{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,5,7]],"date-time":"2025-05-07T04:19:03Z","timestamp":1746591543001,"version":"3.37.3"},"reference-count":25,"publisher":"MDPI AG","issue":"23","license":[{"start":{"date-parts":[[2020,11,28]],"date-time":"2020-11-28T00:00:00Z","timestamp":1606521600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003981","name":"Agenzia Spaziale Italiana","doi-asserted-by":"publisher","award":["2019-5-HH.0"],"id":[{"id":"10.13039\/501100003981","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"This study introduces a first assessment of the capabilities of PRISMA (PRecursore IperSpettrale della Missione Applicativa)\u2014the new hyperspectral satellite sensor of the Italian Space Agency (ASI)\u2014for Non-Photosynthetic Vegetation (NPV) monitoring, a topic which is becoming very relevant in the field of sustainable agriculture, being an indicator of crop residue (CR) presence in the field. Data-sets collected during the mission validation phase in croplands are used for mapping the NPV presence and for modelling the diagnostic absorption band of cellulose around 2.1 \u03bcm with an Exponential Gaussian Optimization approach, in the perspective of the prediction of the abundance of crop residues. Results proved that PRISMA data are suitable for these tasks, and call for further investigation to achieve quantitative estimates of specific biophysical variables, also in the framework of other hyperspectral missions.<\/jats:p>","DOI":"10.3390\/rs12233903","type":"journal-article","created":{"date-parts":[[2020,11,30]],"date-time":"2020-11-30T02:00:57Z","timestamp":1606701657000},"page":"3903","source":"Crossref","is-referenced-by-count":46,"title":["Detection and Classification of Non-Photosynthetic Vegetation from PRISMA Hyperspectral Data in Croplands"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-5473-1050","authenticated-orcid":false,"given":"Monica","family":"Pepe","sequence":"first","affiliation":[{"name":"Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy, via Bassini 15, 20133 Milano, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-3217-7575","authenticated-orcid":false,"given":"Loredana","family":"Pompilio","sequence":"additional","affiliation":[{"name":"Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy, via Bassini 15, 20133 Milano, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7631-2623","authenticated-orcid":false,"given":"Beniamino","family":"Gioli","sequence":"additional","affiliation":[{"name":"Institute of Bioeconomy, National Research Council of Italy, via Madonna del Piano, 10-50019 Sesto Fiorentino, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9634-6038","authenticated-orcid":false,"given":"Lorenzo","family":"Busetto","sequence":"additional","affiliation":[{"name":"Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy, via Bassini 15, 20133 Milano, Italy"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2156-4166","authenticated-orcid":false,"given":"Mirco","family":"Boschetti","sequence":"additional","affiliation":[{"name":"Institute for Electromagnetic Sensing of the Environment, National Research Council of Italy, via Bassini 15, 20133 Milano, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2020,11,28]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1177\/0309133315582005","article-title":"Remote sensing of terrestrial non-photosynthetic vegetation using hyperspectral, multispectral, SAR, and LiDAR data","volume":"40","author":"Li","year":"2016","journal-title":"Prog. Phys. Geogr."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1007\/s10712-018-9492-0","article-title":"Spaceborne Imaging Spectroscopy for Sustainable Agriculture: Contributions and Challenges","volume":"40","author":"Hank","year":"2019","journal-title":"Surv. Geophys."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/j.rse.2018.11.010","article-title":"Satellite mapping of tillage practices in the North Central US region from 2005 to 2016","volume":"221","author":"Azzari","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1016\/j.catena.2005.05.003","article-title":"Evaluation of soil erosion protective cover by crop residues using vegetation indices and spectral mixture analysis of multispectral and hyperspectral data","volume":"62","author":"Arsenault","year":"2005","journal-title":"Catena"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1016\/S2095-6339(15)30016-2","article-title":"Conservation agriculture in Europe","volume":"2","author":"Madarasz","year":"2014","journal-title":"Int. Soil Water Conserv. Res."},{"key":"ref_6","unstructured":"Li, Z. (2017). Quantifying Grassland Non-Photosynthetic Vegetation Biomass Using Remote Sensing Data. [Ph.D. Thesis, University of Saskatchewan]."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Hively, W.D., Lamb, B.T., Daughtry, C.S.T., Shermeyer, J., McCarty, G.W., and Quemada, M. (2018). Mapping Crop Residue and Tillage Intensity Using WorldView-3 Satellite Shortwave Infrared Residue Indices. Remote Sens., 10.","DOI":"10.3390\/rs10101657"},{"key":"ref_8","unstructured":"E.C. (2018). Directorate-General for Agriculture and Rural Development. Modernising and simplifying the CAP\u2014Challenges for agriculture and rural areas: Environment and climate dimensions. Agriculture and Rural Development Background Documents, EC."},{"key":"ref_9","first-page":"102089","article-title":"Estimating fractional cover of crop, crop residue, and soil in cropland using broadband remote sensing data and machine learning","volume":"89","author":"Yue","year":"2020","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/0034-4257(93)90020-X","article-title":"Green vegetation, nonphotosynthetic vegetation and soils in AVIRIS data","volume":"44","author":"Roberts","year":"1993","journal-title":"Remote Sens. Environ."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"177","DOI":"10.1016\/j.rse.2011.09.016","article-title":"Remote sensing of crop residue cover using multi-temporal Landsat imagery","volume":"117","author":"Zheng","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"8107","DOI":"10.3390\/rs70608107","article-title":"Spatial variability mapping of crop residue using Hyperion (EO-1) hyperspectral data","volume":"7","author":"Bannari","year":"2015","journal-title":"Remote Sens."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Daughtry, C.S.T., Graham, M.W., Stern, A.J., Quemada, M., Hively, W.D., and Russ, A.L. (2018, January 22\u201327). Landsat-8 and Worldview-3 Data for Assessing Crop Residue Cover. Proceedings of the IGARSS 2018, Valencia, Spain.","DOI":"10.1109\/IGARSS.2018.8519473"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Dennison, P.E., Qi, Y., Meerdink, S.K., Kokaly, R.F., Thompson, D.R., Daughtry, C.S.T., Quemada, M., Roberts, D.A., Gader, P.D., and Wetherley, E.B. (2019). Comparison of methods for modeling fractional cover using simulated satellite hyperspectral imager spectra. Remote Sens., 11.","DOI":"10.3390\/rs11182072"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"104","DOI":"10.1016\/0034-4257(95)00234-0","article-title":"Leaf optical properties with explicit description of its biochemical composition: Direct and inverse problems","volume":"56","author":"Fourty","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"111758","DOI":"10.1016\/j.rse.2020.111758","article-title":"Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions","volume":"242","author":"Berger","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"205","DOI":"10.1016\/j.rse.2015.07.007","article-title":"Applicability of the PROSPECT model for estimating protein and cellulose+ lignin in fresh leaves","volume":"168","author":"Wang","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_18","unstructured":"Lasaponara, R., Masini, N., and Biscione, M. (2013). The Prisma hyperspectral mission. Towards Horizon 2020: Earth Observation and Social Perspectives, Proceedings of the 33rd EARSeL Symposium, Matera, Italy, 3\u20137 June 2013, EARSeL."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.rse.2006.03.002","article-title":"Reflectance quantities in optical remote sensing\u2014Definitions and case studies","volume":"103","author":"Schaepman","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"ref_20","unstructured":"Busetto, L., and Ranghetti, L. (2020, November 04). Prismaread: A Tool for Facilitating Access and Analysis of PRISMA L1\/L2 Hyperspectral Imagery v1.0.0. Available online: https:\/\/lbusett.github.io\/prismaread\/."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1016\/j.icarus.2009.01.022","article-title":"Exponential Gaussian approach for spectral modeling: The EGO algorithm I. Band saturation","volume":"201","author":"Pompilio","year":"2009","journal-title":"Icarus"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"811","DOI":"10.1016\/j.icarus.2010.03.020","article-title":"Exponential Gaussian approach for spectral modelling: The EGO algorithm II. Band asymmetry","volume":"208","author":"Pompilio","year":"2010","journal-title":"Icarus"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Najafi, P., Navid, H., Feizizadeh, B., Eskandari, I., and Blaschke, T. (2019). Fuzzy Object-Based Image Analysis Methods Using Sentinel-2A and Landsat-8 Data to Map and Characterize Soil Surface Residue. Remote Sens., 11.","DOI":"10.3390\/rs11212583"},{"key":"ref_24","unstructured":"(2020, November 04). Agricultural Monitoring. Available online: https:\/\/ec.europa.eu\/jrc\/en\/research-topic\/agricultural-monitoring."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1249","DOI":"10.1109\/JSTARS.2014.2298752","article-title":"Toward a Semiautomatic Machine Learning Retrieval of Biophysical Parameters","volume":"7","author":"Verrelst","year":"2014","journal-title":"Sel. Top. Appl. Earth Obs. Remote Sens."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/23\/3903\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,6]],"date-time":"2024-07-06T00:08:28Z","timestamp":1720224508000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/23\/3903"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11,28]]},"references-count":25,"journal-issue":{"issue":"23","published-online":{"date-parts":[[2020,12]]}},"alternative-id":["rs12233903"],"URL":"https:\/\/doi.org\/10.3390\/rs12233903","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2020,11,28]]}}}