{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:54:49Z","timestamp":1726408489659},"reference-count":47,"publisher":"MDPI AG","issue":"23","license":[{"start":{"date-parts":[[2020,11,25]],"date-time":"2020-11-25T00:00:00Z","timestamp":1606262400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000844","name":"European Space Agency","doi-asserted-by":"publisher","award":["4000125543\/18\/I-NB","4000129872\/20\/I-DT"],"id":[{"id":"10.13039\/501100000844","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The monitoring of rivers by satellite is an up-to-date subject in hydrological studies as confirmed by the interest of space agencies to finance specific missions that respond to the quantification of surface water flows. We address the problem by using multi-spectral sensors, in the near-infrared (NIR) band, correlating the reflectance ratio between a dry and a wet pixel extracted from a time series of images, the C\/M ratio, with five river flow-related variables: water level, river discharge, flow area, mean flow velocity and surface width. The innovative aspect of this study is the use of the Ocean and Land Colour Instrument (OLCI) on board Sentinel-3 satellites, compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) used in previous studies. Our results show that the C\/M ratio from OLCI and MODIS is more correlated with the mean flow velocity than with other variables. To improve the number of observations, OLCI and MODIS products are combined into multi-mission time series. The integration provides good quality data at around daily resolution, appropriate for the analysis of the Po River investigated in this study. Finally, the combination of only MODIS products outperforms the other configurations with a frequency slightly lower (~1.8 days).<\/jats:p>","DOI":"10.3390\/rs12233867","type":"journal-article","created":{"date-parts":[[2020,11,26]],"date-time":"2020-11-26T02:55:06Z","timestamp":1606359306000},"page":"3867","source":"Crossref","is-referenced-by-count":22,"title":["River Flow Monitoring by Sentinel-3 OLCI and MODIS: Comparison and Combination"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3487-1659","authenticated-orcid":false,"given":"Angelica","family":"Tarpanelli","sequence":"first","affiliation":[{"name":"Research Institute for Geo-Hydrological Protection, National Research Council, Via Madonna Alta 126, I-06128 Perugia, Italy"}]},{"given":"Filippo","family":"Iodice","sequence":"additional","affiliation":[{"name":"VITROCISET, Bratustrasse 7, D64295 Darmstadt, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9080-260X","authenticated-orcid":false,"given":"Luca","family":"Brocca","sequence":"additional","affiliation":[{"name":"Research Institute for Geo-Hydrological Protection, National Research Council, Via Madonna Alta 126, I-06128 Perugia, Italy"}]},{"given":"Marco","family":"Restano","sequence":"additional","affiliation":[{"name":"SERCO\/ESRIN, Largo Galileo Galilei, I-00044 Frascati, Italy"}]},{"given":"J\u00e9r\u00f4me","family":"Benveniste","sequence":"additional","affiliation":[{"name":"European Space Agency\/ESRIN, Largo Galileo Galilei, I-00044 Frascati, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2020,11,25]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1890\/060148","article-title":"Climate change and the world\u2019s river basins: Anticipating management options","volume":"6","author":"Palmer","year":"2008","journal-title":"Front. Ecol. Environ."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1131","DOI":"10.1175\/JHM-D-15-0044.1","article-title":"The effect of reference climatology on global flood forecasting","volume":"17","author":"Hirpa","year":"2016","journal-title":"J. Hydrometeorol."},{"key":"ref_3","unstructured":"GCOS (2020, November 24). The Global Observing System for Climate: Implementation Needs. Available online: https:\/\/public.wmo.int\/en\/programmes\/global-climate-observing-system\/."},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Gleason, C.J., and Durand, M.T. (2020). Remote Sensing of River Discharge: A Review and a Framing for the Discipline. Remote Sens., 12.","DOI":"10.3390\/rs12071107"},{"key":"ref_5","unstructured":"Tarpanelli, A., Camici, S., Nielsen, K., Brocca, L., Moramarco, T., and Benveniste, J. (2019). Potentials and limitations of Sentinel-3 for river discharge assessment. Adv. Space Res., in press."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"LBA-26-1","DOI":"10.1029\/2001JD000609","article-title":"Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry","volume":"107","author":"Birkett","year":"2002","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"2160","DOI":"10.1016\/j.rse.2010.04.020","article-title":"Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions","volume":"114","author":"Calmant","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.asr.2016.10.008","article-title":"Satellite radar altimetry water elevations performance over a 200 m wide river: Evaluation over the Garonne River","volume":"59","author":"Biancamaria","year":"2017","journal-title":"Adv. Space Res."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1016\/j.jhydrol.2018.10.068","article-title":"Use of non-polar orbiting satellite radar altimeters of the Jason series for estimation of river input to the Arctic Ocean","volume":"568","author":"Zakharova","year":"2019","journal-title":"J. Hydrol."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Hou, J., Van Dijk, A.I., Renzullo, L.J., and Vertessy, R.A. (2018). Using modelled discharge to develop satellite-based river gauging: A case study for the Amazon Basin. Hydrol. Earth Syst. Sci., 22.","DOI":"10.5194\/hess-2018-261"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.rse.2018.10.008","article-title":"Discharge estimation in high-mountain regions with improved methods using multisource remote sensing: A case study of the Upper Brahmaputra River","volume":"219","author":"Huang","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.rse.2016.03.019","article-title":"Estimating continental river basin discharges using multiple remote sensing data sets","volume":"179","author":"Sichangi","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.rse.2013.04.010","article-title":"Toward the estimation of river discharge variations using MODIS data in ungauged basins","volume":"136","author":"Tarpanelli","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"333","DOI":"10.1029\/2018RG000598","article-title":"Detecting, extracting, and monitoring surface water from space using optical sensors: A review","volume":"56","author":"Huang","year":"2018","journal-title":"Rev. Geophys."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1029\/2005EO190001","article-title":"Space-based measurement of river runoff","volume":"86","author":"Brakenridge","year":"2005","journal-title":"Eos Trans. AGU"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1016\/j.rse.2017.04.015","article-title":"Discharge estimation and forecasting by MODIS and altimetry data in Niger-Benue River","volume":"195","author":"Tarpanelli","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"6404","DOI":"10.1002\/2015WR018545","article-title":"River gauging at global scale using optical and passive microwave remote sensing","volume":"52","author":"Brakenridge","year":"2016","journal-title":"Water Resour. Res."},{"key":"ref_18","first-page":"141","article-title":"Coupling MODIS and Radar Altimetry Data for Discharge Estimation in Poorly Gauged River Basins","volume":"8","author":"Tarpanelli","year":"2015","journal-title":"IEEE J. Sel. Top. Appl."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"329","DOI":"10.1109\/TGRS.2018.2854625","article-title":"Daily river discharge estimates by merging satellite optical sensors and radar altimetry through artificial neural network","volume":"57","author":"Tarpanelli","year":"2018","journal-title":"IEEE Trans. Geosci. Remote"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"111629","DOI":"10.1016\/j.rse.2019.111629","article-title":"Global satellite-based river gauging and the influence of river morphology on its application","volume":"239","author":"Hou","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"8404","DOI":"10.1029\/2018WR023808","article-title":"Extending the Ability of Near-Infrared Images to Monitor Small River Discharge on the Northeastern Tibetan Plateau","volume":"55","author":"Li","year":"2019","journal-title":"Water Resour. Res."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Shi, Z., Chen, Y., Liu, Q., and Huang, C. (2020). Discharge Estimation Using Harmonized Landsat and Sentinel-2 Product: Case Studies in the Murray Darling Basin. Remote Sens., 12.","DOI":"10.3390\/rs12172810"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"112092","DOI":"10.1016\/j.rse.2020.112092","article-title":"Copula-based probabilistic spectral algorithms for high-frequent streamflow estimation","volume":"251","author":"Sahoo","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.rse.2018.09.002","article-title":"The Harmonized Landsat and Sentinel-2 surface reflectance data set","volume":"219","author":"Claverie","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.rse.2011.07.024","article-title":"The global monitoring for environment and security (GMES) sentinel-3 mission","volume":"120","author":"Donlon","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_26","unstructured":"RIDESAT (2020, September 22). River Flow Monitoring and Discharge Estimation by Integrating Multiple SATellite Data. Available online: https:\/\/eo4society.esa.int\/projects\/ridesat\/."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1016\/j.pce.2011.02.008","article-title":"Identifying robust large-scale flood risk mitigation strategies: A quasi-2D hydraulic model as a tool for the Po river","volume":"36","author":"Castellarin","year":"2011","journal-title":"Phys. Chem. Earth Parts A\/B\/C"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"3739","DOI":"10.5194\/hess-16-3739-2012","article-title":"Hydrology of the Po River: Looking for changing patterns in river discharge","volume":"16","author":"Montanari","year":"2012","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"3127","DOI":"10.5194\/hess-17-3127-2013","article-title":"Probabilistic flood hazard mapping: Effects of uncertain boundary conditions","volume":"17","author":"Domeneghetti","year":"2013","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"4145","DOI":"10.3390\/rs5094145","article-title":"River discharge estimation by using altimetry data and simplified flood routing modeling","volume":"5","author":"Tarpanelli","year":"2013","journal-title":"Remote Sens."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Tourian, M.J., Tarpanelli, A., Elmi, O., Qin, T., Brocca, L., Moramarco, T., and Sneeuw, N. (2016). Spatiotemporal densification of river water level time series by multimission satellite altimetry. Water Resour. Res., 52.","DOI":"10.1002\/2015WR017654"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"130","DOI":"10.1016\/j.rse.2014.04.007","article-title":"The use of remote sensing-derived water surface data for hydraulic model calibration","volume":"149","author":"Domeneghetti","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.advwatres.2017.11.027","article-title":"Evaluation of multi-mode Cryosat-2 altimetry data over the Po River against in situ data and a hydrodynamic model","volume":"112","author":"Schneider","year":"2018","journal-title":"Adv. Water Resour."},{"key":"ref_34","unstructured":"(2020, November 06). D3xter Service. Available online: https:\/\/simc.arpae.it\/dext3r\/."},{"key":"ref_35","unstructured":"(2020, September 22). Copernicus Open Access Hub. Available online: https:\/\/scihub.copernicus.eu\/."},{"key":"ref_36","unstructured":"(2020, September 22). Land Colour Instrument OLCI. Available online: https:\/\/sentinel.esa.int\/web\/sentinel\/missions\/sentinel-3\/instrument-payload\/olci."},{"key":"ref_37","unstructured":"(2020, September 22). Case 2 Regional Coast Color Processor, C2RCC. Available online: https:\/\/www.brockmann-consult.de\/portfolio\/climate-change\/."},{"key":"ref_38","unstructured":"(2020, September 22). United States Geological Survey, USGS, Available online: https:\/\/search.earthdata.nasa.gov\/."},{"key":"ref_39","unstructured":"(2020, September 22). Land Processes Distributed Active Archive Center, LP DAAC, Available online: https:\/\/lpdaac.usgs.gov\/products\/mod09gqv006\/."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1016\/j.advwatres.2017.08.010","article-title":"Exploiting a constellation of satellite soil moisture sensors for accurate rainfall estimation","volume":"108","author":"Tarpanelli","year":"2017","journal-title":"Adv. Water Resour."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.csda.2003.10.021","article-title":"An ANOVA test for functional data","volume":"47","author":"Cuevas","year":"2004","journal-title":"Comput. Stat. Data Anal."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1016\/0022-1694(70)90255-6","article-title":"River flow forecasting through conceptual models, part I: A discussion of principles","volume":"10","author":"Nash","year":"1970","journal-title":"J. Hydrol."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1007\/s10712-015-9346-y","article-title":"The SWOT Mission and Its Capabilities for Land Hydrology","volume":"37","author":"Biancamaria","year":"2016","journal-title":"Surv. Geophys."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"471","DOI":"10.5194\/os-12-471-2016","article-title":"Jason continuity of services: Continuing the Jason altimeter data records as Copernicus Sentinel-6","volume":"12","author":"Scharroo","year":"2016","journal-title":"Ocean Sci."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"2235","DOI":"10.5194\/tc-14-2235-2020","article-title":"The Copernicus Polar Ice and Snow Topography Altimeter (CRISTAL) high-priority candidate mission","volume":"14","author":"Kern","year":"2020","journal-title":"Cryosphere"},{"key":"ref_46","unstructured":"(2020, September 22). STREAM SaTellite Based Runoff Evaluation and Mapping. Available online: https:\/\/eo4society.esa.int\/projects\/stream\/."},{"key":"ref_47","unstructured":"(2020, September 22). HydroCoastal: Coastal Ocean and Inland Water Altimetry. Available online: https:\/\/eo4society.esa.int\/projects\/hydrocoastal\/."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/23\/3867\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,5]],"date-time":"2024-07-05T21:01:32Z","timestamp":1720213292000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/23\/3867"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,11,25]]},"references-count":47,"journal-issue":{"issue":"23","published-online":{"date-parts":[[2020,12]]}},"alternative-id":["rs12233867"],"URL":"https:\/\/doi.org\/10.3390\/rs12233867","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,11,25]]}}}