{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T05:42:20Z","timestamp":1720330940841},"reference-count":25,"publisher":"MDPI AG","issue":"2","license":[{"start":{"date-parts":[[2021,1,9]],"date-time":"2021-01-09T00:00:00Z","timestamp":1610150400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100010667","name":"H2020 Industrial Leadership","doi-asserted-by":"publisher","award":["687428"],"id":[{"id":"10.13039\/100010667","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Remote sensing of the atmospheric composition from current and future satellites, such as the Sentinel missions of the Copernicus programme, yields an unprecedented amount of data to monitor air quality, ozone, UV radiation and other climate variables. Hence, full exploitation of the growing wealth of information delivered by spaceborne observing systems requires addressing the technological challenges for developing new strategies and tools that are capable to deal with these huge data volumes. The H2020 AURORA (Advanced Ultraviolet Radiation and Ozone Retrieval for Applications) project investigated a novel approach for synergistic use of ozone profile measurements acquired at different frequencies (ultraviolet, visible, thermal infrared) by sensors onboard Geostationary Equatorial Orbit (GEO) and Low Earth Orbit (LEO) satellites in the framework of the Copernicus Sentinel-4 and Sentinel-5 missions. This paper outlines the main features of the technological infrastructure, designed and developed to support the AURORA data processing chain as a distributed data processing and describes in detail the key components of the infrastructure and the software prototype. The latter demonstrates the technical feasibility of the automatic execution of the full processing chain with simulated data. The Data Processing Chain (DPC) presented in this work thus replicates a processing system that, starting from the operational satellite retrievals, carries out their fusion and results in the assimilation of the fused products. These consist in ozone vertical profiles from which further modules of the chain deliver tropospheric ozone and UV radiation at the Earth\u2019s surface. The conclusions highlight the relevance of this novel approach to the synergistic use of operational satellite data and underline that the infrastructure uses general-purpose technologies and is open for applications in different contexts.<\/jats:p>","DOI":"10.3390\/rs13020210","type":"journal-article","created":{"date-parts":[[2021,1,11]],"date-time":"2021-01-11T04:03:42Z","timestamp":1610337822000},"page":"210","source":"Crossref","is-referenced-by-count":0,"title":["A Distributed Modular Data Processing Chain Applied to Simulated Satellite Ozone Observations"],"prefix":"10.3390","volume":"13","author":[{"given":"Marco","family":"Gai","sequence":"first","affiliation":[{"name":"Istituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5910-2656","authenticated-orcid":false,"given":"Flavio","family":"Barbara","sequence":"additional","affiliation":[{"name":"Istituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8902-2040","authenticated-orcid":false,"given":"Simone","family":"Ceccherini","sequence":"additional","affiliation":[{"name":"Istituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2827-5239","authenticated-orcid":false,"given":"Ugo","family":"Cortesi","sequence":"additional","affiliation":[{"name":"Istituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, Italy"}]},{"given":"Samuele","family":"Del Bianco","sequence":"additional","affiliation":[{"name":"Istituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, Italy"}]},{"given":"Cecilia","family":"Tirelli","sequence":"additional","affiliation":[{"name":"Istituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7857-8895","authenticated-orcid":false,"given":"Nicola","family":"Zoppetti","sequence":"additional","affiliation":[{"name":"Istituto di Fisica Applicata Nello Carrara del Consiglio Nazionale delle Ricerche (IFAC-CNR), I-50019 Sesto Fiorentino, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2234-6171","authenticated-orcid":false,"given":"Claudio","family":"Belotti","sequence":"additional","affiliation":[{"name":"Istituto Nazionale di Ottica del Consiglio Nazionale delle Ricerche (INO-CNR), I-50019 Sesto Fiorentino, Italy"}]},{"given":"Bruno","family":"Canessa","sequence":"additional","affiliation":[{"name":"Flyby, S.r.l., I-57128 Livorno, Italy"}]},{"given":"Vincenzo","family":"Farruggia","sequence":"additional","affiliation":[{"name":"Flyby, S.r.l., I-57128 Livorno, Italy"}]},{"given":"Andrea","family":"Masini","sequence":"additional","affiliation":[{"name":"Flyby, S.r.l., I-57128 Livorno, Italy"}]},{"given":"Arno","family":"Keppens","sequence":"additional","affiliation":[{"name":"Royal Belgian Institute for Space Aeronomy (BIRA-IASB), B-1180 Brussels, Belgium"}]},{"given":"Jean-Christopher","family":"Lambert","sequence":"additional","affiliation":[{"name":"Royal Belgian Institute for Space Aeronomy (BIRA-IASB), B-1180 Brussels, Belgium"}]},{"given":"Antti","family":"Arola","sequence":"additional","affiliation":[{"name":"Finnish Meteorological Institute, 70211 Kuopio, Finland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6902-9974","authenticated-orcid":false,"given":"Antti","family":"Lipponen","sequence":"additional","affiliation":[{"name":"Finnish Meteorological Institute, 70211 Kuopio, Finland"}]},{"given":"Olaf","family":"Tuinder","sequence":"additional","affiliation":[{"name":"Royal Netherlands Meteorological Institute, 3731 GA De Bilt, The Netherlands"}]}],"member":"1968","published-online":{"date-parts":[[2021,1,9]]},"reference":[{"key":"ref_1","unstructured":"European Commission (2020, October 22). Copernicus. Official Web Site of the Copernicus Programme. Available online: https:\/\/www.copernicus.eu\/en."},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Cortesi, U., Ceccherini, S., Del Bianco, S., Gai, M., Tirelli, C., Zoppetti, N., Barbara, F., Bonazountas, M., Argyridis, A., and B\u00f3s, A. (2018). Advanced Ultraviolet Radiation and Ozone Retrieval for Applications (AURORA): A Project Overview. Atmosphere, 9.","DOI":"10.3390\/atmos9110454"},{"key":"ref_3","unstructured":"European Commission (2020, October 22). Copernicus Atmosphere Monitoring Service. Official Web Site of the Copernicus Atmosphere Monitoring Service. Available online: https:\/\/atmosphere.copernicus.eu\/."},{"key":"ref_4","unstructured":"European Commission (2020, October 22). Copernicus Climate Chage Service. Official Web Site of the Copernicus Climate Change Service. Available online: https:\/\/climate.copernicus.eu\/."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"8476","DOI":"10.1364\/OE.23.008476","article-title":"Equivalence of data fusion and simultaneous retrieval","volume":"23","author":"Ceccherini","year":"2015","journal-title":"Opt. Express"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"573","DOI":"10.1175\/JTECH-D-19-0063.1","article-title":"Data Fusion Analysis of Sentinel-4 and Sentinel-5 Simulated Ozone Data","volume":"37","author":"Tirelli","year":"2020","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_7","first-page":"1","article-title":"The Complete Data Fusion for a Full Exploitation of Copernicus Atmospheric Sentinel Level 2 Products","volume":"2019","author":"Zoppetti","year":"2019","journal-title":"Atmos. Meas. Tech."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"2967","DOI":"10.5194\/amt-12-2967-2019","article-title":"The cost function of the data fusion process and its application","volume":"12","author":"Ceccherini","year":"2019","journal-title":"Atmos. Meas. Tech."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.5194\/amt-11-1009-2018","article-title":"Importance of interpolation and coincidence errors in data fusion","volume":"11","author":"Ceccherini","year":"2018","journal-title":"Atmos. Meas. Tech."},{"key":"ref_10","unstructured":"OPeNDAP (2020, October 22). Open-Source Project for a Network Data Access Protocol. Available online: https:\/\/www.opendap.org\/."},{"key":"ref_11","unstructured":"(2020, October 22). Open Geospatial Consortium (OGC). Available online: https:\/\/www.ogc.org\/."},{"key":"ref_12","unstructured":"Microsoft Azure (2020, October 22). Linux FUSE Adapter for Blob Storage. Microsoft Azure official Web Site. Available online: https:\/\/azure.microsoft.com\/it-it\/blog\/linux-fuse-adapter-for-blob-storage."},{"key":"ref_13","unstructured":"(2020, October 22). Celery Official Web Site of the Celery Project. Available online: https:\/\/docs.celeryproject.org."},{"key":"ref_14","unstructured":"Sanfilippo, S. (2020, October 22). REDIS. Official Web Site of the Redis Project. Available online: https:\/\/redis.io\/."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Krol, M., Houweling, S., Bregman, B., van den Broek, M., Segers, A., van Velthoven, P., Peters, W., Dentener, F., and Bergamaschi, P. (2005). The two-way nested global chemistry-transport zoom model TM5: Algorithm and applications. Atmos. Chem. Phys., 5.","DOI":"10.5194\/acpd-4-3975-2004"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"445","DOI":"10.5194\/gmd-3-445-2010","article-title":"The global chemistry transport model TM5: Description and evaluation of the tropospheric chemistry version 3.0","volume":"3","author":"Huijnen","year":"2010","journal-title":"Geosci. Model Dev."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1663","DOI":"10.1256\/qj.02.14","article-title":"Assimilation of GOME total ozone satellite observations in a three-dimensional tracer transport model","volume":"129","author":"Eskes","year":"2003","journal-title":"Q. J. Roy. Meteor. Soc."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"6671","DOI":"10.1029\/JD091iD06p06671","article-title":"Numerical advection by conservation of second-order moments","volume":"91","author":"Prather","year":"1986","journal-title":"J. Geophys. Res."},{"key":"ref_19","unstructured":"WMO (1957). Meteorology\u2014A three-dimensional science. WMO Bull., 230, 134\u2013138."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Reichler, T., Dameris, M., and Sausen, R. (2003). Determining the tropopause height from gridded data. Geophys. Res. Lett., 30.","DOI":"10.1029\/2003GL018240"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"4379","DOI":"10.5194\/amt-12-4379-2019","article-title":"Harmonization and comparison of vertically resolved atmospheric state observations: Methods, effects, and uncertainty budget","volume":"12","author":"Keppens","year":"2019","journal-title":"Atmos. Meas. Tech."},{"key":"ref_22","unstructured":"CF Convention (2020, October 22). NetCDF Climate and Forecast (CF) Metadata Conventions. Available online: https:\/\/http:\/\/cfconventions.org\/index.html\/."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Lipponen, A., Ceccherini, S., Cortesi, U., Gai, M., Keppens, A., Masini, A., Simeone, E., Tirelli, C., and Arola, A. (2020). Advanced Ultraviolet Radiation and Ozone Retrieval for Applications\u2014Surface Ultraviolet Radiation Products. Atmosphere, 11.","DOI":"10.3390\/atmos11040324"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1647","DOI":"10.5194\/gmd-9-1647-2016","article-title":"The libradtran software package for radiative transfer calculations (version 2.0.1)","volume":"9","author":"Emde","year":"2016","journal-title":"Geosci. Model Dev."},{"key":"ref_25","unstructured":"Keppens, A. (2021, January 07). Final Performance Assessment Report for the AURORA Ozone and UV Fusion Procedures and Resulting Fused Products. Available online: https:\/\/cordis.europa.eu\/project\/id\/687428\/it\/."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/2\/210\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,7]],"date-time":"2024-07-07T04:37:55Z","timestamp":1720327075000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/13\/2\/210"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,1,9]]},"references-count":25,"journal-issue":{"issue":"2","published-online":{"date-parts":[[2021,1]]}},"alternative-id":["rs13020210"],"URL":"https:\/\/doi.org\/10.3390\/rs13020210","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,1,9]]}}}