bustillo, V., Collado, D., and Dedieu, G. (2020). Combined use of multi-temporal Landsat-8 and Sentinel-2 images for wheat yield estimates at the intra-plot spatial scale. Agronomy, 10.","key":"ref_40","DOI":"10.3390\/agronomy10030327"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.eja.2018.12.003","article-title":"Downscaling rice yield simulation at sub-field scale using remotely sensed LAI data","volume":"103","author":"Gilardelli","year":"2019","journal-title":"Eur. J. Agron."},{"doi-asserted-by":"crossref","unstructured":"Kayad, A., Sozzi, M., Gatto, S., Marinello, F., and Pirotti, F. (2019). Monitoring within-field variability of corn yield using Sentinel-2 and machine learning techniques. Remote Sens., 11.","key":"ref_42","DOI":"10.3390\/rs11232873"},{"key":"ref_43","first-page":"1","article-title":"Using HJ-CCD image and PLS algorithm to estimate the yield of field-grown winter wheat","volume":"10","author":"Zhang","year":"2020","journal-title":"Sci. Rep."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1016\/j.compag.2019.02.026","article-title":"Predicting wheat grain yield and spatial variability at field scale using a simple regression or a crop model in conjunction with Landsat images","volume":"159","author":"Gaso","year":"2019","journal-title":"Comput. Electron. Agric."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"163","DOI":"10.3934\/geosci.2017.2.163","article-title":"Combined Use of Landsat-8 and Sentinel-2A Images for Winter Crop Mapping and Winter Wheat Yield Assessment at Regional Scale","volume":"3","author":"Skakun","year":"2017","journal-title":"AIMS Geosci."},{"doi-asserted-by":"crossref","unstructured":"Lambert, M.J., Blaes, X., Traore, P.S., and Defourny, P. (2017, January 27\u201329). Estimate yield at parcel level from S2 time series in sub-Saharan smallholder farming systems. Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium.","key":"ref_46","DOI":"10.1109\/Multi-Temp.2017.8035204"},{"doi-asserted-by":"crossref","unstructured":"Kaplan, G., Fine, L., Lukyanov, V., Manivasagam, V.S., Malachy, N., Tanny, J., and Rozenstein, O. (2021). Estimating Processing Tomato Water Consumption, Leaf Area Index, and Height Using Sentinel-2 and VEN\u00b5S Imagery. Remote Sens., 13.","key":"ref_47","DOI":"10.3390\/rs13061046"},{"unstructured":"Planet Team (2020). Planet Surface Reflectance Product, Planet Labs, Inc.. Available online: https:\/\/assets.planet.com\/marketing\/PDF\/Planet_Surface_Reflectance_Technical_White_Paper.pdf.","key":"ref_48"},{"unstructured":"Weiss, M., and Baret, F. (2021, April 19). S2ToolBox Level 2 Products: LAI, FAPAR, FCOVER, Available online: http:\/\/step.esa.int\/docs\/extra\/ATBD_S2ToolBox_L2B_V1.1.pdf.","key":"ref_49"},{"unstructured":"Gascon, F., Ramoino, F., and Deanos, Y. (2017, January 23\u201328). Sentinel-2 data exploitation with ESA\u2019s Sentinel-2 Toolbox. Proceedings of the 19th EGU General Assembly, EGU2017, Vienna, Austria.","key":"ref_50"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s40965-017-0038-z","article-title":"Construction of smooth daily remote sensing time series data: A higher spatiotemporal resolution perspective","volume":"2","author":"Pan","year":"2017","journal-title":"Open Geospat. Data Softw. Stand."},{"doi-asserted-by":"crossref","unstructured":"Toscano, P., Castrignan\u00f2, A., Di Gennaro, S.F., Vonella, A.V., Ventrella, D., and Matese, A. (2019). A precision agriculture approach for durum wheat yield assessment using remote sensing data and yield mapping. Agronomy, 9.","key":"ref_52","DOI":"10.3390\/agronomy9080437"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"1030","DOI":"10.1007\/s11119-018-09632-8","article-title":"Protocol for automating error removal from yield maps","volume":"20","author":"Vega","year":"2019","journal-title":"Precis. Agric."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1843","DOI":"10.1016\/j.agrformet.2011.08.002","article-title":"Potential performances of remotely sensed LAI assimilation in WOFOST model based on an OSS Experiment","volume":"151","author":"Curnel","year":"2011","journal-title":"Agric. For. Meteorol."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.eja.2018.10.008","article-title":"Evaluation of regional estimates of winter wheat yield by assimilating three remotely sensed reflectance datasets into the coupled WOFOST\u2013PROSAIL model","volume":"102","author":"Huang","year":"2019","journal-title":"Eur. J. Agron."},{"doi-asserted-by":"crossref","unstructured":"Manivasagam, V.S., Kaplan, G., and Rozenstein, O. (2019). Developing Transformation Functions for VEN\u03bcS and Sentinel-2 Surface Reflectance over Israel. Remote Sens., 11.","key":"ref_56","DOI":"10.3390\/rs11141710"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.rse.2018.09.002","article-title":"The Harmonized Landsat and Sentinel-2 surface reflectance data set","volume":"219","author":"Claverie","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"112174","DOI":"10.1016\/j.rse.2020.112174","article-title":"A million kernels of truth: Insights into scalable satellite maize yield mapping and yield gap analysis from an extensive ground dataset in the US Corn Belt","volume":"253","author":"Deines","year":"2020","journal-title":"Remote Sens. Environ."},{"doi-asserted-by":"crossref","unstructured":"Bellakanji, A.C., Zribi, M., Lili-Chabaane, Z., and Mougenot, B. (2018). Forecasting of cereal yields in a semi-arid area using the simple algorithm for yield estimation (SAFY) agro-meteorological model combined with optical SPOT\/HRV images. Sensors, 18.","key":"ref_59","DOI":"10.3390\/s18072138"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1002\/jsfa.6051","article-title":"More \u201ccrop per drop\u201d: Constraints and opportunities for precision irrigation in European agriculture","volume":"93","author":"Monaghan","year":"2013","journal-title":"J. Sci. Food Agric."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"1945","DOI":"10.5194\/gmd-13-1945-2020","article-title":"Comparative analysis of atmospheric radiative transfer models using the Atmospheric Look-up table Generator (ALG) toolbox (version 2.0)","volume":"13","author":"Vicent","year":"2019","journal-title":"Geosci. Model Dev."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"3833","DOI":"10.1016\/j.rse.2008.06.006","article-title":"Development of a two-band enhanced vegetation index without a blue band","volume":"112","author":"Jiang","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"1336","DOI":"10.2134\/agronj2012.0065","article-title":"Green leaf area index estimation in maize and soybean: Combining vegetation indices to achieve maximal sensitivity","volume":"104","author":"Gitelson","year":"2012","journal-title":"Agron. J."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1029\/2002GL016450","article-title":"Remote estimation of leaf area index and green leaf biomass in maize canopies","volume":"30","author":"Gitelson","year":"2003","journal-title":"Geophys. Res. Lett."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"L08403","DOI":"10.1029\/2005GL022688","article-title":"Remote estimation of canopy chlorophyll content in crops","volume":"32","author":"Gitelson","year":"2005","journal-title":"Geophys. Res. Lett."},{"unstructured":"Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. (1974). Monitoring Vegetation Systems in the Great Plains with ERTS, NASA. NASA SP-351.","key":"ref_66"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.rse.2003.12.013","article-title":"Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture","volume":"90","author":"Haboudane","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/0034-4257(94)90134-1","article-title":"A Modified Soil Adjusted Vegetation Index","volume":"48","author":"Qi","year":"1994","journal-title":"Remote Sens. Environ."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1078\/0176-1617-01176","article-title":"Wide Dynamic Range Vegetation Index for Remote Quantification of Biophysical Characteristics of Vegetation","volume":"161","author":"Gitelson","year":"2004","journal-title":"J. Plant Physiol."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"1267","DOI":"10.1016\/j.agrformet.2011.05.005","article-title":"Application of chlorophyll-related vegetation indices for remote estimation of maize productivity","volume":"151","author":"Peng","year":"2011","journal-title":"Agric. For. Meteorol."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/0034-4257(95)00186-7","article-title":"Optimization of soil-adjusted vegetation indices","volume":"55","author":"Rondeaux","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"968","DOI":"10.2134\/agronj2005.0200","article-title":"Aerial color infrared photography for determining early in-season nitrogen requirements in corn","volume":"98","author":"Sripada","year":"2006","journal-title":"Agron. J."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1016\/S0176-1617(11)81633-0","article-title":"Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation","volume":"143","author":"Gitelson","year":"1994","journal-title":"J. Plant Physiol."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1016\/0034-4257(94)00114-3","article-title":"Estimating PAR absorbed by vegetation from bidirectional reflectance measurements","volume":"51","author":"Roujean","year":"1995","journal-title":"Remote Sens. Environ."},{"unstructured":"Haas, R.H., Deering, D.W., Rouse, J.W., and Schell, J.A. (1975, January 1). Monitoring vegetation conditions from LANDSAT for use in range management. Proceedings of the NASA Earth Resources Survey Symposium, Houston, TX, USA.","key":"ref_75"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/12\/2395\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T05:43:38Z","timestamp":1725255818000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/12\/2395"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,19]]},"references-count":75,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2021,6]]}},"alternative-id":["rs13122395"],"URL":"https:\/\/doi.org\/10.3390\/rs13122395","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2021,6,19]]}}}