{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T10:31:52Z","timestamp":1725273112160},"reference-count":57,"publisher":"MDPI AG","issue":"14","license":[{"start":{"date-parts":[[2020,7,11]],"date-time":"2020-07-11T00:00:00Z","timestamp":1594425600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Georeferenced archival aerial images are key elements for the study of landscape evolution in the scope of territorial planning and management. The georeferencing process proceeds by applying to photographs advanced digital photogrammetric techniques integrated along with a set of ground truths termed ground control points (GCPs). At the end of that stage, the accuracy of the final orthomosaic is assessed by means of root mean square error (RMSE) computation. If the value of that index is deemed to be unsatisfactory, the process is re-run after increasing the GCP number. Unfortunately, the search for GCPs is a costly operation, even when it is visually carried out from recent digital images. Therefore, an open issue is that of achieving the desired accuracy of the orthomosaic with a minimal number of GCPs. The present paper proposes a geostatistically-based methodology that involves performing the spatialization of the GCP errors obtained from a first gross version of the georeferenced orthomosaic in order to produce an error map. Then, the placement of a small number of new GCPs within the sub-areas characterized by the highest local errors enables a finer georeferencing to be achieved. The proposed methodology was applied to 67 historical photographs taken on a geo-morphologically complex study area, located in Southern Italy, which covers a total surface of approximately 55,000 ha. The case study showed that 75 GCPs were sufficient to garner an orthomosaic with coordinate errors below the chosen threshold of 10 m. The study results were compared with similar works on georeferenced images and demonstrated better performance for achieving a final orthomosaic with the same RMSE at a lower information rate expressed in terms of nGCPs\/km2.<\/jats:p>","DOI":"10.3390\/rs12142232","type":"journal-article","created":{"date-parts":[[2020,7,14]],"date-time":"2020-07-14T13:30:49Z","timestamp":1594733449000},"page":"2232","source":"Crossref","is-referenced-by-count":11,"title":["Archival Aerial Images Georeferencing: A Geostatistically-Based Approach for Improving Orthophoto Accuracy with Minimal Number of Ground Control Points"],"prefix":"10.3390","volume":"12","author":[{"given":"Manuela","family":"Persia","sequence":"first","affiliation":[{"name":"Department of Agricultural and Environmental Sciences, University of Bari A. Moro, Via Amendola 165\/A, 70126 Bari, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8049-0537","authenticated-orcid":false,"given":"Emanuele","family":"Barca","sequence":"additional","affiliation":[{"name":"Water Research Institute, IRSA-CNR, Viale F. De Blasio 5, 70132 Bari, Italy"}]},{"given":"Roberto","family":"Greco","sequence":"additional","affiliation":[{"name":"Department of Agricultural and Environmental Sciences, University of Bari A. Moro, Via Amendola 165\/A, 70126 Bari, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9968-7858","authenticated-orcid":false,"given":"Maria Immacolata","family":"Marzulli","sequence":"additional","affiliation":[{"name":"Department of Agricultural and Environmental Sciences, University of Bari A. Moro, Via Amendola 165\/A, 70126 Bari, Italy"}]},{"given":"Patrizia","family":"Tartarino","sequence":"additional","affiliation":[{"name":"Department of Agricultural and Environmental Sciences, University of Bari A. Moro, Via Amendola 165\/A, 70126 Bari, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2020,7,11]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1080\/01426390220128631","article-title":"Systematic Assessment of Maps as Source Information in Landscape-change Research","volume":"27","author":"Vuorela","year":"2002","journal-title":"Landsc. Res."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1007","DOI":"10.14358\/PERS.76.9.1007","article-title":"Triangulating the Past\u2014Recovering Portugal\u2019s Aerial Images Repository","volume":"76","author":"Redweik","year":"2010","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.2478\/eko-2013-0001","article-title":"Land use changes of historical structures in the agricultural landscape at the local level\u2014Hri\u0148ov\u00e1 case study","volume":"32","author":"Mojses","year":"2013","journal-title":"Ekologia"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1080\/17538947.2014.942715","article-title":"Using image-based modelling (SfM\u2013MVS) to produce a 1935 ortho-mosaic of the Ethiopian highlands","volume":"8","author":"Frankl","year":"2014","journal-title":"Int. J. Digit. Earth"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"742","DOI":"10.1016\/j.catena.2016.07.038","article-title":"Use of airborne LiDAR and historical aerial photos for characterising the history of braided river floodplain morphology and vegetation responses","volume":"149","year":"2017","journal-title":"Catena"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.compenvurbsys.2013.12.001","article-title":"Urban and landscape changes through historical maps: The Real Sitio of Aranjuez (1775\u20132005), a case study","volume":"44","author":"Velilla","year":"2014","journal-title":"Comput. Environ. Urban Syst."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"M\u00f6lg, N., and Bolch, T. (2017). Structure-from-Motion Using Historical Aerial Images to Analyse Changes in Glacier Surface Elevation. Remote Sens., 9.","DOI":"10.3390\/rs9101021"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"2113","DOI":"10.1007\/s10346-018-1015-z","article-title":"Multisource data integration to investigate one century of evolution for the Agnone landslide (Molise, southern Italy)","volume":"15","author":"Riquelme","year":"2018","journal-title":"Landslides"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Cencetti, C., di Matteo, L., and Romeo, S. (2017). Analysis of Costantino Landslide Dam Evolution (Southern Italy) by Means of Satellite Images, Aerial Photos, and Climate Data. Geosciences, 7.","DOI":"10.3390\/geosciences7020030"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"1007","DOI":"10.1007\/s10346-015-0612-3","article-title":"Human-induced coastal landslide reactivation. Monitoring by PSInSAR techniques and urban damage survey (SE Spain)","volume":"12","author":"Notti","year":"2015","journal-title":"Landslides"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1007\/s12524-019-01082-7","article-title":"Historical Photograph Orthorectification Using SfM for Land Cover Change Analysis","volume":"48","author":"Ma","year":"2019","journal-title":"J. Indian Soc. Remote Sens."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Cl\u00e9ri, I., Pierrot-Deseilligny, M., and Vallet, B. (2014). Automatic Georeferencing of a Heritage of old analog aerial Photographs. ISPRS Ann. Photogramm. Remote Sens., 33\u201340.","DOI":"10.5194\/isprsannals-II-3-33-2014"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1565","DOI":"10.3390\/rs70201565","article-title":"Automation Aspects for the Georeferencing of Photogrammetric Aerial Image Archives in Forested Scenes","volume":"7","author":"Nurminen","year":"2015","journal-title":"Remote. Sens."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Nocerino, E., and Menna, F. (2012). Multi-temporal analysis of landscapes and urban areas. Int. Arch. Photogramm., 85\u201390.","DOI":"10.5194\/isprsarchives-XXXIX-B4-85-2012"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"025007","DOI":"10.1088\/1748-9326\/8\/2\/025007","article-title":"Multi-temporal image analysis of historical aerial photographs and recent satellite imagery reveals evolution of water body surface area and polygonal terrain morphology in Kobuk Valley National Park, Alaska","volume":"8","author":"Necsoiu","year":"2013","journal-title":"Environ. Res. Lett."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1111\/j.1477-9730.2012.00704.x","article-title":"\u00c1ngel A. Accuracy Assessment of Commercial Self-Calibrating Bundle Adjustment Routines Applied to Archival Aerial Photography","volume":"28","author":"Aguilar","year":"2012","journal-title":"Photogramm. Rec."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"105","DOI":"10.5194\/isprs-annals-IV-2-105-2018","article-title":"Toward automatic georeferencing of archival aerial photogrammetric surveys","volume":"4","author":"Giordano","year":"2018","journal-title":"ISPRS Ann. Photogramm. Remote Sens."},{"key":"ref_18","first-page":"1","article-title":"Assessment of UAV-photogrammetric mapping accuracy based on variation of ground control points","volume":"72","author":"Carricondo","year":"2018","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"1114","DOI":"10.1111\/j.1475-4754.2012.00667.x","article-title":"Computer vision-based orthophoto mapping of complex archaeological sites: The ancient quarry of Pitaranah (Portugal-Spain)","volume":"54","author":"Verhoeven","year":"2012","journal-title":"Archaeometry"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1274","DOI":"10.1002\/esp.4085","article-title":"Archival photogrammetric analysis of river-floodplain systems using Structure from Motion (SfM) methods","volume":"42","author":"Bakker","year":"2016","journal-title":"Earth Surf. Process. Landforms"},{"key":"ref_21","first-page":"123","article-title":"Automatic orientation and mosaicking of archived aerial photography using structure from motion","volume":"3","year":"2016","journal-title":"Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"79","DOI":"10.3354\/cr030079","article-title":"Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance","volume":"30","author":"Willmott","year":"2005","journal-title":"Clim. Res."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1016\/j.atmosenv.2008.10.005","article-title":"Ambiguities inherent in sums-of-squares-based error statistics","volume":"43","author":"Willmott","year":"2009","journal-title":"Atmosph. Environ."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"551","DOI":"10.1016\/j.isprsjprs.2009.03.005","article-title":"Co-registration and correlation of aerial photographs for ground deformation measurements","volume":"64","author":"Ayoub","year":"2009","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1111\/phor.12099","article-title":"Application of archival aerial photogrammetry to quantify climate forcing of alpine landscapes","volume":"30","author":"Micheletti","year":"2015","journal-title":"Photogramm. Rec."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Giordano, S., le Bris, A., and Mallet, C. (2017, January 6\u20138). Fully automatic analysis of archival aerial images status and challenges. Proceedings of the 2017 Joint Urban Remote Sensing Event (JURSE), Dubai, UAE.","DOI":"10.1109\/JURSE.2017.7924620"},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Oniga, V.-E., Breaban, A.-I., Pfeifer, N., and Chirila, C. (2020). Determining the Suitable Number of Ground Control Points for UAS Images Georeferencing by Varying Number and Spatial Distribution. Remote. Sens., 12.","DOI":"10.3390\/rs12050876"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1246","DOI":"10.2113\/gsecongeo.58.8.1246","article-title":"Principles of geostatistics","volume":"58","author":"Matheron","year":"1963","journal-title":"Econ. Geol."},{"key":"ref_29","first-page":"101990","article-title":"A new supervised classifier exploiting spectral-spatial information in the Bayesian framework","volume":"86","author":"Barca","year":"2020","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"234","DOI":"10.2307\/143141","article-title":"Computer Movie Siulating Urban Growth in the Detroit Region","volume":"46","author":"Tobler","year":"1970","journal-title":"Econ. Geogr."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"280","DOI":"10.1016\/j.geoderma.2019.01.030","article-title":"Contribution of EMI and GPR proximal sensing data in soil water content assessment by using linear mixed effects models and geostatistical approaches","volume":"343","author":"Barca","year":"2019","journal-title":"Geoderma"},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Siqueira, H.L., Marcato, J., Matsubara, E.T., Eltner, A., Colares, R.A., Santos, F.M., and Junior, J.M. (August, January 28). The Impact of Ground Control Point Quantity on Area and Volume Measurements with UAV SFM Photogrammetry Applied in Open Pit Mines. Proceedings of the IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan.","DOI":"10.1109\/IGARSS.2019.8897829"},{"key":"ref_33","unstructured":"Greco, R. (2012). Frammentazione Delle Comunit\u00e0 Forestali ed eEerogeneit\u00e0 Ambientale: Il Caso del Parco Naturale Regionale Terra delle Gravine. [Ph.D. Thesis, University of Bari]."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1007\/s11004-006-9069-1","article-title":"Optimized Sample Schemes for Geostatistical Surveys","volume":"39","author":"Marchant","year":"2007","journal-title":"Math. Geol."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"405","DOI":"10.1098\/rspb.1979.0006","article-title":"The interpretation of structure from motion","volume":"203","author":"Ullman","year":"1979","journal-title":"Proc. R. Soc. Lond. B."},{"key":"ref_36","unstructured":"Varga, M. (2009). Structure from motion. Practical Image Processing and Computer Vision, Wiley."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"300","DOI":"10.1016\/j.geomorph.2012.08.021","article-title":"\u2018Structure-from-Motion\u2019 photogrammetry: A low-cost, effective tool for geoscience applications","volume":"179","author":"Westoby","year":"2012","journal-title":"Geomorphology"},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Verhoeven, G., Sevara, C., Karel, W., Ressl, C., Doneus, M., and Briese, C. (2013). Undistorting the Past: New Techniques for Orthorectification of Archaeological Aerial Frame Imagery. The Archaeometallurgy of Copper, Springer Science and Business Media LLC.","DOI":"10.1007\/978-3-319-01784-6_3"},{"key":"ref_39","unstructured":"(2017). Pix4Dmapper 4.1. User Manual, Pix4D SA."},{"key":"ref_40","unstructured":"Broadbent, M. (2017). Reconstructing the Past in 3D Using Historical Aerial Imagery. [Ph.D. Thesis, University of Redlands]."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1016\/j.measurement.2016.11.033","article-title":"A height measurement uncertainty model for archaeological surveys by aerial photogrammetry","volume":"98","author":"Daponte","year":"2017","journal-title":"Measurement"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"245","DOI":"10.2307\/2287429","article-title":"Mining Geostatistics","volume":"75","author":"Watson","year":"1980","journal-title":"J. Am. Stat. Assoc."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"548","DOI":"10.2307\/2290613","article-title":"An Introduction to Applied Geostatistics","volume":"86","author":"Rutter","year":"1991","journal-title":"J. Am. Stat. Assoc."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"335","DOI":"10.2307\/2669569","article-title":"Geostatistics: Modeling Spatial Uncertainty","volume":"95","author":"Stein","year":"2000","journal-title":"J. Am. Stat. Assoc."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Wackernagel, H. (2003). Multivariate Geostatistics, Springer Science and Business Media LLC.","DOI":"10.1007\/978-3-662-05294-5"},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Webster, R., and Oliver, M.A. (2007). Geostatistics for Environmental Scientists, Wiley.","DOI":"10.1002\/9780470517277"},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"de Gruijter, J.J., Bierkens, M.F.P., Brus, D.J., and Knotters, M. (2006). Sampling for Natural Resource Monitoring, Springer Science and Business Media LLC.","DOI":"10.1007\/3-540-33161-1"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.envsoft.2016.11.004","article-title":"An automated decision support system for aided assessment of variogram models","volume":"87","author":"Barca","year":"2017","journal-title":"Environ. Model. Softw."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"17","DOI":"10.1093\/biomet\/37.1-2.17","article-title":"Notes on Continuous Stochastic Phenomena","volume":"37","author":"Moran","year":"1950","journal-title":"Biometrika"},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Fischer, M., and Getis, A. (2010). Spatial Statistics in SAS. Handbook of Applied Spatial Analysis, Springer.","DOI":"10.1007\/978-3-642-03647-7"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1711","DOI":"10.1016\/j.cageo.2008.10.011","article-title":"Real-time automatic interpolation of ambient gamma dose rates from the Dutch radioactivity monitoring network","volume":"35","author":"Hiemstra","year":"2009","journal-title":"Comput. Geosci."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1020","DOI":"10.1111\/j.0006-341X.2002.01020.x","article-title":"Overall concordance correlation coefficient for evaluating agreement among multiple observers","volume":"58","author":"Barnhart","year":"2002","journal-title":"Biometrika"},{"key":"ref_53","unstructured":"Development Core Team (2008). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing."},{"key":"ref_54","unstructured":"RStudio Team (2015). RStudio: Integrated Development for R, RStudio, Inc."},{"key":"ref_55","unstructured":"Renard, D., Bez, N., Desassis, N., Beucher, H., Ors, F., and Laporte, F. (2016). RGeostats: The Geostatistical Package, MINES Paris Tech. Version 11.0.2."},{"key":"ref_56","unstructured":"Harrell, F.E. (2020, April 06). Package \u2018Hmisc\u2019. Available online: https:\/\/cran.r-project.org\/web\/packages\/Hmisc\/Hmisc.pdf."},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Bivand, R., and Piras, G. (2015). Comparing Implementations of Estimation Methods for Spatial Econometrics. J. Stat. Softw., 63.","DOI":"10.18637\/jss.v063.i18"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/14\/2232\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,30]],"date-time":"2024-06-30T23:19:39Z","timestamp":1719789579000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/14\/2232"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,7,11]]},"references-count":57,"journal-issue":{"issue":"14","published-online":{"date-parts":[[2020,7]]}},"alternative-id":["rs12142232"],"URL":"https:\/\/doi.org\/10.3390\/rs12142232","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,7,11]]}}}