{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,31]],"date-time":"2024-07-31T09:48:17Z","timestamp":1722419297370},"reference-count":47,"publisher":"MDPI AG","issue":"17","license":[{"start":{"date-parts":[[2020,9,2]],"date-time":"2020-09-02T00:00:00Z","timestamp":1599004800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["No. 41730107"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Strategic Priority Research 380 Program of Chinese Academy of Sciences","award":["No. XDA19030304"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Terrestrial hyperspectral LiDAR (HSL) sensors could provide not only spatial information of the measured targets but also the backscattered spectral intensity signal of the laser pulse. The raw intensity collected by HSL is influenced by several factors, among which the range, incidence angle and sub-footprint play a significant role. Further studies on the influence of the range, incidence angle and sub-footprint are needed to improve the accuracy of backscatter intensity data as it is important for vegetation structural and biochemical information estimation. In this paper, we investigated the effects on the laser backscatter intensity and developed a practical correction method for HSL data. We established a laser ratio calibration method and a reference target-based method for HSL and investigated the calibration procedures for the mixed measurements of the effects of the incident angle, range and sub-footprint. Results showed that the laser ratio at the red-edge and near-infrared laser wavelengths has higher accuracy and simplicity in eliminating range, incident angle and sub-footprint effects and can significantly improve the backscatter intensity discrepancy caused by these effects.<\/jats:p>","DOI":"10.3390\/rs12172855","type":"journal-article","created":{"date-parts":[[2020,9,3]],"date-time":"2020-09-03T12:40:26Z","timestamp":1599136826000},"page":"2855","source":"Crossref","is-referenced-by-count":12,"title":["Radiometric Calibration for Incidence Angle, Range and Sub-Footprint Effects on Hyperspectral LiDAR Backscatter Intensity"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4109-1960","authenticated-orcid":false,"given":"Changsai","family":"Zhang","sequence":"first","affiliation":[{"name":"The State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China"},{"name":"University of Chinese Academy of Sciences, Beijing 100049, China"}]},{"given":"Shuai","family":"Gao","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China"}]},{"given":"Wang","family":"Li","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China"}]},{"given":"Kaiyi","family":"Bi","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China"},{"name":"University of Chinese Academy of Sciences, Beijing 100049, China"}]},{"given":"Ni","family":"Huang","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5959-9351","authenticated-orcid":false,"given":"Zheng","family":"Niu","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China"}]},{"given":"Gang","family":"Sun","sequence":"additional","affiliation":[{"name":"The State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China"}]}],"member":"1968","published-online":{"date-parts":[[2020,9,2]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Tan, K., and Cheng, X. (2016). Correction of incidence angle and distance effects on TLS intensity data based on reference targets. Remote Sens., 8.","DOI":"10.3390\/rs8030251"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"423","DOI":"10.1016\/j.isprsjprs.2010.05.002","article-title":"Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas","volume":"65","author":"Alexander","year":"2010","journal-title":"ISPRS J. Photogramm."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"94","DOI":"10.1109\/LGRS.2013.2247022","article-title":"Radiometric Correction of terrestrial LiDAR point cloud data for individual maize plant detection","volume":"11","author":"Hofle","year":"2014","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Chen, B., Shi, S., Gong, W., Zhang, Q., Yang, J., Du, L., Sun, J., Zhang, Z., and Song, S. (2017). Multispectral LiDAR point cloud classification: A two-step approach. Remote Sens., 9.","DOI":"10.3390\/rs9040373"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"111208","DOI":"10.1016\/j.rse.2019.05.027","article-title":"Comparison of multispectral airborne laser scanning and stereo matching of aerial images as a single sensor solution to forest inventories by tree species","volume":"231","author":"Kukkonen","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"2152","DOI":"10.1016\/j.rse.2009.05.019","article-title":"Assessing forest structural and physiological information content of multi-spectral LiDAR waveforms by radiative transfer modelling","volume":"113","author":"Morsdorf","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/j.rse.2013.05.012","article-title":"Integrating terrestrial and airborne lidar to calibrate a 3D canopy model of effective leaf area index","volume":"136","author":"Hopkinson","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_8","first-page":"150","article-title":"Retrieval of effective leaf area index (LAIe) and leaf area density (LAD) profile at individual tree level using high density multi-return airborne LiDAR","volume":"50","author":"Lin","year":"2016","journal-title":"Int. J. Appl. Earth Obs."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.rse.2013.01.001","article-title":"The potential of dual-wavelength laser scanning for estimating vegetation moisture content","volume":"132","author":"Gaulton","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.isprsjprs.2015.10.001","article-title":"3D leaf water content mapping using terrestrial laser scanner backscatter intensity with radiometric correction","volume":"110","author":"Zhu","year":"2015","journal-title":"ISPRS J. Photogramm."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"9","DOI":"10.5194\/isprs-archives-XLI-B1-9-2016","article-title":"Wavelength selection of hyperspectral lidar based on feature weighting for estimation of leaf nitrogen content in rice","volume":"41","author":"Du","year":"2016","journal-title":"Int. Arch. Photogramm. Remote Sens."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1016\/j.isprsjprs.2014.09.009","article-title":"Assessment of crop foliar nitrogen using a novel dual-wavelength laser system and implications for conducting laser-based plant physiology","volume":"97","author":"Eitel","year":"2014","journal-title":"ISPRS J. Photogramm."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"2229","DOI":"10.1016\/j.rse.2010.04.025","article-title":"Simultaneous measurements of plant structure and chlorophyll content in broadleaf saplings with a terrestrial laser scanner","volume":"114","author":"Eitel","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"4771","DOI":"10.1364\/OE.24.004771","article-title":"Deriving backscatter reflective factors from 32-channel full-waveform LiDAR data for the estimation of leaf biochemical contents","volume":"24","author":"Li","year":"2016","journal-title":"Opt. Express."},{"key":"ref_15","first-page":"1","article-title":"Estimating vertical chlorophyll concentrations in maize in different health states using hyperspectral LiDAR","volume":"99","author":"Bi","year":"2020","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"28099","DOI":"10.3390\/s151128099","article-title":"A review of LIDAR radiometric processing: From ad hoc intensity correction to rigorous radiometric calibration","volume":"15","author":"Kashani","year":"2015","journal-title":"Sensors"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1016\/j.isprsjprs.2011.01.005","article-title":"Scanning geometry: Influencing factor on the quality of terrestrial laser scanning points","volume":"66","author":"Soudarissanane","year":"2011","journal-title":"ISPRS J. Photogramm."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.isprsjprs.2011.10.005","article-title":"Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction","volume":"67","author":"Yan","year":"2012","journal-title":"ISPRS J. Photogramm."},{"key":"ref_19","unstructured":"Jelalian, A.V. (1992). Laser Radar Systems, Artech House."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"942","DOI":"10.1109\/TGRS.2014.2330852","article-title":"Intensity correction of terrestrial laser scanning data by estimating laser transmission function","volume":"53","author":"Fang","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2008.09.007","article-title":"Full-waveform topographic lidar: State-of-the-art","volume":"64","author":"Mallet","year":"2009","journal-title":"ISPRS J. Photogramm."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1016\/j.isprsjprs.2015.12.004","article-title":"Correction of terrestrial LiDAR intensity channel using Oren\u2013Nayar reflectance model: An application to lithological differentiation","volume":"113","author":"Carrea","year":"2016","journal-title":"ISPRS J. Photogramm."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"505","DOI":"10.1016\/j.isprsjprs.2010.06.007","article-title":"Radiometric calibration of small-footprint full-waveform airborne laser scanner measurements: Basic physical concepts","volume":"65","author":"Wagner","year":"2010","journal-title":"ISPRS J. Photogramm."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"116110","DOI":"10.1117\/1.OE.52.11.116110","article-title":"Empirical modeling for non-Lambertian reflectance based on full-waveform laser detection","volume":"52","author":"Li","year":"2013","journal-title":"Opt. Eng."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.isprsjprs.2012.09.015","article-title":"Combination of overlap-driven adjustment and Phong model for LIDAR intensity correction","volume":"75","author":"Ding","year":"2013","journal-title":"ISPRS J. Photogramm."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Tan, K., and Cheng, X.J. (2017). Specular Reflection Effects elimination in terrestrial laser scanning intensity data using phong model. Remote Sens., 9.","DOI":"10.3390\/rs9080853"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"20170033","DOI":"10.1098\/rsfs.2017.0033","article-title":"Uncertainty in multispectral lidar signals caused by incidence angle effects","volume":"8","author":"Kaasalainen","year":"2018","journal-title":"Interface Focus."},{"key":"ref_28","unstructured":"Tan, P. (2020, September 01). Oren-Nayar Reflectance Model. Available online: https:\/\/link.springer.com\/content\/pdf\/10.1007%2F978-0-387-31439-6_535.pdf."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"2780","DOI":"10.3390\/s90402780","article-title":"Use of naturally available reference targets to calibrate airborne laser scanning intensity data","volume":"9","author":"Vain","year":"2009","journal-title":"Sensors."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"10586","DOI":"10.3390\/s111110586","article-title":"Absolute radiometric calibration of Als intensity data: Effects on accuracy and target classification","volume":"11","author":"Kaasalainen","year":"2011","journal-title":"Sensors"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"2207","DOI":"10.3390\/rs3102207","article-title":"Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods","volume":"3","author":"Kaasalainen","year":"2011","journal-title":"Remote Sens."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"304","DOI":"10.1109\/JSTARS.2015.2497310","article-title":"Intensity data correction for the distance effect in terrestrial laser scanners","volume":"9","author":"Tan","year":"2016","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Xu, T., Xu, L., Yang, B., Li, X., and Yao, J. (2017). Terrestrial laser scanning intensity correction by piecewise fitting and overlap-driven adjustment. Remote Sens., 9.","DOI":"10.3390\/rs9111090"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Yu, X., Hyyppa, J., Litkey, P., Kaartinen, H., Vastaranta, M., and Holopainen, M. (2017). Single-sensor solution to tree species classification using multispectral airborne laser scanning. Remote Sens., 9.","DOI":"10.3390\/rs9020108"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Tan, K., Zhang, W., Shen, F., and Cheng, X. (2018). Investigation of TLS intensity data and distance measurement errors from target specular reflections. Remote Sens., 10.","DOI":"10.3390\/rs10071077"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"526","DOI":"10.5589\/m08-070","article-title":"Sampling design of ground-based lidar measurements of forest canopy structure and its effect on shadowing","volume":"34","author":"Jonckheere","year":"2008","journal-title":"Can. J. Remote Sens."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"740","DOI":"10.1109\/JSTARS.2014.2354014","article-title":"Characterizing radiometric attributes of point cloud using a normalized reflective factor derived from small footprint LiDAR waveform","volume":"8","author":"Qin","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1506","DOI":"10.1109\/LGRS.2015.2410788","article-title":"Design of a new multispectral waveform LiDAR instrument to monitor vegetation","volume":"12","author":"Niu","year":"2015","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Zhang, C.S., Gao, S., Niu, Z., Pei, J., Bi, K.Y., and Sun, G. (2019). Calibration of the pulse signal decay effect of full-waveform hyperspectral LiDAR. Sensors, 19.","DOI":"10.3390\/s19235263"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"415","DOI":"10.1016\/j.isprsjprs.2007.05.008","article-title":"Correction of laser scanning intensity data: Data and model-driven approaches","volume":"62","author":"Hofle","year":"2007","journal-title":"ISPRS J. Photogramm."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1016\/S0176-1617(11)81633-0","article-title":"Spectral reflectance changes associated with autumn senescence of aesculus hippocastanum L. And acer platanoides L. Leaves. Spectral features and relation to chlorophyll estimation","volume":"143","author":"Gitelson","year":"1994","journal-title":"J. Plant. Physiol."},{"key":"ref_42","unstructured":"Barnes, E.M., Clarke, T.R., Richards, S.E., Colaizzi, P.D., Haberland, J., Kostrzewski, M., Waller, P., Choi, C., Riley, E., and Thompson, T. (2000, January 16\u201319). Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. Proceedings of the Fifth International Conference on Precision Agriculture, Bloomington, MN, USA."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"5403","DOI":"10.1080\/0143116042000274015","article-title":"The MERIS terrestrial chlorophyll index","volume":"25","author":"Dash","year":"2004","journal-title":"Int. J. Remote Sens."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"1491","DOI":"10.1109\/36.934080","article-title":"Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data","volume":"39","author":"Zarcotejada","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Gitelson, A.A., Keydan, G.P., and Merzlyak, M.N. (2006). Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophys. Res. Lett., 33.","DOI":"10.1029\/2006GL026457"},{"key":"ref_46","first-page":"145","article-title":"Correction of intensity incidence angle effect in terrestrial laser scanning","volume":"2","author":"Krooks","year":"2013","journal-title":"Int. Arch. Photogramm. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Hu, P., Huang, H., Chen, Y., Qi, J., Li, W., Jiang, C., Wu, H., Tian, W., and Hyypp\u00e4, J. (2020). Analyzing the angle effect of leaf reflectance measured by indoor hyperspectral light detection and ranging (LiDAR). Remote Sens., 12.","DOI":"10.3390\/rs12060919"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/17\/2855\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,2]],"date-time":"2024-07-02T22:26:05Z","timestamp":1719959165000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/17\/2855"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,9,2]]},"references-count":47,"journal-issue":{"issue":"17","published-online":{"date-parts":[[2020,9]]}},"alternative-id":["rs12172855"],"URL":"https:\/\/doi.org\/10.3390\/rs12172855","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,9,2]]}}}