{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,23]],"date-time":"2024-07-23T19:55:25Z","timestamp":1721764525143},"reference-count":17,"publisher":"MDPI AG","issue":"14","license":[{"start":{"date-parts":[[2020,7,17]],"date-time":"2020-07-17T00:00:00Z","timestamp":1594944000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"River discharge is a fundamental hydrologic quantity that summarizes how a watershed transforms the input of precipitation into output as channelized streamflow [...]<\/jats:p>","DOI":"10.3390\/rs12142304","type":"journal-article","created":{"date-parts":[[2020,7,20]],"date-time":"2020-07-20T14:59:38Z","timestamp":1595257178000},"page":"2304","source":"Crossref","is-referenced-by-count":1,"title":["Editorial for the Special Issue \u201cRemote Sensing of Flow Velocity, Channel Bathymetry, and River Discharge\u201d"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0940-8013","authenticated-orcid":false,"given":"Carl J.","family":"Legleiter","sequence":"first","affiliation":[{"name":"U.S. Geological Survey, Integrated Modeling and Prediction Division, Golden, CO 80403, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0613-3838","authenticated-orcid":false,"given":"Tamlin","family":"Pavelsky","sequence":"additional","affiliation":[{"name":"Department of Geological Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2682-6196","authenticated-orcid":false,"given":"Michael","family":"Durand","sequence":"additional","affiliation":[{"name":"School of Earth Sciences, The Ohio State University, Columbus, OH 43210, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8301-5301","authenticated-orcid":false,"given":"George H.","family":"Allen","sequence":"additional","affiliation":[{"name":"Department of Geography, Texas A & M University, College Station, TX 77843, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3487-1659","authenticated-orcid":false,"given":"Angelica","family":"Tarpanelli","sequence":"additional","affiliation":[{"name":"Research Institute for Geo-Hydrological Protection, National Research Council, 06128 Perugia, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4299-1730","authenticated-orcid":false,"given":"Renato","family":"Frasson","sequence":"additional","affiliation":[{"name":"Byrd Polar and Climate Research Center, The Ohio State University, Columbus, OH 43210, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7268-2974","authenticated-orcid":false,"given":"Inci","family":"Guneralp","sequence":"additional","affiliation":[{"name":"College of Geosciences, Texas A & M University, College Station, TX 77843, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8404-2758","authenticated-orcid":false,"given":"Amy","family":"Woodget","sequence":"additional","affiliation":[{"name":"Department of Geography, Loughborough University, Loughborough, Leicestershire B60 4AZ, UK"}]}],"member":"1968","published-online":{"date-parts":[[2020,7,17]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1191","DOI":"10.1002\/hyp.7794","article-title":"Large-scale river flow archives: Importance, current status and future needs","volume":"25","author":"Hannah","year":"2011","journal-title":"Hydrol. Process."},{"key":"ref_2","first-page":"4","article-title":"Remote sensing of river flow in Alaska\u2014New technology to improve safety and expand coverage of USGS streamgaging","volume":"2019","author":"Conaway","year":"2019","journal-title":"U.S. Geol. Surv. Fact Sheet 2"},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Legleiter, C.J., and Kinzel, P.J. (2020). Inferring Surface Flow Velocities in Sediment-Laden Alaskan Rivers from Optical Image Sequences Acquired from a Helicopter. Remote Sens., 12.","DOI":"10.3390\/rs12081282"},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Mandlburger, G., Pfennigbauer, M., Schwarz, R., Fl\u00f6ry, S., and Nussbaumer, L. (2020). Concept and Performance Evaluation of a Novel UAV-Borne Topo-Bathymetric LiDAR Sensor. Remote Sens., 12.","DOI":"10.3390\/rs12060986"},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Mejia, F.H., Torgersen, C.E., Berntsen, E.K., Maroney, J.R., Connor, J.M., Fullerton, A.H., Ebersole, J.L., and Lorang, M.S. (2020). Longitudinal, Lateral, Vertical, and Temporal Thermal Heterogeneity in a Large Impounded River: Implications for Cold-Water Refuges. Remote Sens., 12.","DOI":"10.3390\/rs12091386"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Leuven, J., Verhoeve, S., van Dijk, W., Selakovi\u0107, S., and Kleinhans, M. (2018). Empirical Assessment Tool for Bathymetry, Flow Velocity and Salinity in Estuaries Based on Tidal Amplitude and Remotely-Sensed Imagery. Remote Sens., 10.","DOI":"10.3390\/rs10121915"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Fulton, J.W., Mason, C.A., Eggleston, J.R., Nicotra, M.J., Chiu, C.L., Henneberg, M.F., Best, H.R., Cederberg, J.R., Holnbeck, S.R., and Lotspeich, R.R. (2020). Near-Field Remote Sensing of Surface Velocity and River Discharge Using Radars and the Probability Concept at 10 U.S. Geological Survey Streamgages. Remote Sens., 12.","DOI":"10.3390\/rs12081296"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Kinzel, P., and Legleiter, C. (2019). sUAS-Based Remote Sensing of River Discharge Using Thermal Particle Image Velocimetry and Bathymetric Lidar. Remote Sens., 11.","DOI":"10.3390\/rs11192317"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Woodget, A.S., Dietrich, J.T., and Wilson, R.T. (2019). Quantifying Below-Water Fluvial Geomorphic Change: The Implications of Refraction Correction, Water Surface Elevations, and Spatially Variable Error. Remote Sens., 11.","DOI":"10.3390\/rs11202415"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Gleason, C.J., and Durand, M.T. (2020). Remote Sensing of River Discharge: A Review and a Framing for the Discipline. Remote Sens., 12.","DOI":"10.3390\/rs12071107"},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Allen, G.H., Yang, X., Gardner, J., Holliman, J., David, C.H., and Ross, M. (2020). Timing of Landsat Overpasses Effectively Captures Flow Conditions of Large Rivers. Remote Sens., 12.","DOI":"10.3390\/rs12091510"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Forbes, B.T., DeBenedetto, G.P., Dickinson, J.E., Bunch, C.E., and Fitzpatrick, F.A. (2020). Using Small Unmanned Aircraft Systems for Measuring Post-Flood High-Water Marks and Streambed Elevations. Remote Sens., 12.","DOI":"10.3390\/rs12091437"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Alc\u00e2ntara, E., and Park, E. (2020). Editorial for the Special Issue \u201cRemote Sensing of Large Rivers\u201d. Remote Sens., 12.","DOI":"10.3390\/rs12081244"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Tauro, F., Tosi, F., Mattoccia, S., Toth, E., Piscopia, R., and Grimaldi, S. (2018). Optical Tracking Velocimetry (OTV): Leveraging Optical Flow and Trajectory-Based Filtering for Surface Streamflow Observations. Remote Sens., 10.","DOI":"10.3390\/rs10122010"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Pearce, S., Ljubi\u010di\u0107, R., Pe\u00f1a-Haro, S., Perks, M., Tauro, F., Pizarro, A., Dal Sasso, S., Strelnikova, D., Grimaldi, S., and Maddock, I. (2020). An Evaluation of Image Velocimetry Techniques under Low Flow Conditions and High Seeding Densities Using Unmanned Aerial Systems. Remote Sens., 12.","DOI":"10.5194\/egusphere-egu2020-324"},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Strelnikova, D., Paulus, G., K\u00e4fer, S., Anders, K.H., Mayr, P., Mader, H., Scherling, U., and Schneeberger, R. (2020). Drone-Based Optical Measurements of Heterogeneous Surface Velocity Fields around Fish Passages at Hydropower Dams. Remote Sens., 12.","DOI":"10.3390\/rs12030384"},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Dal Sasso, S.F., Pizarro, A., and Manfreda, S. (2020). Metrics for the Quantification of Seeding Characteristics to Enhance Image Velocimetry Performance in Rivers. Remote Sens., 12.","DOI":"10.3390\/rs12111789"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/14\/2304\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,1]],"date-time":"2024-07-01T04:02:43Z","timestamp":1719806563000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/14\/2304"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7,17]]},"references-count":17,"journal-issue":{"issue":"14","published-online":{"date-parts":[[2020,7]]}},"alternative-id":["rs12142304"],"URL":"https:\/\/doi.org\/10.3390\/rs12142304","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,7,17]]}}}