{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,10]],"date-time":"2024-09-10T15:11:51Z","timestamp":1725981111765},"reference-count":99,"publisher":"MDPI AG","issue":"20","license":[{"start":{"date-parts":[[2020,10,14]],"date-time":"2020-10-14T00:00:00Z","timestamp":1602633600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"National Science Foundation of the United States under the program for Innovations at the Nexus of Food, Energy and Water Systems","award":["1639115"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Timely updates of carbon stock distribution are needed to better understand the impacts of deforestation and degradation on forest carbon stock dynamics. This research aimed to explore an approach for estimating aboveground carbon density (ACD) in the Brazilian Amazon through integration of MODIS (moderate resolution imaging spectroradiometer) and a limited number of light detection and ranging (Lidar) data samples using linear regression (LR) and random forest (RF) algorithms, respectively. Airborne LiDAR data at 23 sites across the Brazilian Amazon were collected and used to calculate ACD. The ACD estimation model, which was developed by Longo et al. in the same study area, was used to map ACD distribution in the 23 sites. The LR and RF methods were used to develop ACD models, in which the samples extracted from LiDAR-estimated ACD were used as dependent variables and MODIS-derived variables were used as independent variables. The evaluation of modeling results indicated that ACD can be successfully estimated with a coefficient of determination of 0.67 and root mean square error of 4.18 kg C\/m2 using RF based on spectral indices. The mixed pixel problem in MODIS data is a major factor in ACD overestimation, while cloud contamination and data saturation are major factors in ACD underestimation. These uncertainties in ACD estimation using MODIS data make it difficult to examine annual ACD dynamics of degradation and growth, however this method can be used to examine the deforestation-induced ACD loss.<\/jats:p>","DOI":"10.3390\/rs12203330","type":"journal-article","created":{"date-parts":[[2020,10,15]],"date-time":"2020-10-15T01:24:39Z","timestamp":1602725079000},"page":"3330","source":"Crossref","is-referenced-by-count":6,"title":["Modeling Forest Aboveground Carbon Density in the Brazilian Amazon with Integration of MODIS and Airborne LiDAR Data"],"prefix":"10.3390","volume":"12","author":[{"given":"Xiandie","family":"Jiang","sequence":"first","affiliation":[{"name":"Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, China"},{"name":"School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7198-4607","authenticated-orcid":false,"given":"Guiying","family":"Li","sequence":"additional","affiliation":[{"name":"Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, China"},{"name":"School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4767-5710","authenticated-orcid":false,"given":"Dengsheng","family":"Lu","sequence":"additional","affiliation":[{"name":"Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, China"},{"name":"School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5153-545X","authenticated-orcid":false,"given":"Emilio","family":"Moran","sequence":"additional","affiliation":[{"name":"Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7748-5497","authenticated-orcid":false,"given":"Mateus","family":"Batistella","sequence":"additional","affiliation":[{"name":"Brazilian Agricultural Research Corporation (Embrapa), Campinas, SP 13083-970, Brazil"}]}],"member":"1968","published-online":{"date-parts":[[2020,10,14]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"387","DOI":"10.14214\/sf.244","article-title":"A global forest growing stock, biomass and carbon map based on FAO statistics","volume":"42","author":"Kindermann","year":"2008","journal-title":"Silva Fenn."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"527","DOI":"10.1038\/s41586-018-0300-2","article-title":"The tropical forest carbon cycle and climate change","volume":"559","author":"Mitchard","year":"2018","journal-title":"Nature"},{"key":"ref_3","unstructured":"Da Silva Dias, A., Maretti, C., Lawrence, K., Charity, S., and Oliveira, D. (2014). Deforestation fronts in the Amazon region: Current situation and future trends\u2014A preliminary summary. Proceedings of the La COP 20: Perspectivas Desde el Sur, WWF Living Amazon Initiative, Universidad Ruiz de Montoya, District of Pueblo Libre."},{"key":"ref_4","unstructured":"Irfan, U. (2020, July 20). Brazil\u2019s Amazon Rainforest Destruction Is at Its Highest Rate in More Than a Decade. Available online: https:\/\/www.vox.com\/science-and-health\/2019\/11\/18\/20970604\/amazon-rainforest-2019-brazil-burning-deforestation-bolsonaro."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"1639","DOI":"10.1002\/2016GB005465","article-title":"Aboveground biomass variability across intact and degraded forests in the Brazilian Amazon","volume":"30","author":"Longo","year":"2016","journal-title":"Glob. Biogeochem. Cycles Res."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1297","DOI":"10.1080\/01431160500486732","article-title":"The potential and challenge of remote sensing-based biomass estimation","volume":"27","author":"Lu","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1080\/17538947.2014.990526","article-title":"A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems","volume":"9","author":"Lu","year":"2016","journal-title":"Int. J. Digit. Earth"},{"key":"ref_8","first-page":"776","article-title":"A review on biomass estimation methods using synthetic aperture radar data","volume":"1","author":"Ghasemi","year":"2011","journal-title":"Int. J. Geomat. Geosci."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.rse.2012.02.001","article-title":"Lidar sampling for large-area forest characterization: A review","volume":"121","author":"Wulder","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_10","first-page":"101952","article-title":"Monitoring aboveground forest biomass dynamics over three decades using Landsat time-series and single-date inventory data","volume":"84","author":"Nguyen","year":"2020","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1046\/j.1466-822x.2002.00303.x","article-title":"Lidar remote sensing of above-ground biomass in three biomes","volume":"11","author":"Lefsky","year":"2002","journal-title":"Glob. Ecol. Biogeogr."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"2931","DOI":"10.1016\/j.rse.2010.08.029","article-title":"Estimation of tropical rain forest aboveground biomass with small-footprint lidar and hyperspectral sensors","volume":"115","author":"Clark","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"2832","DOI":"10.3390\/rs70302832","article-title":"Estimating forest biomass dynamics by integrating multi-temporal Landsat satellite images with ground and airborne LiDAR data in the Coal Valley Mine, Alberta, Canada","volume":"7","author":"Badreldin","year":"2015","journal-title":"Remote Sens."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"305","DOI":"10.1016\/S0034-4257(01)00281-4","article-title":"Estimation of tropical forest structural characteristics using large-footprint lidar","volume":"79","author":"Drake","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"80","DOI":"10.1016\/j.rse.2012.07.006","article-title":"Forest biomass estimation from airborne LiDAR data using machine learning approaches","volume":"125","author":"Gleason","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"591","DOI":"10.4155\/cmt.13.66","article-title":"Improving pantropical forest carbon maps with airborne LiDAR sampling","volume":"4","author":"Baccini","year":"2013","journal-title":"Carbon Manag."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Wang, G., and Weng, Q. (2013). LiDAR remote sensing of vegetation biomass. Remote Sensing of Natural Resources, Taylor & Francis Group.","DOI":"10.1201\/b15159"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.rse.2012.10.017","article-title":"A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing","volume":"128","author":"Zolkos","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.rse.2012.01.021","article-title":"Integration of airborne lidar and vegetation types derived from aerial photography for mapping aboveground live biomass","volume":"121","author":"Chen","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.isprsjprs.2015.08.004","article-title":"An efficient approach to 3D single tree-crown delineation in LiDAR data","volume":"108","author":"Mongus","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"81","DOI":"10.5589\/m13-051","article-title":"Status and prospects for LiDAR remote sensing of forested ecosystems","volume":"39","author":"Wulder","year":"2013","journal-title":"Can. J. Remote Sens."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Maltamo, M., N\u00e6ssset, E., and Vauhkonen, J. (2014). Area-based inventory in Norway\u2014From innovation to an operational reality. Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies, Springer.","DOI":"10.1007\/978-94-017-8663-8_11"},{"key":"ref_23","first-page":"436537","article-title":"Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates","volume":"2012","author":"Lu","year":"2012","journal-title":"Int. J. For. Res."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1191\/0309133303pp360ra","article-title":"LiDAR remote sensing of forest structure","volume":"27","author":"Lim","year":"2003","journal-title":"Prog. Phys. Geogr."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"581","DOI":"10.1016\/j.isprsjprs.2010.09.001","article-title":"Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment","volume":"65","author":"Koch","year":"2010","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1007\/s10342-010-0381-4","article-title":"Retrieval of forest structural parameters using LiDAR remote sensing","volume":"129","author":"Nieuwenhuis","year":"2010","journal-title":"Eur. J. For. Res."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"141","DOI":"10.2747\/1548-1603.48.2.141","article-title":"A review of remote sensing of forest biomass and biofuel: Options for small-area applications","volume":"48","author":"Gleason","year":"2011","journal-title":"GIScience Remote Sens."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"L22S02","DOI":"10.1029\/2005GL023971","article-title":"Estimates of forest canopy height and aboveground biomass using ICESat","volume":"32","author":"Lefsky","year":"2005","journal-title":"Geophys. Res. Lett."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.rse.2012.03.018","article-title":"Characterization of canopy fuels using ICESat \/ GLAS data","volume":"123","author":"Popescu","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1016\/S0264-3707(02)00042-X","article-title":"ICESat\u2019s laser measurements of polar ice, atmosphere, ocean, and land","volume":"34","author":"Zwally","year":"2002","journal-title":"J. Geodyn."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Saarela, S., Holm, S., Healey, S.P., Andersen, H.E., Petersson, H., Prentius, W., Patterson, P.L., N\u00e6sset, E., Gregoire, T.G., and St\u00e5hl, G. (2018). Generalized hierarchical model-based estimation for aboveground biomass assessment using GEDI and Landsat data. Remote Sens., 10.","DOI":"10.3390\/rs10111832"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"111283","DOI":"10.1016\/j.rse.2019.111283","article-title":"Forest biomass estimation over three distinct forest types using TanDEM-X InSAR data and simulated GEDI lidar data","volume":"232","author":"Qi","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"69","DOI":"10.15287\/afr.2018.1163","article-title":"Mapping forest aboveground biomass with a simulated ICESat-2 vegetation canopy product and Landsat data","volume":"62","author":"Narine","year":"2019","journal-title":"Ann. For. Res."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Narine, L.L., Popescu, S.C., and Malambo, L. (2019). Synergy of ICESat-2 and Landsat for mapping forest aboveground biomass with deep learning. Remote Sens., 11.","DOI":"10.3390\/rs11121503"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.rse.2019.01.037","article-title":"Estimating aboveground biomass and forest canopy cover with simulated ICESat-2 data","volume":"224","author":"Narine","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"933","DOI":"10.1029\/1999GB900042","article-title":"An assessment of vegetation fire in Africa (1981\u20131991): Burned areas, burned biomass, and atmospheric emissions","volume":"13","author":"Barbosa","year":"1999","journal-title":"Glob. Biogeochem. Cycles"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1016\/S0034-4257(02)00130-X","article-title":"Remote sensing estimates of boreal and temperate forest woody biomass: Carbon pools, sources, and sinks","volume":"84","author":"Dong","year":"2003","journal-title":"Remote Sens. Environ."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.rse.2006.06.011","article-title":"Evaluation of satellite based primary production modelling in the semi-arid Sahel","volume":"105","author":"Fensholt","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Hill, M.J., and Hanan, N.P. (2010). Remote sensing of fractional cover and biochemistry in Savannas. Ecosystem Function in Savannas: Measurement and Modeling at Landscape to Global Scales, CRC Press.","DOI":"10.1201\/b10275"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"252","DOI":"10.1016\/j.foreco.2009.10.011","article-title":"EU-wide maps of growing stock and above-ground biomass in forests based on remote sensing and field measurements","volume":"260","author":"Gallaun","year":"2010","journal-title":"For. Ecol. Manag."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"0450011","DOI":"10.1088\/1748-9326\/3\/4\/045011","article-title":"A first map of tropical Africa\u2019s above-ground biomass derived from satellite imagery","volume":"3","author":"Baccini","year":"2008","journal-title":"Environ. Res. Lett."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1658","DOI":"10.1016\/j.rse.2007.08.021","article-title":"Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information","volume":"112","author":"Blackard","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1139\/cjfr-2013-0401","article-title":"Mapping attributes of Canada\u2019s forests at moderate resolution through KNN and MODIS imagery","volume":"44","author":"Beaudoin","year":"2014","journal-title":"Can. J. For. Res."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"9899","DOI":"10.1073\/pnas.1019576108","article-title":"Benchmark map of forest carbon stocks in tropical regions across three continents","volume":"108","author":"Saatchi","year":"2011","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1038\/nclimate1354","article-title":"Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps","volume":"2","author":"Baccini","year":"2012","journal-title":"Nat. Clim. Chang."},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Hu, T., Su, Y., Xue, B., Liu, J., Zhao, X., Fang, J., and Guo, Q. (2016). Mapping global forest aboveground biomass with spaceborne LiDAR, optical imagery, and forest inventory data. Remote Sens., 8.","DOI":"10.3390\/rs8070565"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"5534","DOI":"10.3390\/rs70505534","article-title":"National forest aboveground biomass mapping from ICESat\/GLAS Data and MODIS imagery in China","volume":"7","author":"Chi","year":"2015","journal-title":"Remote Sens."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"816","DOI":"10.1111\/j.1365-2486.2007.01323.x","article-title":"Distribution of aboveground live biomass in the Amazon basin","volume":"13","author":"Saatchi","year":"2007","journal-title":"Glob. Chang. Biol."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"935","DOI":"10.1111\/geb.12168","article-title":"Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites","volume":"23","author":"Mitchard","year":"2014","journal-title":"Glob. Ecol. Biogeogr."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"545","DOI":"10.1007\/s10584-014-1058-7","article-title":"Amazon forest biomass density maps: Tackling the uncertainty in carbon emission estimates","volume":"124","author":"Ometto","year":"2014","journal-title":"Clim. Chang."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"097696","DOI":"10.1117\/1.JRS.9.097696","article-title":"Review of the use of remote sensing for biomass estimation to support renewable energy generation","volume":"9","author":"Kumar","year":"2015","journal-title":"J. Appl. Remote Sens."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"863","DOI":"10.1007\/s10712-019-09528-w","article-title":"Ground data are essential for biomass remote sensing missions","volume":"40","author":"Chave","year":"2019","journal-title":"Surv. Geophys."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"E5224","DOI":"10.1073\/pnas.1412999111","article-title":"Amazonian landscapes and the bias in field studies of forest structure and biomass","volume":"111","author":"Marvin","year":"2014","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1111\/j.1744-7429.2010.00644.x","article-title":"Effects of plot size and census interval on descriptors of forest structure and dynamics","volume":"42","author":"Wagner","year":"2010","journal-title":"Biotropica"},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Yan, E., Lin, H., Wang, G., and Sun, H. (2016). Multi-resolution mapping and accuracy assessment of forest carbon density by combining image and plot data from a nested and clustering sampling design. Remote Sens., 8.","DOI":"10.3390\/rs8070571"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1016\/j.isprsjprs.2015.02.007","article-title":"Lidar with multi-temporal MODIS provide a means to upscale predictions of forest biomass","volume":"102","author":"Li","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"291","DOI":"10.1590\/1809-4392201505504","article-title":"High spatial resolution land use and land cover mapping of the Brazilian legal Amazon in 2008 using Landsat-5\/TM and MODIS data","volume":"46","author":"Coutinho","year":"2016","journal-title":"Acta Amaz."},{"key":"ref_58","doi-asserted-by":"crossref","unstructured":"Tyukavina, A., Hansen, M.C., Potapov, P.V., Stehman, S.V., Smith-Rodriguez, K., Okpa, C., and Aguilar, R. (2017). Types and rates of forest disturbance in Brazilian Legal Amazon, 2000\u20132013. Sci. Adv.","DOI":"10.1126\/sciadv.1601047"},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1590\/1809-43921998282126","article-title":"Uma revis\u00e3o geral sobre o clima da Amaz\u00f4nia","volume":"28","author":"Fisch","year":"1998","journal-title":"Acta Amaz."},{"key":"ref_60","unstructured":"Hecht, S.B. (1982). Land resources, soils and their management in the Amazon region: A state of knowledge report. Proceedings of the International Conference on Amazonian, Agriculture and Land-use Research, Cali, Colombia, April 16\u201318, 1980, Centro International de Agriculture Tropical."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Souza, C.M.Z., Shimbo, J., Rosa, M.R., Parente, L.L.A., Alencar, A., Rudorff, B.F.T., Hasenack, H., Matsumoto, M.G., Ferreira, L., and Souza-Filho, P.W.M. (2020). Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sens., 12.","DOI":"10.3390\/rs12172735"},{"key":"ref_62","unstructured":"dos-Santos, M.N., Keller, M.M., and Morton, D.C. (2019). LiDAR Surveys Over Selected Forest Research Sites, Brazilian Amazon 2008\u20132018, ORNL DAAC."},{"key":"ref_63","unstructured":"(2020, September 08). MapBiomas Project\u2014Collection, V.4.1 of Brazilian Land Cover & Land Use Map Series. Available online: https:\/\/mapbiomas.org\/en\/project."},{"key":"ref_64","doi-asserted-by":"crossref","unstructured":"L\u00f3pez-Serrano, P.M., Dom\u00ednguez, J.L.C., Corral-Rivas, J.J., Jim\u00e9nez, E., L\u00f3pez-S\u00e1nchez, C.A., and Vega-Nieva, D.J. (2020). Modeling of aboveground biomass with Landsat 8 OLI and machine learning in temperate forests. Forests, 11.","DOI":"10.3390\/f11010011"},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"690","DOI":"10.1080\/07038992.2016.1217485","article-title":"A comparison of machine learning techniques applied to Landsat-5 TM spectral data for biomass estimation","volume":"42","year":"2016","journal-title":"Can. J. Remote Sens."},{"key":"ref_66","doi-asserted-by":"crossref","unstructured":"L\u00f3pez-Serrano, P.M., Corral-Rivas, J.J., D\u00edaz-Varela, R.A., \u00c1lvarez-Gonz\u00e1lez, J.G., and L\u00f3pez-S\u00e1nchez, C.A. (2016). Evaluation of radiometric and atmospheric correction algorithms for aboveground forest biomass estimation using Landsat 5 TM data. Remote Sens., 8.","DOI":"10.3390\/rs8050369"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"149","DOI":"10.1016\/j.foreco.2004.03.048","article-title":"Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin","volume":"198","author":"Lu","year":"2004","journal-title":"For. Ecol. Manag."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.foreco.2005.08.036","article-title":"Relationships between forest structure and vegetation indices in Atlantic Rainforest","volume":"218","author":"Freitas","year":"2005","journal-title":"For. Ecol. Manag."},{"key":"ref_69","unstructured":"Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W. (1973). Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation, Goddard Space Flight Center."},{"key":"ref_70","first-page":"1541","article-title":"Distinguishing vegetation from soil background information","volume":"43","author":"Richardson","year":"1977","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1016\/S0034-4257(02)00096-2","article-title":"Overview of the radiometric and biophysical performance of the MODIS vegetation indices","volume":"83","author":"Huete","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"1395","DOI":"10.1080\/01431168608948944","article-title":"Satellite remote sensing of primary production","volume":"7","author":"Tucker","year":"1986","journal-title":"Int. J. Remote Sens."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/0034-4257(88)90106-X","article-title":"A soil-adjusted vegetation index (SAVI)","volume":"25","author":"Huete","year":"1988","journal-title":"Remote Sens. Environ."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/0034-4257(94)90134-1","article-title":"A modified soil adjusted vegetation index","volume":"48","author":"Qi","year":"1994","journal-title":"Remote Sens. Environ."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/0034-4257(95)00186-7","article-title":"Optimization of soil-adjusted vegetation indices","volume":"55","author":"Rondeaux","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/S0034-4257(96)00067-3","article-title":"NDWI\u2014A normalized difference water index for remote sensing of vegetation liquid water from space","volume":"58","author":"Gao","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"480","DOI":"10.1016\/j.rse.2004.12.009","article-title":"Mapping paddy rice agriculture in southern China using multi-temporal MODIS images","volume":"95","author":"Xiao","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.rse.2006.12.006","article-title":"Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR)","volume":"109","author":"Miller","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"701","DOI":"10.1007\/s12040-009-0059-9","article-title":"Mineral composite assessment of Kelkit River Basin in Turkey by means of remote sensing","volume":"118","author":"Dogan","year":"2009","journal-title":"J. Earth Syst. Sci."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.isprsjprs.2011.11.002","article-title":"An assessment of the effectiveness of a random forest classifier for land-cover classification","volume":"67","author":"Ghimire","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.isprsjprs.2016.01.011","article-title":"Random forest in remote sensing: A review of applications and future directions","volume":"114","author":"Belgiu","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_83","doi-asserted-by":"crossref","unstructured":"Chen, Y., Li, L., Lu, D., and Li, D. (2019). Exploring bamboo forest aboveground biomass estimation using Sentinel-2 data. Remote Sens., 11.","DOI":"10.3390\/rs11010007"},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"134","DOI":"10.1016\/j.rse.2015.01.009","article-title":"Uncertainty of remotely sensed aboveground biomass over an African tropical forest: Propagating errors from trees to plots to pixels","volume":"160","author":"Chen","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"945","DOI":"10.1111\/j.1365-2486.2005.00955.x","article-title":"Aboveground forest biomass and the global carbon balance","volume":"11","author":"Houghton","year":"2005","journal-title":"Glob. Chang. Biol."},{"key":"ref_86","doi-asserted-by":"crossref","unstructured":"R\u00f6dig, E., Cuntz, M., Rammig, A., Fischer, R., Taubert, F., and Huth, A. (2018). The importance of forest structure for carbon fluxes of the Amazon rainforest. Environ. Res. Lett., 13.","DOI":"10.1088\/1748-9326\/aabc61"},{"key":"ref_87","doi-asserted-by":"crossref","unstructured":"Zhao, P., Lu, D., Wang, G., Wu, C., Huang, Y., and Yu, S. (2016). Examining spectral reflectance saturation in Landsat imagery and corresponding solutions to improve forest aboveground biomass estimation. Remote Sens., 8.","DOI":"10.3390\/rs8060469"},{"key":"ref_88","doi-asserted-by":"crossref","unstructured":"Gao, Y., Lu, D., Li, G., Wang, G., Chen, Q., Liu, L., and Li, D. (2018). Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sens., 10.","DOI":"10.3390\/rs10040627"},{"key":"ref_89","first-page":"53","article-title":"Forest biomass retrieval approaches from earth observation in different biomes","volume":"77","author":"Quegan","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_90","doi-asserted-by":"crossref","unstructured":"Jiang, X., Li, G., Lu, D., Chen, E., and Wei, X. (2020). Stratification-based forest aboveground biomass estimation in a subtropical region using airborne lidar data. Remote Sens., 12.","DOI":"10.3390\/rs12071101"},{"key":"ref_91","doi-asserted-by":"crossref","unstructured":"Santoro, M., Cartus, O., Carvalhais, N., Rozendaal, D., Avitabilie, V., Araza, A., de Bruin, S., Herold, M., Quegan, S., and Rodr\u00edguez Veiga, P. (2020). The global forest above-ground biomass pool for 2010 estimated from high-resolution satellite observations. Earth Syst. Sci. Data Discuss.","DOI":"10.5194\/essd-2020-148"},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.isprsjprs.2012.03.010","article-title":"A comparative analysis of ALOS PALSAR L-band and RADARSAT-2 C-band data for land-cover classification in a tropical moist region","volume":"70","author":"Li","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_93","first-page":"1","article-title":"Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data","volume":"53","author":"Zhao","year":"2016","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1016\/j.rse.2018.11.027","article-title":"Biomass estimation in dense tropical forest using multiple information from single-baseline P-band PolInSAR data","volume":"221","author":"Liao","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1016\/j.rse.2018.11.035","article-title":"Improved forest height estimation by fusion of simulated GEDI Lidar data and TanDEM-X InSAR data","volume":"221","author":"Qi","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_96","doi-asserted-by":"crossref","unstructured":"Bispo, P.C., Rodr\u00edguez-Veiga, P., Zimbres, B., do Couto de Miranda, S., Giusti Cezare, C.H., Fleming, S., Baldacchino, F., Louis, V., Rains, D., and Garcia, M. (2020). Woody aboveground biomass mapping of the brazilian savanna with a multi-sensor and machine learning approach. Remote Sens., 12.","DOI":"10.3390\/rs12172685"},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1126\/science.aam5962","article-title":"Tropical forests are a net carbon source based on aboveground measurements of gain and loss","volume":"358","author":"Baccini","year":"2017","journal-title":"Science"},{"key":"ref_98","doi-asserted-by":"crossref","unstructured":"Nguyen, T.H., Jones, S., Soto-Berelov, M., Haywood, A., and Hislop, S. (2020). Landsat time-series for estimating forest aboveground biomass and its dynamics across space and time: A review. Remote Sens., 12.","DOI":"10.3390\/rs12010098"},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"eaar3629","DOI":"10.1126\/science.aar3629","article-title":"Comment on \u201cTropical forests are a net carbon source based on aboveground measurements of gain and loss\u201d","volume":"363","author":"Hansen","year":"2019","journal-title":"Science"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/20\/3330\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,4]],"date-time":"2024-07-04T04:51:18Z","timestamp":1720068678000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/20\/3330"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,14]]},"references-count":99,"journal-issue":{"issue":"20","published-online":{"date-parts":[[2020,10]]}},"alternative-id":["rs12203330"],"URL":"https:\/\/doi.org\/10.3390\/rs12203330","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,10,14]]}}}