{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T15:40:36Z","timestamp":1720107636779},"reference-count":44,"publisher":"MDPI AG","issue":"21","license":[{"start":{"date-parts":[[2020,10,23]],"date-time":"2020-10-23T00:00:00Z","timestamp":1603411200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000104","name":"National Aeronautics and Space Administration","doi-asserted-by":"publisher","award":["NNH17ZDA001N-THP"],"id":[{"id":"10.13039\/100000104","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"A multilayer module is incorporated into the Signals of Opportunity (SoOp) Coherent Bistatic Scattering model (SCoBi) for determining the reflections and propagation of electric fields within a series of multilayer dielectric slabs. This module can be used in conjunction with other SCoBi components to simulate complex, bistatic simulation schemes that include features such as surface roughness, vegetation, antenna effects, and multilayer soil moisture interactions on reflected signals. This paper introduces the physics underlying the multilayer module and utilizes it to perform a simulation study of the response of SoOp-R measurements with respect to subsurface soil moisture parameters. For a frequency range of 100\u20132400 MHz, it is seen that the SoOp-R response to a single dielectric slab is mostly frequency insensitive; however, the SoOp-R response to multilayer dielectric slabs will vary between frequencies. The relationship between SoOp-R reflectivity and the contributing depth is visualized, and the results show that SoOp-R measurements can display sensitivity to soil moisture below the penetration depth. By simulation of simple soil moisture profiles with different wetting and drying gradients, the dielectric contrast between layers is shown to be the greatest contributing factor to subsurface soil moisture sensitivity. Overall, it is observed that different frequencies can sense different areas of a soil moisture profile, and this behavior can enable subsurface soil moisture data products from SoOp-R observations.<\/jats:p>","DOI":"10.3390\/rs12213480","type":"journal-article","created":{"date-parts":[[2020,10,23]],"date-time":"2020-10-23T06:44:12Z","timestamp":1603435452000},"page":"3480","source":"Crossref","is-referenced-by-count":4,"title":["SCoBi Multilayer: A Signals of Opportunity Reflectometry Model for Multilayer Dielectric Reflections"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1110-2454","authenticated-orcid":false,"given":"Dylan","family":"Boyd","sequence":"first","affiliation":[{"name":"Information Processing and Sensing Lab, Mississippi State University, Mississippi State, MS 39672, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5750-9014","authenticated-orcid":false,"given":"Mehmet","family":"Kurum","sequence":"additional","affiliation":[{"name":"Information Processing and Sensing Lab, Mississippi State University, Mississippi State, MS 39672, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3099-8775","authenticated-orcid":false,"given":"Orhan","family":"Eroglu","sequence":"additional","affiliation":[{"name":"National Center for Atmospheric Research, Boulder, CO 80301, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8923-0299","authenticated-orcid":false,"given":"Ali Cafer","family":"Gurbuz","sequence":"additional","affiliation":[{"name":"Information Processing and Sensing Lab, Mississippi State University, Mississippi State, MS 39672, USA"}]},{"given":"James L.","family":"Garrison","sequence":"additional","affiliation":[{"name":"Radio Navigation Lab, Purdue University, West Lafayette, IN 47907, USA"}]},{"given":"Benjamin R.","family":"Nold","sequence":"additional","affiliation":[{"name":"Radio Navigation Lab, Purdue University, West Lafayette, IN 47907, USA"}]},{"given":"Manuel A.","family":"Vega","sequence":"additional","affiliation":[{"name":"NASA Goddard Spaceflight Center, Greenbelt, MD 20771, USA"}]},{"given":"Jeffrey R.","family":"Piepmeier","sequence":"additional","affiliation":[{"name":"NASA Goddard Spaceflight Center, Greenbelt, MD 20771, USA"}]},{"given":"Rajat","family":"Bindlish","sequence":"additional","affiliation":[{"name":"NASA Goddard Spaceflight Center, Greenbelt, MD 20771, USA"}]}],"member":"1968","published-online":{"date-parts":[[2020,10,23]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Gleason, S. (2006). Remote Sensing of Ocean, Ice and Land Surfaces Using Bistatically Scattered GNSS Signals from Low Earth Orbit. [Ph.D. Thesis, University of Surrey].","DOI":"10.1109\/IGARSS.2006.792"},{"key":"ref_2","unstructured":"Jales, P. (2012). Spaceborne Receiver Design for Scatterometric GNSS Reflectometry. [Ph.D. Thesis, University of Surrey]."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Ruf, C.S., Gleason, S., Jelenak, Z., Katzberg, S., Ridley, A., Rose, R., Scherrer, J., and Zavorotny, V. (2012, January 22\u201327). The CYGNSS nanosatellite constellation hurricane mission. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany.","DOI":"10.1109\/IGARSS.2012.6351600"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"4049","DOI":"10.1029\/2018GL077905","article-title":"Soil Moisture Sensing Using Spaceborne GNSS Reflections: Comparison of CYGNSS Reflectivity to SMAP Soil Moisture","volume":"45","author":"Chew","year":"2018","journal-title":"Geophys. Res. Lett."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"2227","DOI":"10.1109\/JSTARS.2019.2895510","article-title":"Analysis of CYGNSS data for soil moisture retrieval","volume":"12","author":"Clarizia","year":"2019","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Eroglu, O., Kurum, M., Boyd, D., and Gurbuz, A.C. (2019). High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks. Remote Sens., 11.","DOI":"10.3390\/rs11192272"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Garrison, J., Piepmeier, J., Shah, R., Vega, M., Spencer, D., Banting, R., Firman, C., Nold, B., Larsen, K., and Bindlish, R. (August, January 28). SNOOPI: A Technology Validation Mission for P-band Reflectometry using Signals of Opportunity. Proceedings of the IGARSS 2019\u20142019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan.","DOI":"10.1109\/IGARSS.2019.8900351"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1109\/TGRS.2013.2242332","article-title":"Effects of near-surface soil moisture on GPS SNR data: Development of a retrieval algorithm for soil moisture","volume":"52","author":"Chew","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Pierdicca, N., Guerriero, L., Egido, A., Paloscia, S., and Floury, N. (2015, January 26\u201331). Exploiting GNSS signals for soil moisture and vegetation biomass retrieval. Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy.","DOI":"10.1109\/IGARSS.2015.7326985"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Knuble, J., Piepmeier, J., Deshpande, M., Toit, C.D., Garrison, J., Lin, Y.C., Stienne, G., Katzberg, S., and Alikakos, G. (2016, January 10\u201315). Airborne P-band Signal of Opportunity (SoOP) demonstrator instrument; Status update. Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China.","DOI":"10.1109\/IGARSS.2016.7730473"},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Garrison, J., Lin, Y.C., Nold, B., Piepmeier, J.R., Vega, M.A., Fritts, M., Toit, C.F., and Knuble, J. (2017, January 23\u201328). Remote sensing of soil moisture using P-band signals of opportunity (SoOp): Initial results. Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA.","DOI":"10.1109\/IGARSS.2017.8127917"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Garrison, J.L., Kurum, M., Nold, B., Piepmeier, J., Vega, M.A., Bindlish, R., Pignotti, G., and Lafayette, W. (2018, January 22\u201327). Remote Sensing of Root-Zone Soil Moisture Using I- and P-band Signals of Opportunity: Instrument Validation Studies. Proceedings of the IGARSS 2018\u20142018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain.","DOI":"10.1109\/IGARSS.2018.8518772"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1109\/LGRS.2019.2918764","article-title":"Experimental Demonstration of Soil Moisture Remote Sensing Using P-Band Satellite Signals of Opportunity","volume":"17","author":"Yueh","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Ulaby, F.T., and Long, D.G. (2014). Microwave Radar and Radiometric Remote Sensing, University of Michigan Press. [1st ed.].","DOI":"10.3998\/0472119356"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1049","DOI":"10.1109\/TGRS.2018.2864631","article-title":"SCoBi-Veg: A generalized bistatic scattering model of reflectometry from vegetation for signals of opportunity applications","volume":"57","author":"Kurum","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Eroglu, O., Boyd, D.R., and Kurum, M. (2020). The Signals of Opportunity Coherent Bistatic Scattering Simulator: A Free, Open Source Simulator Framework. IEEE Geosci. Remote Sens. Mag.","DOI":"10.1109\/MGRS.2019.2916071"},{"key":"ref_17","unstructured":"Ulaby, F., Moore, R., and Fung, A. (1981). Microwave Remote Sensing: Microwave Remote Sensing Fundamentals and Radiometry, Artech House."},{"key":"ref_18","unstructured":"Orfanidis, S. (2016). Waves and Antennas Electromagnetic, [2nd ed.]. Available online: http:\/\/eceweb1.rutgers.edu\/~orfanidi\/ewa\/."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1109\/TGRS.1983.350531","article-title":"Electromagnetic backscattering from a layer of vegetation: A discrete approach","volume":"GE-21","author":"Lang","year":"1983","journal-title":"IEEE Trans. Geosci. Remote. Sens."},{"key":"ref_20","unstructured":"Eroglu, O., Boyd, D.R., and Kurum, M. (2018). SCoBi User\u2019s Manual, Available online: https:\/\/github.com\/impresslab\/SCoBi\/tree\/master\/docs\/manuals."},{"key":"ref_21","unstructured":"Ulaby, F., Moore, R., and Fung, A. (1982). Microwave Remote Sensing: Active and Passive. Volume 2\u2014Radar Remote Sensing and Surface Scattering and Emission Theory, Addison-Wesley Publishing."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/0034-4257(88)90091-0","article-title":"Near surface soil moisture estimation from microwave measurements","volume":"26","author":"Bruckler","year":"1988","journal-title":"Remote Sens. Environ."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1080\/07038992.1995.10874606","article-title":"Evaluation of soil moisture estimation techniques and microwave penetration depth for radar applications","volume":"21","author":"Boisvert","year":"1995","journal-title":"Can. J. Remote Sens."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1109\/TGRS.1980.350304","article-title":"An empirical model for the complex dielectric permittivity of soils as a function of water content","volume":"GE-18","author":"Wang","year":"1980","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1109\/TGRS.1985.289498","article-title":"Microwave dielectric behavior of wet soil\u2014Part II: Dielectric mixing models","volume":"23","author":"Dobson","year":"1985","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1340","DOI":"10.1109\/TGRS.1995.477193","article-title":"Dielectric properties of soils in the 0.3\u20131.3-GHz range","volume":"33","author":"Peplinski","year":"1995","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"411","DOI":"10.2529\/PIERS090220054025","article-title":"Temperature and Mineralogy Dependable Model for Microwave Dielectric Spectra of Moist Soils","volume":"5","author":"Mironov","year":"2009","journal-title":"PIERS Online"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"2544","DOI":"10.1109\/TGRS.2010.2040034","article-title":"Temperature-dependable microwave dielectric model for an arctic soil","volume":"48","author":"Mironov","year":"2010","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Yayong, S., Jianwei, M., Jie, P., Shifeng, H., Kun, Y., Peng, Z., and He, Z. (August, January 28). Preliminary Applicability Analysis of Soil Dielectric Constant Model of the Different Soil Texture Condition. Proceedings of the IGARSS 2019\u20142019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan.","DOI":"10.1109\/IGARSS.2019.8900240"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"3084","DOI":"10.1109\/TGRS.2014.2368585","article-title":"Comparison of Dobson and Mironov dielectric models in the SMOS soil moisture retrieval algorithm","volume":"53","author":"Mialon","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Hosmer, D.W., Lemeshow, S., and Sturdivant, R.X. (2013). Applied Logistic Regression, John Wiley & Sons.","DOI":"10.1002\/9781118548387"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1109\/TAP.1974.1140761","article-title":"Radar Measurement of Soil Moisture Content","volume":"11","author":"Ulaby","year":"1974","journal-title":"IEEE Trans. Antennas Propag."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"781","DOI":"10.1109\/36.582001","article-title":"Sensitivity of the radar signal to soil moisture: Variation with incidence angle, frequency, and polarization","volume":"35","author":"Champion","year":"1997","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Oh, Y. (2012, January 22\u201327). Radar measurement of soil moisture: From professor Fawwaz Ulaby\u2019s pioneering works in the early 1970s to its current status. Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany.","DOI":"10.1109\/IGARSS.2012.6351310"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Kurum, M., Lang, R.H., O\u2019Neill, P.E., Joseph, A.T., Cosh, M., and Jackson, T. (2008, January 7\u201311). Forest canopy effects on the estimation of soil moisture at L-band. Proceedings of the IGARSS 2008\u20142008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA.","DOI":"10.1109\/IGARSS.2008.4778785"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"645","DOI":"10.1109\/TGRS.2014.2326839","article-title":"P-band radar retrieval of subsurface soil moisture profile as a second-order polynomial: First AirMOSS results","volume":"53","author":"Tabatabaeenejad","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Sadeghi, M., Tabatabaeenejad, A., Tuller, M., Moghaddam, M., and Jones, S.B. (2017). Advancing NASA\u2019s AirMOSS P-band Radar Root-zone Soil Moisture Retrieval Algorithm via Incorporation of Richards\u2019 Equation. Remote Sens., 9.","DOI":"10.20944\/preprints201608.0237.v1"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"848","DOI":"10.1109\/LGRS.2013.2279893","article-title":"Influence of radar frequency on the relationship between bare surface soil moisture vertical profile and radar backscatter","volume":"11","author":"Zribi","year":"2014","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Boyd, D.R., Kurum, M., Eroglu, O., Gurbuz, A.C., Garrison, J., Nold, B., Piepmeier, J., Vega, M., and Bindlish, R. (2019, January 9\u201312). Investigation of Root-Zone Soil Moisture Profile Sensitivity to Multiple Signals of Opportunity Sources. Proceedings of the 2019 USNC-URSI National Radio Science Meeting, Boulder, CO, USA.","DOI":"10.1109\/ICEAA.2018.8520453"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"3179","DOI":"10.1109\/JSTARS.2020.3000391","article-title":"Generic Performance Simulator of Spaceborne GNSS-Reflectometer for Land Applications","volume":"13","author":"Park","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1218","DOI":"10.1109\/JSTARS.2020.2975187","article-title":"Space-Borne GNSS-R Signal over a Complex Topography: Modeling and Validation","volume":"13","author":"Dente","year":"2020","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"3943","DOI":"10.1109\/TGRS.2012.2229391","article-title":"Coherent scattering of electromagnetic waves from two-layer rough surfaces within the kirchhoff regime","volume":"51","author":"Tabatabaeenejad","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"2722","DOI":"10.1109\/TGRS.2012.2215614","article-title":"Bistatic vector 3-D scattering from layered rough surfaces using stabilized extended boundary condition method","volume":"51","author":"Duan","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_44","first-page":"4797","article-title":"Electromagnetic scattering from multilayer rough surfaces with arbitrary dielectric profiles for remote sensing of subsurface soil moisture","volume":"45","author":"Kuo","year":"2007","journal-title":"IEEE Antennas Propag. Soc. APS Int. Symp."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/21\/3480\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T14:42:38Z","timestamp":1720104158000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/21\/3480"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,23]]},"references-count":44,"journal-issue":{"issue":"21","published-online":{"date-parts":[[2020,11]]}},"alternative-id":["rs12213480"],"URL":"https:\/\/doi.org\/10.3390\/rs12213480","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,10,23]]}}}