{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T16:14:35Z","timestamp":1740154475010,"version":"3.37.3"},"reference-count":64,"publisher":"MDPI AG","issue":"10","license":[{"start":{"date-parts":[[2020,5,20]],"date-time":"2020-05-20T00:00:00Z","timestamp":1589932800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"National Key R&D Program on monitoring, early warning and prevention of major natural disasters","award":["2019YFC1520801, 2017YFC1502406"]},{"name":"Projects of Beijing Advanced Innovation Center for Future Urban Design, Beijing University of Civil Engineering and Architecture","award":["UDC2019031321"]},{"DOI":"10.13039\/501100004826","name":"Beijing Natural Science Foundation","doi-asserted-by":"publisher","award":["8192025"],"id":[{"id":"10.13039\/501100004826","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Land-surface temperature (LST) plays a key role in the physical processes of surface energy and water balance from local through global scales. The widely used one kilometre resolution daily Moderate Resolution Imaging Spectroradiometer (MODIS) LST product has missing values due to the influence of clouds. Therefore, a large number of clear-sky LST reconstruction methods have been developed to obtain spatially continuous LST datasets. However, the clear-sky LST is a theoretical value that is often an overestimate of the real value. In fact, the real LST (also known as cloudy-sky LST) is more necessary and more widely used. The existing cloudy-sky LST algorithms are usually somewhat complicated, and the accuracy needs to be improved. It is necessary to convert the clear-sky LST obtained by the currently better-developed methods into cloudy-sky LST. We took the clear-sky LST, cloud-cover duration, downward shortwave radiation, albedo and normalized difference vegetation index (NDVI) as five independent variables and the real LST at the ground stations as the dependent variable to perform multiple linear regression. The mean absolute error (MAE) of the cloudy-sky LST retrieved by this method ranged from 3.5\u20133.9 K. We further analyzed different cases of the method, and the results suggested that this method has good flexibility. When we chose fewer independent variables, different clear-sky algorithms, or different regression tools, we also achieved good results. In addition, the method calculation process was relatively simple and can be applied to other research areas. This study preliminarily explored the influencing factors of the real LST and can provide a possible option for researchers who want to obtain cloudy-sky LST through clear-sky LST, that is, a convenient conversion method. This article lays the foundation for subsequent research in various fields that require real LST.<\/jats:p>","DOI":"10.3390\/rs12101641","type":"journal-article","created":{"date-parts":[[2020,5,20]],"date-time":"2020-05-20T14:37:38Z","timestamp":1589985458000},"page":"1641","source":"Crossref","is-referenced-by-count":13,"title":["A Simple Method for Converting 1-km Resolution Daily Clear-Sky LST into Real LST"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-9047-2551","authenticated-orcid":false,"given":"Yunfei","family":"Zhang","sequence":"first","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China"},{"name":"Beijing Key Laboratory of Environmental Remote Sensing and Digital City, Beijing Normal University, Beijing 100875, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7926-7303","authenticated-orcid":false,"given":"Yunhao","family":"Chen","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China"},{"name":"Beijing Key Laboratory of Environmental Remote Sensing and Digital City, Beijing Normal University, Beijing 100875, China"}]},{"given":"Jing","family":"Li","sequence":"additional","affiliation":[{"name":"State Key Laboratory of Remote Sensing Science, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China"},{"name":"Beijing Key Laboratory of Environmental Remote Sensing and Digital City, Beijing Normal University, Beijing 100875, China"}]},{"given":"Xi","family":"Chen","sequence":"additional","affiliation":[{"name":"Institute of RS and GIS, School of Earth and Space Sciences, Peking University, Beijing 100871, China"}]}],"member":"1968","published-online":{"date-parts":[[2020,5,20]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"2071","DOI":"10.1016\/j.agrformet.2009.05.016","article-title":"Advances in thermal infrared remote sensing for land surface modeling","volume":"149","author":"Kustas","year":"2009","journal-title":"Agric. For. Meteorol."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.rse.2012.12.008","article-title":"Satellite-derived land surface temperature: Current status and perspectives","volume":"131","author":"Li","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"041501","DOI":"10.1117\/1.JRS.12.041501","article-title":"Application of MODIS land surface temperature data: A systematic literature review and analysis","volume":"12","author":"Phan","year":"2018","journal-title":"J. Appl. Remote Sens."},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Gillespie, A.R., Matsunaga, T., Rokugawa, S., and Hook, S.J. (1996, January 4\u20139). Temperature and emissivity separation from advanced spaceborne thermal emission and reflection radiometer (ASTER) images. Proceedings of the Infrared Spaceborne Remote Sensing IV, SPIE\u2019s 1996 International Symposium on Optical Science, Engineering, and Instrumentation, Denver, CO, USA.","DOI":"10.1117\/12.255172"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1016\/j.rse.2014.02.001","article-title":"Landsat-8: Science and product vision for terrestrial global change research","volume":"145","author":"Roy","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_6","unstructured":"Wan, Z. (2007). Collection-5 MODIS Land Surface Temperature Products Users\u2019 Guide, ICESS, University of California."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"6067","DOI":"10.1080\/01431160802235860","article-title":"Split-window algorithm for land surface temperature estimation from MSG1-SEVIRI data","volume":"29","author":"Jiang","year":"2008","journal-title":"Int. J. Remote Sens."},{"key":"ref_8","unstructured":"Cavalieri, D., Markus, T., and Comiso, J. (2014). AMSR-E\/Aqua Daily L3 25 km Brightness Temperature & Sea Ice Concentration Polar Grids, Version 3."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1007\/s10712-008-9037-z","article-title":"Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data","volume":"29","author":"Kalma","year":"2008","journal-title":"Surv. Geophys."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"1327","DOI":"10.1016\/j.agrformet.2009.03.004","article-title":"Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI","volume":"149","author":"Mallick","year":"2009","journal-title":"Agric. For. Meteorol."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"3156","DOI":"10.1109\/TGRS.2011.2120615","article-title":"Downscaling SMOS-Derived Soil Moisture Using MODIS Visible\/Infrared Data","volume":"49","author":"Piles","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"449","DOI":"10.1016\/j.rse.2009.10.002","article-title":"Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa","volume":"114","author":"Vancutsem","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.rse.2012.04.024","article-title":"Estimating air surface temperature in Portugal using MODIS LST data","volume":"124","author":"Benali","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"62","DOI":"10.1016\/j.rse.2012.10.034","article-title":"Estimation of daily maximum and minimum air temperature using MODIS land surface temperature products","volume":"130","author":"Zhu","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1016\/j.rse.2014.04.024","article-title":"Predicting spatiotemporal mean air temperature using MODIS satellite surface temperature measurements across the Northeastern USA","volume":"150","author":"Kloog","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1522","DOI":"10.1016\/j.rse.2010.02.007","article-title":"Estimation of net radiation from the MODIS data under all sky conditions: Southern Great Plains case study","volume":"114","author":"Bisht","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"2925","DOI":"10.1016\/j.rse.2010.07.012","article-title":"Comparison of multiple models for estimating gross primary production using MODIS and eddy covariance data in Harvard Forest","volume":"114","author":"Wu","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1016\/j.rse.2009.10.008","article-title":"Remote sensing of the urban heat island effect across biomes in the continental USA","volume":"114","author":"Imhoff","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"3175","DOI":"10.1016\/j.rse.2011.07.003","article-title":"Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures","volume":"115","author":"Schwarz","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"2875","DOI":"10.1016\/j.rse.2010.07.005","article-title":"Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data","volume":"114","author":"Rhee","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.rse.2017.05.026","article-title":"Temperature-Vegetation-soil Moisture Dryness Index (TVMDI)","volume":"197","author":"Amani","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_22","first-page":"889","article-title":"A remote sensing index for assessment of regional ecological changes","volume":"33","author":"Xu","year":"2013","journal-title":"China Environ. Sci."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.uclim.2018.02.003","article-title":"Urban surface effects on current and future climate","volume":"24","author":"Garuma","year":"2018","journal-title":"Urban Clim."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/j.isprsjprs.2018.06.003","article-title":"An empirical comparison of interpolation methods for MODIS 8-day land surface temperature composites across the conterminous Unites States","volume":"142","author":"Pede","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1016\/j.rse.2011.12.019","article-title":"A daily merged MODIS Aqua\u2013Terra land surface temperature data set for the conterminous United States","volume":"119","author":"Crosson","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"126","DOI":"10.1016\/j.cageo.2013.08.009","article-title":"Reconstruction of the land surface temperature time series using harmonic analysis","volume":"61","author":"Xu","year":"2013","journal-title":"Comput. Geosci."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Kang, J., Tan, J., Jin, R., Li, X., and Zhang, Y. (2018). Reconstruction of MODIS Land Surface Temperature Products Based on Multi-Temporal Information. Remote Sens., 10.","DOI":"10.3390\/rs10071112"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.isprsjprs.2014.10.001","article-title":"An effective approach for gap-filling continental scale remotely sensed time-series","volume":"98","author":"Weiss","year":"2014","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1109\/LGRS.2014.2348651","article-title":"Reconstructing MODIS LST Based on Multitemporal Classification and Robust Regression","volume":"12","author":"Zeng","year":"2015","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/j.cageo.2017.04.007","article-title":"Reconstructing daily clear-sky land surface temperature for cloudy regions from MODIS data","volume":"105","author":"Sun","year":"2017","journal-title":"Comput. Geosci."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.rse.2017.12.010","article-title":"Creating a seamless 1km resolution daily land surface temperature dataset for urban and surrounding areas in the conterminous United States","volume":"206","author":"Li","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_32","first-page":"101879","article-title":"Using 3D robust smoothing to fill land surface temperature gaps at the continental scale","volume":"82","author":"Pham","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"37","DOI":"10.3808\/jei.200400035","article-title":"Estimation of land surface temperature using spatial interpolation and satellite-derived surface emissivity","volume":"4","author":"Yang","year":"2004","journal-title":"J. Environ. Inform."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Neteler, M. (2010). Estimating Daily Land Surface Temperatures in Mountainous Environments by Reconstructed MODIS LST Data. Remote Sens., 2.","DOI":"10.3390\/rs1020333"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1602","DOI":"10.1109\/LGRS.2013.2263553","article-title":"Reconstruction of Time-Series MODIS LST in Central Qinghai-Tibet Plateau Using Geostatistical Approach","volume":"10","author":"Ke","year":"2013","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Metz, M., Rocchini, D., and Neteler, M. (2014). Surface Temperatures at the Continental Scale: Tracking Changes with Remote Sensing at Unprecedented Detail. Remote Sens., 6.","DOI":"10.3390\/rs6053822"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Zhang, Y., Chen, Y., Li, Y., Xia, H., and Li, J. (2019). Reconstructing One Kilometre Resolution Daily Clear-Sky LST for China\u2019s Landmass Using the BME Method. Remote Sens., 11.","DOI":"10.3390\/rs11222610"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/j.rse.2014.09.013","article-title":"Integrated fusion of multi-scale polar-orbiting and geostationary satellite observations for the mapping of high spatial and temporal resolution land surface temperature","volume":"156","author":"Wu","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_39","unstructured":"Kebiao, M., Jiancheng, S., Zhaoliang, L., Zhihao, Q., and Yuanyuan, J. (2005, January 29\u201329). Land surface temperature and emissivity retrieved from AMSR passive micro-wave data. Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium (IGARSS \u201905), Seoul, Korea."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1115","DOI":"10.1007\/s11430-007-2053-x","article-title":"A physics-based statistical algorithm for retrieving land surface temperature from AMSR-E passive microwave data","volume":"50","author":"Mao","year":"2007","journal-title":"Sci. China Ser. D Earth Sci."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Yuan-Yuan, J., Bohui, T., Xiaoyu, Z., and Zhao-Liang, L. (2007, January 23\u201328). Estimation of land surface temperature and emissivity from AMSR-E data. Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain.","DOI":"10.1109\/IGARSS.2007.4423183"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1109\/TGRS.2007.906478","article-title":"A Practical Method for Retrieving Land Surface Temperature From AMSR-E Over the Amazon Forest","volume":"46","author":"Gao","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Holmes, T.R.H., De Jeu, R.A.M., Owe, M., and Dolman, A.J. (2009). Land surface temperature from Ka band (37 GHz) passive microwave observations. J. Geophys. Res. Atmos., 114.","DOI":"10.1029\/2008JD010257"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"A940","DOI":"10.1364\/OE.25.00A940","article-title":"Land surface temperature retrieval from AMSR-E passive microwave data","volume":"25","author":"Zhao","year":"2017","journal-title":"Opt. Express"},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Kou, X., Jiang, L., Bo, Y., Yan, S., and Chai, L. (2016). Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method. Remote Sens., 8.","DOI":"10.3390\/rs8020105"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.isprsjprs.2016.03.011","article-title":"Prediction of high spatio-temporal resolution land surface temperature under cloudy conditions using microwave vegetation index and ANN","volume":"117","author":"Shwetha","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"107","DOI":"10.1016\/j.rse.2017.04.008","article-title":"A framework for the retrieval of all-weather land surface temperature at a high spatial resolution from polar-orbiting thermal infrared and passive microwave data","volume":"195","author":"Duan","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Sun, D., Li, Y., Zhan, X., Houser, P., Yang, C., Chiu, L., and Yang, R. (2019). Land Surface Temperature Derivation under All Sky Conditions through Integrating AMSR-E\/AMSR-2 and MODIS\/GOES Observations. Remote Sens., 11.","DOI":"10.3390\/rs11141704"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"3307","DOI":"10.1109\/JSTARS.2019.2921924","article-title":"Reconstructing All-Weather Land Surface Temperature Using the Bayesian Maximum Entropy Method Over the Tibetan Plateau and Heihe River Basin","volume":"12","author":"Xu","year":"2019","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"27037","DOI":"10.1029\/2000JD900318","article-title":"A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances","volume":"105","author":"Jin","year":"2000","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.isprsjprs.2018.04.005","article-title":"A two-step framework for reconstructing remotely sensed land surface temperatures contaminated by cloud","volume":"141","author":"Zeng","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1026","DOI":"10.1109\/JSTARS.2019.2896455","article-title":"An Integrated Method for Reconstructing Daily MODIS Land Surface Temperature Data","volume":"12","author":"Yang","year":"2019","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Yu, W., Tan, J., Ma, M., Li, X., She, X., and Song, Z. (2019). An Effective Similar-Pixel Reconstruction of the High-Frequency Cloud-Covered Areas of Southwest China. Remote Sens., 11.","DOI":"10.3390\/rs11030336"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"111191","DOI":"10.1016\/j.rse.2019.05.010","article-title":"A physical model-based method for retrieving urban land surface temperatures under cloudy conditions","volume":"230","author":"Fu","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.rse.2013.08.027","article-title":"New refinements and validation of the collection-6 MODIS land-surface temperature\/emissivity product","volume":"140","author":"Wan","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1016\/j.rse.2014.07.003","article-title":"Generating Global LAnd Surface Satellite incident shortwave radiation and photosynthetically active radiation products from multiple satellite data","volume":"152","author":"Zhang","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"1156","DOI":"10.1109\/TGRS.2015.2475615","article-title":"Local Adaptive Calibration of the Satellite-Derived Surface Incident Shortwave Radiation Product Using Smoothing Spline","volume":"54","author":"Zhang","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_58","unstructured":"(2020, May 20). Land Processes Distributed Active Archive Center (LP DAAC) site, Available online: https:\/\/lpdaac.usgs.gov."},{"key":"ref_59","unstructured":"(2020, May 20). Globe Temperature data portal site. Available online: http:\/\/data.globtemperature.info."},{"key":"ref_60","unstructured":"(2020, May 20). Earth Observation Research Center, Japan Aerospace Exploration Agency site. Available online: https:\/\/suzaku.eorc.jaxa.jp."},{"key":"ref_61","unstructured":"(2020, May 20). National Earth System Science Data Center site. Available online: http:\/\/www.geodata.cn."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"2341","DOI":"10.1175\/1520-0477(2000)081<2341:SANSRB>2.3.CO;2","article-title":"SURFRAD\u2014A national Surface Radiation Budget Network for atmospheric research","volume":"81","author":"Augustine","year":"2000","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"1291","DOI":"10.5194\/hess-15-1291-2011","article-title":"A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem","volume":"15","author":"Liu","year":"2011","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_64","doi-asserted-by":"crossref","unstructured":"Liu, S., Li, X., Xu, Z., Che, T., Xiao, Q., Ma, M., Liu, Q., Jin, R., Guo, J., and Wang, L. (2018). The Heihe Integrated Observatory Network: A basin-scale land surface processes observatory in China. Vadose Zone J., 17.","DOI":"10.2136\/vzj2018.04.0072"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/10\/1641\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T00:00:10Z","timestamp":1735516810000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/10\/1641"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,5,20]]},"references-count":64,"journal-issue":{"issue":"10","published-online":{"date-parts":[[2020,5]]}},"alternative-id":["rs12101641"],"URL":"https:\/\/doi.org\/10.3390\/rs12101641","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2020,5,20]]}}}