{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,23]],"date-time":"2024-09-23T04:22:59Z","timestamp":1727065379081},"reference-count":83,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2021,3,9]],"date-time":"2021-03-09T00:00:00Z","timestamp":1615248000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Climate change increases extreme whether events such as floods, hailstorms, or storms, which can affect agriculture, causing damages and economic loss within the agro-food sector. Optical remote sensing data have been successfully used in damage detections. Cloud conditions limit their potential, especially while monitoring floods or storms that are usually related to cloudy situations. Conversely, data from the Polarimetric Synthetic Aperture Radar (PolSAR) are operational in all-weather conditions and are sensitive to the geometrical properties of crops. Apple orchards play a key role in the Italian agriculture sector, presenting a cultivation system that is very sensitive to high-wind events. In this work, the H-\u03b1-A polarimetric decomposition technique was adopted to map damaged apple orchards with reference to a stormy event that had occurred in the study area (NW Italy) on 12 August 2020. The results showed that damaged orchards have higher H (entropy) and \u03b1 (alpha angle) values compared with undamaged ones taken as reference (Mann\u2013Whitney one-tailed test U = 14,514, p < 0.001; U = 16604, p < 0.001 for H and \u03b1, respectively). By contrast, A (anisotropy) values were significantly lower for damaged orchards (Mann\u2013Whitney one-tailed test U = 8616, p < 0.001). Based on this evidence, the authors generated a map of potentially storm-damaged orchards, assigning a probability value to each of them. This map is intended to support local funding restoration policies by insurance companies and local administrations.<\/jats:p>","DOI":"10.3390\/rs13051030","type":"journal-article","created":{"date-parts":[[2021,3,9]],"date-time":"2021-03-09T11:22:32Z","timestamp":1615288952000},"page":"1030","source":"Crossref","is-referenced-by-count":13,"title":["Sentinel-1 Polarimetry to Map Apple Orchard Damage after a Storm"],"prefix":"10.3390","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-8184-9871","authenticated-orcid":false,"given":"Samuele","family":"De Petris","sequence":"first","affiliation":[{"name":"Department of Agriculture, Forest and Food Sciences, University of Torino, L.go Braccini 2, 10095 Grugliasco, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4556-446X","authenticated-orcid":false,"given":"Filippo","family":"Sarvia","sequence":"additional","affiliation":[{"name":"Department of Agriculture, Forest and Food Sciences, University of Torino, L.go Braccini 2, 10095 Grugliasco, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8853-4247","authenticated-orcid":false,"given":"Michele","family":"Gullino","sequence":"additional","affiliation":[{"name":"Az. Agr. Fessia Franca, v. Lagnasco 6, 12030 Manta, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2468-0771","authenticated-orcid":false,"given":"Eufemia","family":"Tarantino","sequence":"additional","affiliation":[{"name":"DICATECh, Politecnico di Bari, Via Orabona 4, 70125 Bari, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4570-8013","authenticated-orcid":false,"given":"Enrico","family":"Borgogno-Mondino","sequence":"additional","affiliation":[{"name":"Department of Agriculture, Forest and Food Sciences, University of Torino, L.go Braccini 2, 10095 Grugliasco, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2021,3,9]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1362","DOI":"10.1126\/science.aal4369","article-title":"Estimating Economic Damage from Climate Change in the United States","volume":"356","author":"Hsiang","year":"2017","journal-title":"Science"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"3274","DOI":"10.1073\/pnas.1222465110","article-title":"Climate Change Effects on Agriculture: Economic Responses to Biophysical Shocks","volume":"111","author":"Nelson","year":"2014","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41467-017-01792-x","article-title":"New Science of Climate Change Impacts on Agriculture Implies Higher Social Cost of Carbon","volume":"8","author":"Moore","year":"2017","journal-title":"Nat. Commun."},{"key":"ref_4","unstructured":"(2020, December 20). FAO The Impact of Natural Hazards and Disasters on Agriculture and Food Security and Nutrition\u2013A Call for Action to Build Resilient Livelihoods. Available online: http:\/\/www.fao.org\/emergencies\/resources\/documents\/resources-detail\/zh\/c\/280784\/."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1098\/rspb.2007.1385","article-title":"Climate Change and the Effects of Temperature Extremes on Australian Flying-Foxes","volume":"275","author":"Welbergen","year":"2008","journal-title":"Proc. R. Soc. B. Biol. Sci."},{"key":"ref_6","first-page":"177","article-title":"Simulation of Hail Effects on Crop Yield Losses for Corn-Belt States in USA","volume":"28","author":"Wang","year":"2012","journal-title":"Trans. Chin. Soc. Agric. Eng."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"250","DOI":"10.21273\/HORTSCI.36.2.250","article-title":"Impact of Hurricanes on Peach and Pecan Orchards in the Southeastern United States","volume":"36","author":"Reighard","year":"2001","journal-title":"HortScience"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"21","DOI":"10.21273\/HORTTECH.4.1.21","article-title":"Managing Fruit Orchards to Minimize Hurricane Damage","volume":"4","author":"Crane","year":"1994","journal-title":"HortTechnology"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"753","DOI":"10.1016\/j.jclepro.2016.06.080","article-title":"Environmental Impacts of Food Consumption in Europe","volume":"140","author":"Notarnicola","year":"2017","journal-title":"J. Clean. Prod."},{"key":"ref_10","unstructured":"Bos-Brouwers, H.E.J., Graf, V., Aramyan, L., and Oberc, B. (2020, December 20). Food Redistribution in the EU\u2013Mapping and Analysis of Existing Regulatory and Policy Measures Impacting Food Redistribution from EU Member States. Available online: https:\/\/research.wur.nl\/en\/publications\/food-redistribution-in-the-eu-mapping-and-analysis-of-existing-re."},{"key":"ref_11","unstructured":"(2020, November 13). FAO FAOSTAT. Available online: http:\/\/www.fao.org\/faostat\/en\/#home."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Eccher, T., and Granelli, G. (2006). Fruit Quality and Yield of Different Apple Cultivars as Affected by Tree Density. Acta Hortic., 535\u2013540.","DOI":"10.17660\/ActaHortic.2006.712.66"},{"key":"ref_13","unstructured":"Childers, N.F., Morris, J.R., and Sibbett, G.S. (1995). Modern Fruit Science: Orchard and Small Fruit Culture, Horticultural Publications."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"435","DOI":"10.1016\/j.scienta.2018.03.031","article-title":"Long-Term Effects of Tree Density and Tree Shape on Apple Orchard Performance, a 20 Year Study\u2013Part 2, Economic Analysis","volume":"244","author":"Lordan","year":"2019","journal-title":"Sci. Hortic."},{"key":"ref_15","unstructured":"Lauri, P. (2016). Apple Tree Architecture and Cultivation-a Tree in a System. Proceedings of the I International Apple Symposium 1261, ISHS Acta Horticulturae."},{"key":"ref_16","first-page":"73","article-title":"Mapping Hailstorm Damaged Crop Area Using Multispectral Satellite Data","volume":"22","author":"Prabhakar","year":"2019","journal-title":"Egypt. J. Remote Sens. Space Sci."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1016\/j.reseneeco.2009.10.004","article-title":"Climate Change and Hailstorm Damage: Empirical Evidence and Implications for Agriculture and Insurance","volume":"32","author":"Botzen","year":"2010","journal-title":"Resour. Energy Econ."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"111954","DOI":"10.1016\/j.rse.2020.111954","article-title":"Dual Polarimetric Radar Vegetation Index for Crop Growth Monitoring Using Sentinel-1 SAR Data","volume":"247","author":"Mandal","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_19","first-page":"92","article-title":"Detection And Characterization of Forest Harvesting In Piedmont Through Sentinel-2 Imagery: A Methodological Proposal","volume":"45","author":"Berretti","year":"2020","journal-title":"Ann. Silvic. Res."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Sarvia, F., De Petris, S., and Borgogno-Mondino, E. (2019). Remotely sensed data to support insurance strategies in agriculture. Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, SPIE-Intl. Soc. Opt. Eng.","DOI":"10.1117\/12.2533117"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"770","DOI":"10.1080\/15481603.2020.1798600","article-title":"Multi-Scale Remote Sensing to Support Insurance Policies in Agriculture: From Mid-Term to Instantaneous Deductions","volume":"57","author":"Sarvia","year":"2020","journal-title":"GIScience Remote Sens."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Borgogno-Mondino, E., Sarvia, F., and Gomarasca, M.A. (2019). Supporting Insurance Strategies in Agriculture by Remote Sensing: A Possible Approach at Regional Level. Proceedings of the Lecture Notes in Computer Science, Springer Science and Business Media LLC.","DOI":"10.1007\/978-3-030-24305-0_15"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Sarvia, F., De Petris, S., and Borgogno-Mondino, E. (2020). A Methodological Proposal to Support Estimation of Damages from Hailstorms Based on Copernicus Sentinel 2 Data Times Series. Proceedings of the International Conference on Computational Science and Its Applications, Springer.","DOI":"10.1007\/978-3-030-58811-3_53"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Sarvia, F., Xausa, E., Petris, S.D., Cantamessa, G., and Borgogno-Mondino, E. (2021). A Possible Role of Copernicus Sentinel-2 Data to Support Common Agricultural Policy Controls in Agriculture. Agronomy, 11.","DOI":"10.3390\/agronomy11010110"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1080\/10106049.2011.562309","article-title":"Monitoring US Agriculture: The US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer Program","volume":"26","author":"Boryan","year":"2011","journal-title":"Geocarto Int."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"12","DOI":"10.1016\/j.agrformet.2015.02.021","article-title":"Towards Regional Grain Yield Forecasting with 1 Km-Resolution EO Biophysical Products: Strengths and Limitations at Pan-European Level","volume":"206","author":"Duveiller","year":"2015","journal-title":"Agric. For. Meteorol."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.agrformet.2015.03.007","article-title":"Evaluation of the Integrated Canadian Crop Yield Forecaster (ICCYF) Model for in-Season Prediction of Crop Yield across the Canadian Agricultural Landscape","volume":"206","author":"Chipanshi","year":"2015","journal-title":"Agric. For. Meteorol."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1016\/j.agrformet.2012.04.011","article-title":"Estimating Regional Winter Wheat Yield with WOFOST through the Assimilation of Green Area Index Retrieved from MODIS Observations","volume":"164","author":"Duveiller","year":"2012","journal-title":"Agric. For. Meteorol."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.rse.2005.03.015","article-title":"Application of MODIS Derived Parameters for Regional Crop Yield Assessment","volume":"97","author":"Doraiswamy","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/j.eja.2018.09.006","article-title":"Improving Regional Winter Wheat Yield Estimation through Assimilation of Phenology and Leaf Area Index from Remote Sensing Data","volume":"101","author":"Chen","year":"2018","journal-title":"Eur. J. Agron."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"4071","DOI":"10.1080\/01431160500377188","article-title":"Remote Sensing of Regional Yield Assessment of Wheat in Haryana, India","volume":"27","author":"Patel","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Orusa, T., Orusa, R., Viani, A., Carella, E., and Borgogno Mondino, E. (2020). Geomatics and EO Data to Support Wildlife Diseases Assessment at Landscape Level: A Pilot Experience to Map Infectious Keratoconjunctivitis in Chamois and Phenological Trends in Aosta Valley (NW Italy). Remote Sens., 12.","DOI":"10.3390\/rs12213542"},{"key":"ref_33","unstructured":"Ulaby, F.T., Moore, R.K., and Fung, A.K. (1981). Microwave Remote Sensing: Active and Passive. Volume 1-Microwave Remote Sensing Fundamentals and Radiometry, Artech House."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1109\/TAP.1975.1140999","article-title":"Radar Response to Vegetation","volume":"23","author":"Ulaby","year":"1975","journal-title":"IEEE Trans. Antennas Propag."},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"McNairn, H., and Shang, J. (2016). A review of multitemporal synthetic aperture radar (SAR) for crop monitoring. Multitemporal Remote Sensing, Springer.","DOI":"10.1007\/978-3-319-47037-5_15"},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Karagiannopoulou, A., Tsiakos, C., Tsimiklis, G., Tsertou, A., Amditis, A., Milcinski, G., Vesel, N., Protic, D., Kilibarda, M., and Tsakiridis, N. (2020). An integrated service-based solution addressing the modernised common agriculture policy regulations and environmental perspectives. Proceedings Volume 11528, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXII, International Society for Optics and Photonics.","DOI":"10.1117\/12.2576171"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Kanjir, U., DJuri\u0107, N., and Veljanovski, T. (2018). Sentinel-2 Based Temporal Detection of Agricultural Land Use Anomalies in Support of Common Agricultural Policy Monitoring. ISPRS Int. J. Geo Inf., 7.","DOI":"10.3390\/ijgi7100405"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"2343","DOI":"10.1109\/36.964970","article-title":"Quantitative Comparison of Classification Capability: Fully Polarimetric versus Dual and Single-Polarization SAR","volume":"39","author":"Lee","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"464","DOI":"10.1016\/j.isprsjprs.2008.12.008","article-title":"Classification Comparisons between Dual-Pol, Compact Polarimetric and Quad-Pol SAR Imagery","volume":"64","author":"Ainsworth","year":"2009","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Boerner, W.-M., Mott, H., and Luneburg, E. (1997, January 3\u20138). Polarimetry in Remote Sensing: Basic and Applied Concepts. Proceedings of the IGARSS\u201997, 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings, Remote Sensing-A Scientific Vision for Sustainable Development Singapore.","DOI":"10.1109\/IGARSS.1997.606459"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"68","DOI":"10.1109\/36.551935","article-title":"An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR","volume":"35","author":"Cloude","year":"1997","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"498","DOI":"10.1109\/36.485127","article-title":"A Review of Target Decomposition Theorems in Radar Polarimetry","volume":"34","author":"Cloude","year":"1996","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Nasirzadehdizaji, R., Balik Sanli, F., Abdikan, S., Cakir, Z., Sekertekin, A., and Ustuner, M. (2019). Sensitivity Analysis of Multi-Temporal Sentinel-1 SAR Parameters to Crop Height and Canopy Coverage. Appl. Sci., 9.","DOI":"10.3390\/app9040655"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"026020","DOI":"10.1117\/1.JRS.10.026020","article-title":"Contribution of Multitemporal Polarimetric Synthetic Aperture Radar Data for Monitoring Winter Wheat and Rapeseed Crops","volume":"10","author":"Betbeder","year":"2016","journal-title":"J. Appl. Remote Sens."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Valcarce-Di\u00f1eiro, R., Arias-P\u00e9rez, B., Lopez-Sanchez, J.M., and S\u00e1nchez, N. (2019). Multi-Temporal Dual-and Quad-Polarimetric Synthetic Aperture Radar Data for Crop-Type Mapping. Remote Sens., 11.","DOI":"10.3390\/rs11131518"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.isprsjprs.2020.03.009","article-title":"Evaluation of Sentinel-1 & 2 Time Series for Predicting Wheat and Rapeseed Phenological Stages","volume":"163","author":"Mercier","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2017.09.009","article-title":"A Crop Phenology Knowledge-Based Approach for Monthly Monitoring of Construction Land Expansion Using Polarimetric Synthetic Aperture Radar Imagery","volume":"133","author":"Qi","year":"2017","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"667","DOI":"10.1080\/2150704X.2017.1312028","article-title":"Characterizing Lodging Damage in Wheat and Canola Using Radarsat-2 Polarimetric SAR Data","volume":"8","author":"Zhao","year":"2017","journal-title":"Remote Sens. Lett."},{"key":"ref_49","first-page":"157","article-title":"Wheat Lodging Monitoring Using Polarimetric Index from RADARSAT-2 Data","volume":"34","author":"Yang","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.rse.2012.12.013","article-title":"Classification of Forest Composition Using Polarimetric Decomposition in Multiple Landscapes","volume":"131","author":"Dickinson","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s11220-010-0048-8","article-title":"The Use of Polarimetric SAR Data for Forest Disturbance Monitoring","volume":"11","author":"Trisasongko","year":"2010","journal-title":"Sens. Imaging"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1109\/36.134089","article-title":"Relating Forest Biomass to SAR Data","volume":"30","author":"Beaudoin","year":"1992","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_53","first-page":"405","article-title":"Corn Monitoring and Crop Yield Using Optical and Microwave Remote Sensing","volume":"10","author":"Ruiz","year":"2008","journal-title":"Geosci. Remote Sens."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"5503","DOI":"10.1080\/01431161.2020.1734261","article-title":"Crop Biophysical Parameter Retrieval from Sentinel-1 SAR Data with a Multi-Target Inversion of Water Cloud Model","volume":"41","author":"Mandal","year":"2020","journal-title":"Int. J. Remote Sens."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"2249","DOI":"10.1109\/36.789621","article-title":"Unsupervised Classification Using Polarimetric Decomposition and the Complex Wishart Classifier","volume":"37","author":"Lee","year":"1999","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"963","DOI":"10.1109\/36.673687","article-title":"A Three-Component Scattering Model for Polarimetric SAR Data","volume":"36","author":"Freeman","year":"1998","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Ji, K., and Wu, Y. (2015). Scattering Mechanism Extraction by a Modified Cloude-Pottier Decomposition for Dual Polarization SAR. Remote Sens., 7.","DOI":"10.3390\/rs70607447"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"3981","DOI":"10.1109\/TGRS.2009.2026052","article-title":"The Contribution of ALOS PALSAR Multipolarization and Polarimetric Data to Crop Classification","volume":"47","author":"McNairn","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_59","first-page":"2695","article-title":"Rice Phenology Monitoring by Means of SAR Polarimetry at X-Band","volume":"50","author":"Cloude","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_60","doi-asserted-by":"crossref","unstructured":"Ramsey III, E., Rangoonwala, A., Suzuoki, Y., and Jones, C.E. (2011). Oil Detection in a Coastal Marsh with Polarimetric Synthetic Aperture Radar (SAR). Remote Sens., 3.","DOI":"10.3390\/rs3122630"},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Yonezawa, C., Watanabe, M., and Saito, G. (2012). Polarimetric Decomposition Analysis of ALOS PALSAR Observation Data before and after a Landslide Event. Remote Sens., 4.","DOI":"10.3390\/rs4082314"},{"key":"ref_62","unstructured":"Cloude, S.R. The Dual Polarisation Entropy\/Alpha Decomposition. Proceedings of the 3rd International Workshop on Science and Applications of SAR Polarimetry and Polarimetric Interferometry, Noordwijk, The Netherlands."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"2233","DOI":"10.1109\/JSTARS.2016.2570427","article-title":"A Modified H- \u03b1 Classification Method for Dcp Compact Polarimetric Mode by Reconstructing Quad h and \u03b1 Parameters from Dual Ones","volume":"9","author":"Ghods","year":"2016","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_64","unstructured":"(2020, November 13). ISTAT ISTAT Data. Available online: http:\/\/dati.istat.it\/."},{"key":"ref_65","unstructured":"Mandal, D., Vaka, D.S., Bhogapurapu, N.R., Vanama, V.S.K., Kumar, V., Rao, Y.S., and Bhattacharya, A. (2021, February 09). Sentinel-1 SLC Preprocessing Workflow for Polarimetric Applications: A Generic Practice for Generating Dual-Pol Covariance Matrix Elements in SNAP S-1 Toolbox. Available online: https:\/\/www.preprints.org\/manuscript\/201911.0393\/v1."},{"key":"ref_66","doi-asserted-by":"crossref","unstructured":"Lee, J.-S., and Pottier, E. (2017). Polarimetric Radar Imaging: From Basics to Applications, CRC Press.","DOI":"10.1201\/9781420054989"},{"key":"ref_67","unstructured":"Shan, Z., Wang, C., Zhang, H., and Chen, J. (2011, January 12\u201316). H-Alpha Decomposition and Alternative Parameters for Dual Polarization SAR Data. Proceedings of the PIERS Proceedings, SuZhou, China."},{"key":"ref_68","unstructured":"Veci, L., Prats-Iraola, P., Scheiber, R., Collard, F., Fomferra, N., and Engdahl, M. (2014, January 13\u201318). The Sentinel-1 Toolbox. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, QC, Canada."},{"key":"ref_69","unstructured":"Ainsworth, T.L., Kelly, J., and Lee, J.-S. (2008, January 2\u20135). Polarimetric Analysis of Dual Polarimetric SAR Imagery. Proceedings of the 7th European Conference on Synthetic Aperture Radar; VDE, Friedrichshafen, Germany."},{"key":"ref_70","doi-asserted-by":"crossref","unstructured":"Crabbe, R.A., Lamb, D.W., Edwards, C., Andersson, K., and Schneider, D. (2019). A Preliminary Investigation of the Potential of Sentinel-1 Radar to Estimate Pasture Biomass in a Grazed Pasture Landscape. Remote Sens., 11.","DOI":"10.3390\/rs11070872"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1016\/j.rse.2017.08.032","article-title":"Radar Polarization and Ecological Pattern Properties across Mediterranean-to-Arid Transition Zone","volume":"200","author":"Chang","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"7102","DOI":"10.1109\/TGRS.2018.2848285","article-title":"Polarimetric Radar Vegetation Index for Biomass Estimation in Desert Fringe Ecosystems","volume":"56","author":"Chang","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_73","doi-asserted-by":"crossref","unstructured":"Cloude, S. (2009). Polarisation: Applications in Remote Sensing, Oxford University Press.","DOI":"10.1093\/acprof:oso\/9780199569731.001.0001"},{"key":"ref_74","doi-asserted-by":"crossref","unstructured":"Raney, R.K., Cahill, J.T., Patterson, G.W., and Bussey, D.B.J. (2012). The M-Chi Decomposition of Hybrid Dual-Polarimetric Radar Data with Application to Lunar Craters. J. Geophys. Res. Planets, 117.","DOI":"10.1029\/2011JE003986"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"901","DOI":"10.3832\/ifor1992-009","article-title":"Are the New Gridded DSM\/DTMs of the Piemonte Region (Italy) Proper for Forestry? A Fast and Simple Approach for a Posteriori Metric Assessment","volume":"9","author":"Fissore","year":"2016","journal-title":"iFor. Biogeosci. For."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"13","DOI":"10.20982\/tqmp.04.1.p013","article-title":"The Mann-Whitney U: A Test for Assessing Whether Two Independent Samples Come from the Same Distribution","volume":"4","author":"Nachar","year":"2008","journal-title":"Tutor. Quant. Methods Psychol."},{"key":"ref_77","unstructured":"Hollander, M., Wolfe, D.A., and Chicken, E. (2013). Nonparametric Statistical Methods, John Wiley & Sons."},{"key":"ref_78","unstructured":"R Development Core Team, R (2013). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"1991","DOI":"10.5194\/gmd-8-1991-2015","article-title":"System for Automated Geoscientific Analyses (SAGA) v. 2.1. 4","volume":"8","author":"Conrad","year":"2015","journal-title":"Geosci. Model Dev. Discuss."},{"key":"ref_80","first-page":"229","article-title":"Compounding Probabilities from Independent Significance Tests","volume":"10","author":"Wallis","year":"1942","journal-title":"Econom. J. Econom. Soc."},{"key":"ref_81","unstructured":"Zliobaite, I. (2015). On the Relation between Accuracy and Fairness in Binary Classification. arXiv."},{"key":"ref_82","unstructured":"Akosa, J. (2021, February 09). Predictive Accuracy: A Misleading Performance Measure for Highly Imbalanced Data. Available online: https:\/\/www.semanticscholar.org\/paper\/Predictive-Accuracy-%3A-A-Misleading-Performance-for-Akosa\/8eff162ba887b6ed3091d5b6aa1a89e23342cb5c."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1109\/ICNC.2008.871","article-title":"On the Class Imbalance Problem","volume":"Volume 4","author":"Guo","year":"2008","journal-title":"Proceedings of the 2008 Fourth International Conference on Natural Computation"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/5\/1030\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,25]],"date-time":"2024-08-25T18:11:21Z","timestamp":1724609481000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/5\/1030"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3,9]]},"references-count":83,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2021,3]]}},"alternative-id":["rs13051030"],"URL":"https:\/\/doi.org\/10.3390\/rs13051030","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2021,3,9]]}}}