{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,7]],"date-time":"2025-01-07T05:36:10Z","timestamp":1736228170061,"version":"3.32.0"},"reference-count":48,"publisher":"MDPI AG","issue":"17","license":[{"start":{"date-parts":[[2020,8,22]],"date-time":"2020-08-22T00:00:00Z","timestamp":1598054400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Strategic Priority Research Program of Chinese Academy of Sciences","award":["Grant No. XDA17010304"]},{"name":"Chinese Natural Sciences Foundation","award":["41874040","41604033"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"The Global Navigation Satellite System (GNSS) Radio Occultation (RO) retrieved temperature and specific humidity profiles can be widely used for weather and climate studies in troposphere. However, some aspects, such as the influences of background data on these retrieved moist profiles have not been discussed yet. This research evaluates RO retrieved temperature and specific humidity profiles from Wegener Center for Climate and Global Change (WEGC), Radio Occultation Meteorology Satellite Application Facility (ROM SAF) and University Corporation for Atmospheric Research (UCAR) Boulder RO processing centers by comparing with measurements from 10 selected Integrated Global Radiosonde Archive (IGRA) radiosonde stations in different latitudinal bands over 2007 to 2010. The background profiles used for producing their moist profiles are also compared with radiosonde. We found that RO retrieved temperature profiles from all centers agree well with radiosonde. Mean differences at polar, mid-latitudinal and tropical stations are varying within \u00b10.2 K, \u00b10.5 K and from \u22121 to 0.2 K, respectively, with standard deviations varying from 1 to 2 K for most pressure levels. The differences between RO retrieved and their background temperature profiles for WEGC are varying within \u00b10.5 K at altitudes above 300 hPa, and the differences for ROM SAF are within \u00b10.2 K, and that for UCAR are within 0.5 K at altitudes below 300 hPa. Both RO retrieved and background specific humidity above 600 hPa are found to have large positive differences (up to 40%) against most radiosonde measurements. Discrepancies of moist profiles among the three centers are overall minor at altitudes above 300 hPa for temperature and at altitudes above 700 hPa for specific humidity. Specific humidity standard deviations are largest at tropical stations in June July August months. It is expected that the outcome of this research can help readers to understand the characteristics of moist products among centers.<\/jats:p>","DOI":"10.3390\/rs12172717","type":"journal-article","created":{"date-parts":[[2020,8,24]],"date-time":"2020-08-24T01:28:06Z","timestamp":1598232486000},"page":"2717","source":"Crossref","is-referenced-by-count":5,"title":["Assessments of the Retrieval of Atmospheric Profiles from GNSS Radio Occultation Data in Moist Tropospheric Conditions Using Radiosonde Data"],"prefix":"10.3390","volume":"12","author":[{"given":"Ying","family":"Li","sequence":"first","affiliation":[{"name":"State Key Laboratory of Geodesy and Earth\u2019s Dynamics, Innovation Academy for Precision Measurement Science and Technology (APM), Chinese Academy of Sciences, Wuhan 430071, China"}]},{"given":"Yunbin","family":"Yuan","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Geodesy and Earth\u2019s Dynamics, Innovation Academy for Precision Measurement Science and Technology (APM), Chinese Academy of Sciences, Wuhan 430071, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1720-6630","authenticated-orcid":false,"given":"Xiaoming","family":"Wang","sequence":"additional","affiliation":[{"name":"Aerospace Information Research Institute, Chinese Academy of Sciences, No.9 Dengzhuang South Road, Haidian District, Beijing 100094, China"}]}],"member":"1968","published-online":{"date-parts":[[2020,8,22]]},"reference":[{"key":"ref_1","first-page":"1","article-title":"The application of spaceborne GPS to atmospheric limb sounding and global change monitoring","volume":"147","author":"Melbourne","year":"1994","journal-title":"JPL Publ."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"23429","DOI":"10.1029\/97JD01569","article-title":"Observing Earth\u2019s atmosphere with radio occultation measurements using the Global Positioning System","volume":"102","author":"Kursinski","year":"1997","journal-title":"J. Geophys. Res."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1016\/S1364-6826(01)00114-6","article-title":"A technical description of atmospheric sounding by GPS occultation","volume":"64","author":"Hajj","year":"2002","journal-title":"J. Atmos. Sol. Terr. Phys."},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Kirchengast, G., Foelsche, U., and Steiner, A.K. (2004). Occultations for probing atmosphere and climate: Setting the scene. Occultations for Probing Atmosphere and Climate, Springer.","DOI":"10.1007\/978-3-662-09041-1"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"1077","DOI":"10.5194\/amt-4-1077-2011","article-title":"Exploring Earth\u2019s atmosphere with radio occultation: Contributions to weather, climate and space weather","volume":"4","author":"Anthes","year":"2011","journal-title":"Atmos. Meas. Tech."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"2365","DOI":"10.1029\/95GL02127","article-title":"Observing tropospheric water vapor by radio occultation using the Global Positioning System","volume":"22","author":"Kursinski","year":"1995","journal-title":"Geophys. Res. Lett."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"1035","DOI":"10.1109\/JRPROC.1953.274297","article-title":"The constants in the equation for atmospheric refractive index at radio frequencies","volume":"41","author":"Smith","year":"1953","journal-title":"Proc. IRE"},{"key":"ref_8","first-page":"1661","article-title":"Retrieving temperature, water vapour and surface pressure information from refractive-index profiles derived by radio occultation: A simulation study","volume":"126","author":"Healy","year":"2000","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"803","DOI":"10.1029\/RS009i010p00803","article-title":"An improved equation for the refractive index of air","volume":"9","author":"Thayer","year":"1974","journal-title":"Radio Sci."},{"key":"ref_10","unstructured":"Foelsche, U. (1999). Physics of Refractivity, in Tropospheric Water Vapor Imaging by Combination of Ground-Based and Spaceborne GNSS Sounding Data. [Ph.D. Thesis, University of Graz]."},{"key":"ref_11","unstructured":"Healy, S.B. (2009). Refractivity Coefficients Used in the Assimilation of GPS Radio Occultation Measurements; GRAS SAF Report 09, Danish Meteorol. Inst."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"D11104","DOI":"10.1029\/2010JD015214","article-title":"An evaluation of the expression of the atmospheric refractivity for GPS signals","volume":"116","author":"Aparicio","year":"2011","journal-title":"J. Geophys. Res."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1007\/s00382-007-0337-7","article-title":"Observing upper troposphere-lower stratosphere climate with radio occultation data from the CHAMP satellite","volume":"31","author":"Foelsche","year":"2008","journal-title":"Clim. Dyn."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1175\/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2","article-title":"GPS sounding of the atmosphere from low Earth orbit: Preliminary results","volume":"77","author":"Ware","year":"1996","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_15","unstructured":"Eyre, J.R. (1994). Assimilation of Radio Occultation Measurements into a Numerical Weather Prediction System, ECMWF. ECMWF Tech. Memo. No. 199."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"2229","DOI":"10.1175\/1520-0493(1995)123<2229:AOARRU>2.0.CO;2","article-title":"Assimilation of atmospheric radio refractivity using a non-hydostatic adjoint model","volume":"123","author":"Zou","year":"1995","journal-title":"Mon. Weather Rev."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"885","DOI":"10.1186\/BF03352301","article-title":"Initial results of combining GPS occultation with ECMWF global analyses within a 1DVar framework","volume":"52","author":"Kursinski","year":"2000","journal-title":"Earth Planets Space"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"17513","DOI":"10.1029\/2000JD900151","article-title":"A non-linear optimal estimation inverse method for radio occultation measurements of temperature, humidity and surface pressure","volume":"105","author":"Palmer","year":"2000","journal-title":"J. Geophys. Res."},{"key":"ref_19","first-page":"4337","article-title":"One-dimensional variational (1-D Var) retrieval of temperature, water vapor, and a reference pressure from radio occultation measurements: A sensitivity analysis","volume":"108","author":"Nedoluha","year":"2003","journal-title":"J. Geophys. Res."},{"key":"ref_20","unstructured":"COSMIC Project Office (2005). Variational Atmospheric Retrieval Scheme (VARS) for GPS Radio Occultation Data. Report, University Corporation for Atmospheric Research."},{"key":"ref_21","unstructured":"Kirchengast, G., Fritzer, J., and Schw\u00e4rz, M. (2010). ESA-OPSGRAS\u2014Reference Occultation Processing System (OPS) for GRAS on MetOp and Other Past and Future RO Missions, University of Graz. WEGC-IGAM\/UniGraz Proposal to ESA\/ESTEC, Doc-Id: WEGC\/ESA-OPSGRAS\/Prop\/v4May10."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"11011","DOI":"10.1002\/2014JD022204","article-title":"Advanced stratospheric data processing of radio occultation with a variational combination for multifrequency GNSS signals","volume":"119","author":"Wee","year":"2014","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_23","unstructured":"(2019, October 20). ROM SAF, Algorithm Theoretical Baseline Document: Level 2B and 2C 1DVar products Version 3.1 2018. Available online: http:\/\/www.romsaf.org\/product_documents.php."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Li, Y., Kirchengast, G., Scherllin-Pirscher, B., Schwaerz, M., Nielsen, J.K., Ho, S.-P., and Yuan, Y.-B. (2019). A new algorithm for the retrieval of atmospheric profiles from GNSS Radio Occultation Data in Moist Air and Comparison to 1DVar Retrievals. Remote Sens., 11.","DOI":"10.3390\/rs11232729"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1819","DOI":"10.5194\/amt-8-1819-2015","article-title":"Climate intercomparison of GPS radio occultation, RS90\/92 radiosondes and GRUAN from 2002 to 2013","volume":"8","author":"Steiner","year":"2015","journal-title":"Atmos. Meas. Tech."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1595","DOI":"10.1002\/2016JD025902","article-title":"The power of vertical geolocation of atmospheric profiles from GNSS radio occultation","volume":"122","author":"Steiner","year":"2017","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"3091","DOI":"10.5194\/amt-11-3091-2018","article-title":"Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series","volume":"11","author":"Rieckh","year":"2018","journal-title":"Atmos. Meas. Tech."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1320","DOI":"10.3390\/rs2051320","article-title":"Global Evaluation of Radiosonde Water Vapor Systematic Biases using GPS Radio Occultation from COSMIC and ECMWF Analysis","volume":"2","author":"Ho","year":"2010","journal-title":"Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"D22108","DOI":"10.1029\/2012JD017685","article-title":"The Structure and Evolution of Madden- Julian Oscillation from FORMOSAT-3\/COSMIC Radio Occultation Data","volume":"117","author":"Zeng","year":"2012","journal-title":"J. Geophy. Res."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1002\/jgrd.50371","article-title":"Characteristics of Global Precipitable Water in ENSO Events Revealed by COSMIC Measurements","volume":"118","author":"Teng","year":"2013","journal-title":"J. Geophy. Res."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"7718","DOI":"10.1002\/2013JD021398","article-title":"Assessing the performance of GPS radio occultation measurements in retrieving tropospheric humidity in cloudiness: A comparison study with radiosondes, ERA-Interim, and AIRS data sets","volume":"119","author":"Vergados","year":"2014","journal-title":"J. Geophys. Res."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1073","DOI":"10.5194\/amt-6-1073-2013","article-title":"Assessment of COSMIC radio occultation retrieval product using global radiosonde data","volume":"6","author":"Wang","year":"2013","journal-title":"Atmos. Meas. Tech."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1789","DOI":"10.5194\/amt-8-1789-2015","article-title":"On the comparisons of tropical relative humidity in the lower and middle troposphere among COSMIC radio occultations and MERRA and ECMWF data sets","volume":"8","author":"Vergados","year":"2015","journal-title":"Atmos. Meas. Tech."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1193","DOI":"10.5194\/amt-11-1193-2018","article-title":"Comparisons of the tropospheric specific humidity from GPS radio occultations with ERA-Interim, NASA MERRA, and AIRS data","volume":"11","author":"Vergados","year":"2018","journal-title":"Atmos. Meas. Tech."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"4845","DOI":"10.5194\/amt-10-4845-2017","article-title":"Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6","volume":"10","author":"Angerer","year":"2017","journal-title":"Atmos. Meas. Tech."},{"key":"ref_36","unstructured":"Schw\u00e4rz, M., Kirchengast, G., Scherllin-Pirscher, B., Schwarz, J., Ladst\u00e4dter, F., and Angerer, B. (2016). Multi-Mission Validation by Satellite Radio Occultation\u2014Extension Project (Final Report), Wegener Center, Univ. of Graz. Tech. Rep. for ESA\/ESRIN No.01\/2016."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"2019","DOI":"10.5194\/amt-4-2019-2011","article-title":"Quantifying uncertainty in climatological fields from GPS radio occultation: An empirical-analytical error model","volume":"4","author":"Kirchengast","year":"2011","journal-title":"Atmos. Meas. Tech."},{"key":"ref_38","unstructured":"(2020, March 31). Radio Occultation Meteorology Satellite Application Facility (ROM SAF). Available online: http:\/\/.romsaf.org."},{"key":"ref_39","unstructured":"ROM SAF (2019, October 20). The Radio Occultation Processing Package (ROPP) Overview. Available online: http:\/\/www.romsaf.org\/software_docs.php."},{"key":"ref_40","unstructured":"ROM SAF (2019, October 20). Algorithm Theoretical Baseline Document: Level 2A refractivity profiles Version 1.6, 2018. Available online: http:\/\/www.romsaf.org\/product_documents.php."},{"key":"ref_41","unstructured":"ROM SAF (2020, June 02). Validation Report: Reprocessed Level 2B and 2C 1D-Var products, 2018. Available online: http:\/\/www.romsaf.org\/product_documents.php."},{"key":"ref_42","unstructured":"(2019, October 20). COSMIC Data Analysis and Archive Center (CDAAC). Available online: https:\/\/cdaacwww.cosmic.ucar.edu\/cdaac\/cgi_bin\/fileFormats.cgi?type=wetPrf."},{"key":"ref_43","first-page":"D15307","article-title":"Error analysis for GNSS radio occultation data based on ensembles of profiles from end-to-end simulations","volume":"110","author":"Steiner","year":"2005","journal-title":"J. Geophys. Res."},{"key":"ref_44","unstructured":"(2020, March 31). Integrated Global Radiosonde Archive (IGRA) Version 2, Available online: https:\/\/www1.ncdc.noaa.gov\/pub\/data\/igra\/derived\/."},{"key":"ref_45","unstructured":"(2020, March 31). Integrated Global Radiosonde Archive (IGRA) Version 2 Readme File, 2016, Available online: https:\/\/www1.ncdc.noaa.gov\/pub\/data\/igra\/igra2-readme.txt."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"4231","DOI":"10.1002\/jgrd.50369","article-title":"Toward improved corrections for radiation-induced biases in radiosonde temperature observations","volume":"118","author":"Sun","year":"2013","journal-title":"J. Geophys. Res."},{"key":"ref_47","first-page":"D18111","article-title":"Reproducibility of GPS radio occultation data for climate monitoring: Profile-to-profile inter-comparison of CHAMP climate records 2002 to 2008 from six data centers","volume":"117","author":"Ho","year":"2012","journal-title":"J. Geophys.Res."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1469","DOI":"10.5194\/acp-13-1469-2013","article-title":"Quantification of structural uncertainty in climate data records from GPS radio occultation","volume":"13","author":"Steiner","year":"2013","journal-title":"Atmos. Chem. Phys."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/17\/2717\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,7]],"date-time":"2025-01-07T03:56:28Z","timestamp":1736222188000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/17\/2717"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,8,22]]},"references-count":48,"journal-issue":{"issue":"17","published-online":{"date-parts":[[2020,9]]}},"alternative-id":["rs12172717"],"URL":"https:\/\/doi.org\/10.3390\/rs12172717","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2020,8,22]]}}}