{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:06:22Z","timestamp":1728176782215},"reference-count":70,"publisher":"MDPI AG","issue":"21","license":[{"start":{"date-parts":[[2020,10,28]],"date-time":"2020-10-28T00:00:00Z","timestamp":1603843200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2019M662478"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Garlic and winter wheat are major economic and grain crops in China, and their boundaries have increased substantially in recent decades. Updated and accurate garlic and winter wheat maps are critical for assessing their impacts on society and the environment. Remote sensing imagery can be used to monitor spatial and temporal changes in croplands such as winter wheat and maize. However, to our knowledge, few studies are focusing on garlic area mapping. Here, we proposed a method for coupling active and passive satellite imagery for the identification of both garlic and winter wheat in Northern China. First, we used passive satellite imagery (Sentinel-2 and Landsat-8 images) to extract winter crops (garlic and winter wheat) with high accuracy. Second, we applied active satellite imagery (Sentinel-1 images) to distinguish garlic from winter wheat. Third, we generated a map of the garlic and winter wheat by coupling the above two classification results. For the evaluation of classification, the overall accuracy was 95.97%, with a kappa coefficient of 0.94 by eighteen validation quadrats (3 km by 3 km). The user\u2019s and producer\u2019s accuracies of garlic are 95.83% and 95.85%, respectively; and for the winter wheat, these two accuracies are 97.20% and 97.45%, respectively. This study provides a practical exploration of targeted crop identification in mixed planting areas using multisource remote sensing data.<\/jats:p>","DOI":"10.3390\/rs12213539","type":"journal-article","created":{"date-parts":[[2020,10,29]],"date-time":"2020-10-29T13:44:53Z","timestamp":1603979093000},"page":"3539","source":"Crossref","is-referenced-by-count":126,"title":["Garlic and Winter Wheat Identification Based on Active and Passive Satellite Imagery and the Google Earth Engine in Northern China"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4567-2313","authenticated-orcid":false,"given":"Haifeng","family":"Tian","sequence":"first","affiliation":[{"name":"College of Environment and Planning\/National Demonstration Center for Environment and Planning, Henan University, Kaifeng 475004, China"},{"name":"Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China"}]},{"given":"Jie","family":"Pei","sequence":"additional","affiliation":[{"name":"School of Geospatial Engineering and Science, Sun Yat-Sen University, Zhuhai 519000, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0341-1983","authenticated-orcid":false,"given":"Jianxi","family":"Huang","sequence":"additional","affiliation":[{"name":"College of Land Science and Technology, China Agricultural University, Beijing 100083, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6942-0746","authenticated-orcid":false,"given":"Xuecao","family":"Li","sequence":"additional","affiliation":[{"name":"College of Land Science and Technology, China Agricultural University, Beijing 100083, China"}]},{"given":"Jian","family":"Wang","sequence":"additional","affiliation":[{"name":"Department of Geography, The Ohio State University, Columbus, OH 43210, USA"}]},{"given":"Boyan","family":"Zhou","sequence":"additional","affiliation":[{"name":"College of Environment and Planning\/National Demonstration Center for Environment and Planning, Henan University, Kaifeng 475004, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6962-8838","authenticated-orcid":false,"given":"Yaochen","family":"Qin","sequence":"additional","affiliation":[{"name":"College of Environment and Planning\/National Demonstration Center for Environment and Planning, Henan University, Kaifeng 475004, China"},{"name":"Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng 475004, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2929-4255","authenticated-orcid":false,"given":"Li","family":"Wang","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing Normal University, Beijing 100101, China"}]}],"member":"1968","published-online":{"date-parts":[[2020,10,28]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1016\/j.agrformet.2017.06.015","article-title":"Assimilation of the leaf area index and vegetation temperature condition index for winter wheat yield estimation using landsat imagery and the ceres-wheat model","volume":"246","author":"Xie","year":"2017","journal-title":"Agric. Forest Meteorol."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.isprsjprs.2016.09.016","article-title":"Winter wheat mapping combining variations before and after estimated heading dates","volume":"123","author":"Qiu","year":"2017","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.agrformet.2015.02.001","article-title":"Improving winter wheat yield estimation by assimilation of the leaf area index from landsat tm and modis data into the wofost model","volume":"204","author":"Huang","year":"2015","journal-title":"Agric. Forest Meteorol."},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Tian, H.F., Huang, N., Niu, Z., Qin, Y.C., Pei, J., and Wang, J. (2019). Mapping Winter Crops in China with Multi-Source Satellite Imagery and Phenology-Based Algorithm. Remote Sens., 11.","DOI":"10.3390\/rs11070820"},{"key":"ref_5","first-page":"426","article-title":"Monitoring winter wheat growth in North China by combining a crop model and remote sensing data","volume":"10","author":"Ma","year":"2008","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"410","DOI":"10.17221\/412\/2015-PSE","article-title":"Winter oilseed rape and winter wheat growth prediction using remote sensing methods","volume":"61","author":"Dominguez","year":"2015","journal-title":"Plant Soil Environ."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Yang, N., Liu, D., Feng, Q., Xiong, Q., Zhang, L., Ren, T., Zhao, Y., Zhu, D., and Huang, J. (2019). Large-Scale Crop Mapping Based on Machine Learning and Parallel Computation with Grids. Remote Sens., 11.","DOI":"10.3390\/rs11121500"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1007\/s11119-007-9036-y","article-title":"Multi-temporal wheat disease detection by multi-spectral remote sensing","volume":"8","author":"Franke","year":"2007","journal-title":"Precis. Agric."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Tian, H.F., Wu, M.Q., Wang, L., and Niu, Z. (2018). Mapping Early, Middle and Late Rice Extent Using Sentinel-1A and Landsat-8 Data in the Poyang Lake Plain, China. Sensors, 18.","DOI":"10.3390\/s18010185"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1016\/j.isprsjprs.2019.01.017","article-title":"A new algorithm for the estimation of leaf unfolding date using MODIS data over China\u2019s terrestrial ecosystems","volume":"149","author":"Wang","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"348","DOI":"10.1016\/S2095-3119(15)61304-1","article-title":"Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data","volume":"16","author":"Tao","year":"2017","journal-title":"J. Integr. Agric."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"5026","DOI":"10.1080\/01431161.2012.657366","article-title":"Winter wheat mapping using temporal signatures of MODIS vegetation index data","volume":"33","author":"Sun","year":"2012","journal-title":"Int. J. Remote Sens."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1016\/j.rse.2011.10.011","article-title":"Winter wheat area estimation from MODIS-EVI time series data using the Crop Proportion Phenology Index","volume":"119","author":"Pan","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Pasqualotto, N., Delegido, J., Van Wittenberghe, S., Rinaldi, M., and Moreno, J. (2019). Multi-Crop Green LAI Estimation with a New Simple Sentinel-2 LAI Index (SeLI). Sensors, 19.","DOI":"10.3390\/s19040904"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Zhu, J., Pan, Z.W., Wang, H., Huang, P.J., Sun, J.L., Qin, F., and Liu, Z.Z. (2019). An Improved Multi-temporal and Multi-feature Tea Plantation Identification Method Using Sentinel-2 Imagery. Sensors, 19.","DOI":"10.3390\/s19092087"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1080\/15481603.2016.1155789","article-title":"Comprehensive study of the biophysical parameters of agricultural crops based on assessing Landsat 8 OLI and Landsat 7 ETM+ vegetation indices","volume":"53","author":"Ahmadian","year":"2016","journal-title":"Gisci. Remote Sens."},{"key":"ref_17","first-page":"159","article-title":"Multiscale object-based drought monitoring and comparison in rainfed and irrigated agriculture from Landsat 8 OLI imagery","volume":"44","author":"Ozelkan","year":"2016","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1016\/j.isprsjprs.2017.01.019","article-title":"Automated cropland mapping of continental Africa using Google Earth Engine cloud computing","volume":"126","author":"Xiong","year":"2017","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"4002","DOI":"10.1109\/JSTARS.2017.2705718","article-title":"Extraction of Glacial Lake Outlines in Tibet Plateau Using Landsat 8 Imagery and Google Earth Engine","volume":"10","author":"Chen","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/j.isprsjprs.2018.07.017","article-title":"A 30-m landsat-derived cropland extent product of Australia and China using random forest machine learning algorithm on Google Earth Engine cloud computing platform","volume":"144","author":"Teluguntla","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.rse.2017.06.031","article-title":"Google Earth Engine: Planetary-scale geospatial analysis for everyone","volume":"202","author":"Gorelick","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Traganos, D., Aggarwal, B., Poursanidis, D., Topouzelis, K., Chrysoulakis, N., and Reinartz, P. (2018). Towards Global-Scale Seagrass Mapping and Monitoring Using Sentinel-2 on Google Earth Engine: The Case Study of the Aegean and Ionian Seas. Remote Sens., 10.","DOI":"10.3390\/rs10081227"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Tsai, Y.H., Stow, D., Chen, H.L., Lewison, R., An, L., and Shi, L. (2018). Mapping Vegetation and Land Use Types in Fanjingshan National Nature Reserve Using Google Earth Engine. Remote Sens., 10.","DOI":"10.3390\/rs10060927"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Pei, J., Wang, L., Wang, X., Niu, Z., and Cao, J. (2019). Time Series of Landsat Imagery Shows Vegetation Recovery in Two Fragile Karst Watersheds in Southwest China from 1988 to 2016. Remote Sens., 11.","DOI":"10.3390\/rs11172044"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1016\/j.rse.2019.04.016","article-title":"Smallholder maize area and yield mapping at national scales with Google Earth Engine","volume":"228","author":"Jin","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"850","DOI":"10.1126\/science.1244693","article-title":"High-Resolution Global Maps of 21st-Century Forest Cover Change","volume":"342","author":"Hansen","year":"2013","journal-title":"Science"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"366","DOI":"10.1016\/j.rse.2005.03.008","article-title":"A crop phenology detection method using time-series MODIS data","volume":"96","author":"Sakamoto","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.rse.2018.02.045","article-title":"A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach","volume":"210","author":"Cai","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"2146","DOI":"10.1016\/j.rse.2010.04.019","article-title":"A Two-Step Filtering approach for detecting maize and soybean phenology with time-series MODIS data","volume":"114","author":"Sakamoto","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.ecolind.2018.01.042","article-title":"Improved modeling of gross primary productivity (GPP) by better representation of plant phenological indicators from remote sensing using a process model","volume":"88","author":"Wang","year":"2018","journal-title":"Ecol. Indic."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Tian, H.F., Li, W., Wu, M.Q., Huang, N., Li, G.D., Li, X., and Niu, Z. (2017). Dynamic Monitoring of the Largest Freshwater Lake in China Using a New Water Index Derived from High Spatiotemporal Resolution Sentinel-1A Data. Remote Sens., 9.","DOI":"10.3390\/rs9060521"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/j.rse.2011.10.028","article-title":"Object-based cloud and cloud shadow detection in Landsat imagery","volume":"118","author":"Zhu","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"111954","DOI":"10.1016\/j.rse.2020.111954","article-title":"Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data","volume":"247","author":"Mandal","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_34","first-page":"143","article-title":"Discriminating transplanted and direct seeded rice using Sentinel-1 intensity data","volume":"76","author":"Fikriyah","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1038\/s41597-019-0036-3","article-title":"High resolution paddy rice maps in cloud-prone Bangladesh and Northeast India using Sentinel-1 data","volume":"6","author":"Singha","year":"2019","journal-title":"Sci. Data"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"111660","DOI":"10.1016\/j.rse.2020.111660","article-title":"Detecting flowering phenology in oil seed rape parcels with Sentinel-1 and-2 time series","volume":"239","author":"Taymans","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Chauhan, S., Darvishzadeh, R., Lu, Y., Boschetti, M., and Nelson, A. (2020). Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data. Remote Sens. Environ., 243.","DOI":"10.1016\/j.rse.2020.111804"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"2343","DOI":"10.3390\/rs6032343","article-title":"Agricultural Monitoring in Northeastern Ontario, Canada, Using Multi-Temporal Polarimetric RADARSAT-2 Data","volume":"6","author":"Cable","year":"2014","journal-title":"Remote Sens."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"9707","DOI":"10.1007\/s11042-015-2906-9","article-title":"An novel random forests and its application to the classification of mangroves remote sensing image","volume":"75","author":"Luo","year":"2016","journal-title":"Multimed. Tools Appl."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1407","DOI":"10.1007\/s11676-017-0530-4","article-title":"Forest type identification by random forest classification combined with SPOT and multitemporal SAR data","volume":"29","author":"Yu","year":"2018","journal-title":"J. For. Res."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Abdullah, A.Y.M., Masrur, A., Adnan, M.S.G., Al Baky, M.A., Hassan, Q.K., and Dewan, A. (2019). Spatio-Temporal Patterns of Land Use\/Land Cover Change in the Heterogeneous Coastal Region of Bangladesh between 1990 and 2017. Remote Sens., 11.","DOI":"10.3390\/rs11070790"},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Bangira, T., Alfieri, S.M., Menenti, M., and van Niekerk, A. (2019). Comparing Thresholding with Machine Learning Classifiers for Mapping Complex Water. Remote Sens., 11.","DOI":"10.3390\/rs11111351"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.isprsjprs.2010.11.001","article-title":"Support vector machines in remote sensing: A review","volume":"66","author":"Mountrakis","year":"2011","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1038\/s41586-019-0912-1","article-title":"Deep learning and process understanding for data-driven Earth system science","volume":"566","author":"Reichstein","year":"2019","journal-title":"Nature"},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Wang, X., Huang, J., Feng, Q., and Yin, D. (2020). Winter Wheat Yield Prediction at County Level and Uncertainty Analysis in Main Wheat-Producing Regions of China with Deep Learning Approaches. Remote Sens., 12.","DOI":"10.3390\/rs12111744"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"814","DOI":"10.1109\/JSTARS.2011.2125778","article-title":"Deriving Water Fraction and Flood Maps From MODIS Images Using a Decision Tree Approach","volume":"4","author":"Sun","year":"2011","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1016\/j.rse.2005.05.008","article-title":"Decision tree regression for soft classification of remote sensing data","volume":"97","author":"Xu","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Li, L.Y., Chen, Y., Xu, T.B., Shi, K.F., Liu, R., Huang, C., Lu, B.B., and Meng, L.K. (2019). Remote Sensing of Wetland Flooding at a Sub-Pixel Scale Based on Random Forests and Spatial Attraction Models. Remote Sens., 11.","DOI":"10.3390\/rs11101231"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"779","DOI":"10.1080\/15481603.2017.1331510","article-title":"Wetland classification in Newfoundland and Labrador using multi-source SAR and optical data integration","volume":"54","author":"Amani","year":"2017","journal-title":"Gisci. Remote Sens."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.isprsjprs.2017.10.004","article-title":"A hybrid training approach for leaf area index estimation via Cubist and random forests machine-learning","volume":"135","author":"Houborg","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.isprsjprs.2011.11.002","article-title":"An assessment of the effectiveness of a random forest classifier for land-cover classification","volume":"67","author":"Ghimire","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/S0034-4257(02)00096-2","article-title":"Overview of the radiometric and biophysical performance of the MODIS vegetation indices","volume":"83","author":"Huete","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1016\/j.rse.2006.06.018","article-title":"Land-cover change detection using multi-temporal MODIS NDVI data","volume":"105","author":"Lunetta","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1016\/j.rse.2004.03.014","article-title":"A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter","volume":"91","author":"Chen","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"ref_56","first-page":"431","article-title":"Using known map category marginal frequencies to improve estimates of thematic map accuracy","volume":"48","author":"Card","year":"1982","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.rse.2012.10.031","article-title":"Making better use of accuracy data in land change studies: Estimating accuracy and area and quantifying uncertainty using stratified estimation","volume":"129","author":"Olofsson","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.isprsjprs.2019.07.008","article-title":"Nomination-favoured opinion pool for optical-SAR-synergistic rice mapping in face of weakened flooding signals","volume":"155","author":"Guo","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_59","first-page":"102164","article-title":"Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data","volume":"92","author":"Cai","year":"2020","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/s00300-010-0880-2","article-title":"Detecting and mapping vegetation distribution on the Antarctic Peninsula from remote sensing data","volume":"34","author":"Fretwell","year":"2011","journal-title":"Polar Biol."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"145","DOI":"10.1016\/j.rse.2013.01.010","article-title":"Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements","volume":"132","author":"Hmimina","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.rse.2017.11.009","article-title":"Remote sensing of mangrove forest phenology and its environmental drivers","volume":"205","author":"Dash","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_63","first-page":"1","article-title":"Multi-temporal RADARSAT-2 polarimetric SAR for maize mapping supported by segmentations from high-resolution optical image","volume":"74","author":"Shuai","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"1196","DOI":"10.1016\/j.rse.2007.08.011","article-title":"The availability of cloud-free Landsat ETM plus data over the conterminous United States and globally","volume":"112","author":"Ju","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_65","doi-asserted-by":"crossref","unstructured":"Song, Y., and Wang, J. (2019). Mapping Winter Wheat Planting Area and Monitoring Its Phenology Using Sentinel-1 Backscatter Time Series. Remote Sens., 11.","DOI":"10.3390\/rs11040449"},{"key":"ref_66","doi-asserted-by":"crossref","unstructured":"Schlund, M., and Erasmi, S. (2020). Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sens. Environ., 246.","DOI":"10.1016\/j.rse.2020.111814"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.rse.2017.07.015","article-title":"Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications","volume":"199","author":"Veloso","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"471","DOI":"10.1002\/rds.20048","article-title":"Multitemporal radar backscattering measurement of wheat fields using multifrequency (L, S, C, and X) and full-polarization","volume":"48","author":"Jia","year":"2013","journal-title":"Radio Sci."},{"key":"ref_69","first-page":"87","article-title":"Exploring the optimal integration levels between SAR and optical data for better urban land cover mapping in the Pearl River Delta","volume":"64","author":"Zhang","year":"2018","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_70","first-page":"595","article-title":"Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions","volume":"73","author":"Steinhausen","year":"2018","journal-title":"Int. J. Appl. Earth Obs. Geoinf."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/21\/3539\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T19:48:44Z","timestamp":1720122524000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/21\/3539"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,28]]},"references-count":70,"journal-issue":{"issue":"21","published-online":{"date-parts":[[2020,11]]}},"alternative-id":["rs12213539"],"URL":"https:\/\/doi.org\/10.3390\/rs12213539","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,10,28]]}}}