{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,20]],"date-time":"2025-01-20T13:40:27Z","timestamp":1737380427925,"version":"3.33.0"},"reference-count":88,"publisher":"MDPI AG","issue":"18","license":[{"start":{"date-parts":[[2020,9,8]],"date-time":"2020-09-08T00:00:00Z","timestamp":1599523200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"National Key R&D Program of China project \u201cResearch of Key Technologies for Monitoring Forest Plantation Resources\u201d","award":["2017YFD0600900"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41701490"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Many studies have investigated the effects of spectral and spatial features of remotely sensed data and topographic characteristics on land-cover and forest classification results, but they are mainly based on individual sensor data. How these features from different kinds of remotely sensed data with various spatial resolutions influence classification results is unclear. We conducted a comprehensively comparative analysis of spectral and spatial features from ZiYuan-3 (ZY-3), Sentinel-2, and Landsat and their fused datasets with spatial resolution ranges from 2 m, 6 m, 10 m, 15 m, and to 30 m, and topographic factors in influencing land-cover classification results in a subtropical forest ecosystem using random forest approach. The results indicated that the combined spectral (fused data based on ZY-3 and Sentinel-2), spatial, and topographical data with 2-m spatial resolution provided the highest overall classification accuracy of 83.5% for 11 land-cover classes, as well as the highest accuracies for almost all individual classes. The improvement of spectral bands from 4 to 10 through fusion of ZY-3 and Sentinel-2 data increased overall accuracy by 14.2% at 2-m spatial resolution, and by 11.1% at 6-m spatial resolution. Textures from high spatial resolution imagery play more important roles than textures from medium spatial resolution images. The incorporation of textural images into spectral data in the 2-m spatial resolution imagery improved overall accuracy by 6.0\u20137.7% compared to 1.1\u20131.7% in the 10-m to 30-m spatial resolution images. Incorporation of topographic factors into spectral and textural imagery further improved overall accuracy by 1.2\u20135.5%. The classification accuracies for coniferous forest, eucalyptus, other broadleaf forests, and bamboo forest can be 85.3\u201391.1%. This research provides new insights for using proper combinations of spectral bands and textures corresponding to specifically spatial resolution images in improving land-cover and forest classifications in subtropical regions.<\/jats:p>","DOI":"10.3390\/rs12182907","type":"journal-article","created":{"date-parts":[[2020,9,8]],"date-time":"2020-09-08T13:03:48Z","timestamp":1599570228000},"page":"2907","source":"Crossref","is-referenced-by-count":33,"title":["Examining the Roles of Spectral, Spatial, and Topographic Features in Improving Land-Cover and Forest Classifications in a Subtropical Region"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4704-8584","authenticated-orcid":false,"given":"Xiaozhi","family":"Yu","sequence":"first","affiliation":[{"name":"State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China"},{"name":"School of Environmental & Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China"}]},{"given":"Dengsheng","family":"Lu","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China"},{"name":"School of Environmental & Resource Sciences, Zhejiang A&F University, Hangzhou 311300, China"},{"name":"State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China"}]},{"given":"Xiandie","family":"Jiang","sequence":"additional","affiliation":[{"name":"State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China"},{"name":"School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7198-4607","authenticated-orcid":false,"given":"Guiying","family":"Li","sequence":"additional","affiliation":[{"name":"State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China"},{"name":"School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China"}]},{"given":"Yaoliang","family":"Chen","sequence":"additional","affiliation":[{"name":"State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China"},{"name":"School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China"}]},{"given":"Dengqiu","family":"Li","sequence":"additional","affiliation":[{"name":"State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350007, China"},{"name":"School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China"}]},{"given":"Erxue","family":"Chen","sequence":"additional","affiliation":[{"name":"Institute of Forest Resource Information Techniques, Chinese Academy of Forestry, Beijing 100091, China"}]}],"member":"1968","published-online":{"date-parts":[[2020,9,8]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"4910","DOI":"10.1073\/pnas.1317065111","article-title":"High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region","volume":"111","author":"Yu","year":"2014","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1009","DOI":"10.1038\/nature07944","article-title":"The carbon balance of terrestrial ecosystems in China","volume":"458","author":"Piao","year":"2009","journal-title":"Nature"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"357","DOI":"10.5194\/bg-7-357-2010","article-title":"Ecosystem carbon exchanges of a subtropical evergreen coniferous plantation subjected to seasonal drought, 2003\u20132007","volume":"7","author":"Wen","year":"2010","journal-title":"Biogeosciences"},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Bauhus, J., van der Meer, P.J., and Kanninen, M. (2010). Managing forest plantations for carbon sequestration today and in the future. Ecosystem Goods and Services from Plantation Forests, Earthscan Ltd.","DOI":"10.4324\/9781849776417"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.rse.2016.08.013","article-title":"Review of studies on tree species classification from remotely sensed data","volume":"186","author":"Fassnacht","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.isprsjprs.2016.03.008","article-title":"Optical remotely sensed time series data for land cover classification: A review","volume":"116","author":"White","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.rse.2019.02.015","article-title":"Current status of Landsat program, science, and applications","volume":"225","author":"Wulder","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/S0034-4257(01)00208-5","article-title":"Forest mapping with a generalized classifier and Landsat TM data","volume":"77","author":"Woodcock","year":"2001","journal-title":"Remote Sens. Environ."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1016\/j.isprsjprs.2009.10.008","article-title":"Monitoring forest areas from continental to territorial levels using a sample of medium spatial resolution satellite imagery","volume":"65","author":"Eva","year":"2010","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"1185","DOI":"10.1590\/S0100-204X2012000900004","article-title":"Land use\/cover classification in the Brazilian Amazon using satellite images","volume":"47","author":"Lu","year":"2012","journal-title":"Pesqui. Agropecu\u00e1ria Bras."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1080\/15481603.2013.819161","article-title":"Machine learning approaches for forest classification and change analysis using multi-temporal Landsat TM images over Huntington Wildlife Forest","volume":"50","author":"Li","year":"2013","journal-title":"GIScience Remote Sens."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"2607","DOI":"10.1080\/01431161.2012.748992","article-title":"Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data","volume":"34","author":"Gong","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.isprsjprs.2014.09.002","article-title":"Global land cover mapping at 30 m resolution: A POK-based operational approach","volume":"103","author":"Chen","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Vega Isuhuaylas, L.A., Hirata, Y., Santos, L.C.V., and Torobeo, N.S. (2018). Natural forest mapping in the Andes (Peru): A comparison of the performance of machine-learning algorithms. Remote Sens., 10.","DOI":"10.3390\/rs10050782"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Vali, A., Comai, S., and Matteucci, M. (2020). Deep learning for land use and land cover classification based on hyperspectral and multispectral earth observation data: A review. Remote Sens., 12.","DOI":"10.3390\/rs12152495"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.ecolind.2015.12.026","article-title":"Mapping tree species diversity of a tropical montane forest by unsupervised clustering of airborne imaging spectroscopy data","volume":"64","author":"Heiskanen","year":"2016","journal-title":"Ecol. Indic."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Abdollahnejad, A., Panagiotidis, D., Joybari, S.S., and Surov\u1ef3, P. (2017). Prediction of dominant forest tree species using Quickbird and environmental data. Forests, 8.","DOI":"10.3390\/f8020042"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/j.isprsjprs.2019.01.019","article-title":"Tree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis","volume":"149","author":"Ferreira","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Xie, Z., Chen, Y., Lu, D., Li, G., and Chen, E. (2019). Classification of land cover, forest, and tree species classes with Ziyuan-3 multispectral and stereo data. Remote Sens., 11.","DOI":"10.3390\/rs11020164"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"526","DOI":"10.1080\/15481603.2020.1742459","article-title":"Mapping multiple tree species classes using a hierarchical procedure with optimized node variables and thresholds based on high spatial resolution satellite data","volume":"57","author":"Chen","year":"2020","journal-title":"GIScience Remote Sens."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1080\/19475683.2016.1164247","article-title":"A new research paradigm for global land cover mapping","volume":"22","author":"Gong","year":"2016","journal-title":"Ann. GIS"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1533","DOI":"10.1007\/s11430-018-9255-3","article-title":"GlobeLand30: Operational global land cover mapping and big-data analysis","volume":"61","author":"Chen","year":"2018","journal-title":"Sci. China Earth Sci."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Midekisa, A., Holl, F., Savory, D.J., Andrade-Pacheco, R., Gething, P.W., Bennett, A., and Sturrock, H.J.W. (2017). Mapping land cover change over continental Africa using Landsat and Google Earth Engine cloud computing. PLoS ONE, 12.","DOI":"10.1371\/journal.pone.0184926"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Carrasco, L., O\u2019Neil, A.W., Daniel Morton, R., and Rowland, C.S. (2019). Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sens., 11.","DOI":"10.3390\/rs11030288"},{"key":"ref_25","first-page":"3966","article-title":"Participatory mapping of forest plantations with Open Foris and Google Earth Engine","volume":"12","author":"Koskinen","year":"2019","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1625","DOI":"10.5194\/essd-12-1625-2020","article-title":"Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform","volume":"12","author":"Zhang","year":"2020","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"345","DOI":"10.2747\/1548-1603.48.3.345","article-title":"A Comparison of multisensor integration methods for land cover classification in the Brazilian Amazon","volume":"48","author":"Lu","year":"2011","journal-title":"GIScience Remote Sens."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1016\/j.isprsjprs.2016.12.008","article-title":"Multi-source remotely sensed data fusion for improving land cover classification","volume":"124","author":"Chen","year":"2017","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1007\/s12145-018-0369-z","article-title":"Performance evaluation of textural features in improving land use\/land cover classification accuracy of heterogeneous landscape using multi-sensor remote sensing data","volume":"12","author":"Mishra","year":"2019","journal-title":"Earth Sci. Inform."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1390","DOI":"10.1007\/s11430-019-9606-4","article-title":"Annual 30-m land use\/land cover maps of China for 1980\u20132015 from the integration of AVHRR, MODIS and Landsat data using the BFAST algorithm","volume":"63","author":"Xu","year":"2020","journal-title":"Sci. China Earth Sci."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1007\/s12665-016-5278-1","article-title":"Incorporating ancillary data into Landsat 8 image classification process: A case study in Hoa Binh, Vietnam","volume":"75","author":"Nguyen","year":"2016","journal-title":"Environ. Earth Sci."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"111354","DOI":"10.1016\/j.rse.2019.111354","article-title":"Auxiliary datasets improve accuracy of object-based land use\/land cover classification in heterogeneous savanna landscapes","volume":"233","author":"Hurskainen","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"061706","DOI":"10.1117\/1.JRS.6.061706","article-title":"Comparative analysis of classification algorithms and multiple sensor data for land use\/land cover classification in the Brazilian Amazon","volume":"6","author":"Li","year":"2012","journal-title":"J. Appl. Remote Sens."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Phiri, D., and Morgenroth, J. (2017). Developments in Landsat land cover classification methods: A review. Remote Sens., 9.","DOI":"10.3390\/rs9090967"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"823","DOI":"10.1080\/01431160600746456","article-title":"A survey of image classification methods and techniques for improving classification performance","volume":"28","author":"Lu","year":"2007","journal-title":"Int. J. Remote Sens."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Cheng, K., and Wang, J. (2019). Forest type classification based on integrated spectral-spatial-temporal features and random forest algorithm-A case study in the Qinling Mountains. Forests, 10.","DOI":"10.3390\/f10070559"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"8188","DOI":"10.1080\/01431161.2014.980920","article-title":"The roles of textural images in improving land-cover classification in the Brazilian Amazon","volume":"35","author":"Lu","year":"2014","journal-title":"Int. J. Remote Sens."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.foreco.2019.02.002","article-title":"The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration","volume":"438","author":"Almeida","year":"2019","journal-title":"For. Ecol. Manag."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"823","DOI":"10.1080\/014311698215748","article-title":"Review article Multisensor image fusion in remote sensing: Concepts, methods and applications","volume":"19","author":"Pohl","year":"1998","journal-title":"Int. J. Remote Sens."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1080\/19479830903561035","article-title":"Multi-source remote sensing data fusion: Status and trends","volume":"1","author":"Zhang","year":"2010","journal-title":"Int. J. Image Data Fusion"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1016\/j.rse.2016.01.028","article-title":"The benefit of synthetically generated RapidEye and Landsat 8 data fusion time series for riparian forest disturbance monitoring","volume":"177","author":"Kleinschmit","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"3966","DOI":"10.1109\/JSTARS.2019.2945188","article-title":"A novel multispectral, panchromatic and SAR Data fusion for land classification","volume":"12","author":"Iervolino","year":"2019","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"2661","DOI":"10.3390\/rs4092661","article-title":"Tree species classification with Random forest using very high spatial resolution 8-band worldView-2 satellite data","volume":"4","author":"Immitzer","year":"2012","journal-title":"Remote Sens."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Momeni, R., Aplin, P., and Boyd, D.S. (2016). Mapping complex urban land cover from spaceborne imagery: The influence of spatial resolution, spectral band set and classification approach. Remote Sens., 8.","DOI":"10.3390\/rs8020088"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"8963","DOI":"10.1080\/01431161.2018.1500731","article-title":"Coastal wetland classification with multiseasonal high-spatial resolution satellite imagery","volume":"39","author":"Li","year":"2018","journal-title":"Int. J. Remote Sens."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"277","DOI":"10.1016\/j.isprsjprs.2017.06.001","article-title":"A review of supervised object-based land-cover image classification","volume":"130","author":"Ma","year":"2017","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"629","DOI":"10.14358\/PERS.84.10.629","article-title":"Review on high spatial resolution remote sensing image segmentation evaluation","volume":"84","author":"Chen","year":"2018","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_48","first-page":"96","article-title":"Analysis of correlation between terrain and forest spatial distribution based on DEM","volume":"40","author":"Wu","year":"2012","journal-title":"J. North-East For. Univ."},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Ho\u015bci\u0142o, A., and Lewandowska, A. (2019). Mapping forest type and tree species on a regional scale using multi-temporal Sentinel-2 data. Remote Sens., 11.","DOI":"10.3390\/rs11080929"},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Liu, Y., Gong, W., Hu, X., and Gong, J. (2018). Forest type identification with random forest using Sentinel-1A, Sentinel-2A, multi-temporal Landsat-8 and DEM data. Remote Sens., 10.","DOI":"10.3390\/rs10060946"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1016\/0341-8162(96)00005-7","article-title":"Influence of topography on some vegetation cover properties","volume":"27","author":"Florinsky","year":"1996","journal-title":"Catena"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1016\/j.baae.2003.10.001","article-title":"Role of topography and soils in grassland structuring at the landscape and community scales","volume":"5","year":"2004","journal-title":"Basic Appl. Ecol."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"439","DOI":"10.5751\/ES-02302-130105","article-title":"Fertility island formation and evolution in dryland ecosystems","volume":"13","author":"Ridolfi","year":"2008","journal-title":"Ecol. Soc."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"457","DOI":"10.1007\/s11258-014-0316-0","article-title":"The relationship between climatic conditions and generative reproduction of a lowland population of Pulsatilla vernalis: The last breath of a relict plant or a fluctuating cycle of regeneration?","volume":"215","author":"Grzyl","year":"2014","journal-title":"Plant Ecol."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2014.06.012","article-title":"Accurate mapping of forest types using dense seasonal landsat time-series","volume":"96","author":"Zhu","year":"2014","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Chiang, S.H., and Valdez, M. (2019). Tree species classification by integrating satellite imagery and topographic variables using maximum entropy method in a Mongolian forest. Forests, 10.","DOI":"10.3390\/f10110961"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1080\/07038992.1982.10855028","article-title":"On the slope-aspect correction of multispectral scanner data","volume":"8","author":"Teillet","year":"1982","journal-title":"Can. J. Remote Sens."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"1343","DOI":"10.14358\/PERS.74.11.1343","article-title":"Pixel-based Minnaert correction method for reducing topographic effects on a landsat 7 ETM+ image","volume":"74","author":"Lu","year":"2008","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"2148","DOI":"10.1109\/TGRS.2005.852480","article-title":"SCS+C: A modified sun-canopy-sensor topographic correction in forested terrain","volume":"43","author":"Soenen","year":"2005","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1016\/j.isprsjprs.2005.12.003","article-title":"Accuracy analysis for DSM and orthoimages derived from SPOT HRS stereo data using direct georeferencing","volume":"60","author":"Reinartz","year":"2006","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_61","unstructured":"Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Mueller-Wilm, U., Cadau, E., and Gascon, F. (2016, January 9\u201313). Sentinel-2 SEN2COR: L2A processor for users. Proceedings of the Living Planet Symposium, Prague, Czech Republic."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"4610","DOI":"10.1109\/TGRS.2017.2694881","article-title":"Super-resolving multiresolution images with band-independent geometry of multispectral pixels","volume":"55","author":"Brodu","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"46","DOI":"10.1016\/j.rse.2016.04.008","article-title":"Preliminary analysis of the performance of the Landsat 8\/OLI land surface reflectance product","volume":"185","author":"Vermote","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1016\/j.rse.2007.02.014","article-title":"Application of high spatial resolution satellite imagery for riparian and forest ecosystem classification","volume":"110","author":"Johansen","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"635","DOI":"10.1016\/j.isprsjprs.2008.03.003","article-title":"Using texture analysis to improve per-pixel classification of very high resolution images for mapping plastic greenhouses","volume":"63","author":"Aguilar","year":"2008","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"610","DOI":"10.1109\/TSMC.1973.4309314","article-title":"Textural features for image classification","volume":"SMC-3","author":"Haralick","year":"1973","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1109\/TGRS.1990.572937","article-title":"Evaluation of the grey-level co-occurrence matrix method for land-cover classification using SPOT imagery","volume":"28","author":"Marceau","year":"1990","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"93","DOI":"10.1016\/j.rse.2011.12.003","article-title":"Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture","volume":"121","author":"Atkinson","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1080\/01431160412331269698","article-title":"Random forest classifier for remote sensing classification","volume":"26","author":"Pal","year":"2005","journal-title":"Int. J. Remote Sens."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"294","DOI":"10.1016\/j.patrec.2005.08.011","article-title":"Random forests for land cover classification","volume":"27","author":"Gislason","year":"2006","journal-title":"Pattern Recognit. Lett."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"2784","DOI":"10.1080\/01431161.2018.1433343","article-title":"Implementation of machine-learning classification in remote sensing: An applied review","volume":"39","author":"Maxwell","year":"2018","journal-title":"Int. J. Remote Sens."},{"key":"ref_72","doi-asserted-by":"crossref","unstructured":"Wessel, M., Brandmeier, M., and Tiede, D. (2018). Evaluation of different machine learning algorithms for scalable classification of tree types and tree species based on Sentinel-2 data. Remote Sens., 10.","DOI":"10.3390\/rs10091419"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.isprsjprs.2016.01.011","article-title":"Random forest in remote sensing: A review of applications and future directions","volume":"114","author":"Belgiu","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"623","DOI":"10.2747\/1548-1603.49.5.623","article-title":"An evaluation of bagging, boosting, and random forests for land-cover classification in Cape Cod, Massachusetts, USA","volume":"49","author":"Ghimire","year":"2012","journal-title":"GIScience Remote Sens."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"407","DOI":"10.14358\/PERS.82.6.407","article-title":"An assessment of algorithmic parameters affecting image classification accuracy by random forests","volume":"82","author":"Shi","year":"2016","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1016\/S0034-4257(01)00295-4","article-title":"Status of land cover classification accuracy assessment","volume":"80","author":"Foody","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_77","doi-asserted-by":"crossref","unstructured":"Congalton, R.G., and Green, K. (2019). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, CRC Press. [3rd ed.].","DOI":"10.1201\/9780429052729"},{"key":"ref_78","unstructured":"Pu, R., and Gong, P. (2000). Hyperspectral Remote Sensing and Its Application (Chinese), High Education Press."},{"key":"ref_79","unstructured":"Tong, Q.X., Zhang, B., and Zheng, L.F. (2006). Hyperspectral Remote Sensing: The Principle, Technology and Application (Chinese), Higher Education Press."},{"key":"ref_80","first-page":"236","article-title":"Review of hyperspectral remote sensing image classification","volume":"20","author":"Du","year":"2016","journal-title":"J. Remote Sens."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"1159","DOI":"10.14358\/PERS.76.10.1159","article-title":"Land cover classification in a complex urban-rural landscape with QuickBird imagery","volume":"76","author":"Lu","year":"2010","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_82","doi-asserted-by":"crossref","unstructured":"Xi, Z., Lu, D., Liu, L., and Ge, H. (2016). Detection of drought-induced hickory disturbances in western Lin\u2019An county, China, using multitemporal Landsat imagery. Remote Sens., 8.","DOI":"10.3390\/rs8040345"},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"1843","DOI":"10.1016\/j.foreco.2010.08.031","article-title":"Tree species classification from fused active hyperspectral reflectance and LIDAR measurements","volume":"260","author":"Puttonen","year":"2010","journal-title":"For. Ecol. Manag."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"1141","DOI":"10.1016\/j.rse.2010.01.002","article-title":"Synergistic use of QuickBird multispectral imagery and LIDAR data for object-based forest species classification","volume":"114","author":"Ke","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"2360","DOI":"10.1109\/LGRS.2017.2764938","article-title":"Tree classification in complex forest point clouds based on deep learning","volume":"14","author":"Zou","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.apgeog.2015.12.006","article-title":"Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use\/land cover (LULC) mapping: Case study of the Laguna de Bay area of the Philippines","volume":"67","author":"Johnson","year":"2016","journal-title":"Appl. Geogr."},{"key":"ref_87","doi-asserted-by":"crossref","unstructured":"Vahidi, H., Klinkenberg, B., Johnson, B.A., Moskal, L.M., and Yan, W. (2018). Mapping the individual trees in urban orchards by incorporating Volunteered Geographic Information and very high resolution optical remotely sensed data: A template matching-based approach. Remote Sens., 10.","DOI":"10.3390\/rs10071134"},{"key":"ref_88","doi-asserted-by":"crossref","unstructured":"Adagbasa, E.G., Adelabu, S.A., and Okello, T.W. (2019). Application of deep learning with stratified K-fold for vegetation species discrimation in a protected mountainous region using Sentinel-2 image. Geocarto Int., 1\u201321.","DOI":"10.1080\/10106049.2019.1704070"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/18\/2907\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,20]],"date-time":"2025-01-20T13:24:04Z","timestamp":1737379444000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/18\/2907"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9,8]]},"references-count":88,"journal-issue":{"issue":"18","published-online":{"date-parts":[[2020,9]]}},"alternative-id":["rs12182907"],"URL":"https:\/\/doi.org\/10.3390\/rs12182907","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2020,9,8]]}}}