{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:59:00Z","timestamp":1732039140882},"reference-count":74,"publisher":"MDPI AG","issue":"8","license":[{"start":{"date-parts":[[2020,4,16]],"date-time":"2020-04-16T00:00:00Z","timestamp":1586995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Radar altimeters have been measuring ocean significant wave height for more than three decades, with their data used to record the severity of storms, the mixing of surface waters and the potential threats to offshore structures and low-lying land, and to improve operational wave forecasting. Understanding climate change and long-term planning for enhanced storm and flooding hazards are imposing more stringent requirements on the robustness, precision, and accuracy of the estimates than have hitherto been needed. Taking advantage of novel retracking algorithms, particularly developed for the coastal zone, the present work aims at establishing an objective baseline processing chain for wave height retrieval that can be adapted to all satellite missions. In order to determine the best performing retracking algorithm for both Low Resolution Mode and Delay-Doppler altimetry, an objective assessment is conducted in the framework of the European Space Agency Sea State Climate Change Initiative project. All algorithms process the same Level-1 input dataset covering a time-period of up to two years. As a reference for validation, an ERA5-based hindcast wave model as well as an in-situ buoy dataset from the Copernicus Marine Environment Monitoring Service In Situ Thematic Centre database are used. Five different metrics are evaluated: percentage and types of outliers, level of measurement noise, wave spectral variability, comparison against wave models, and comparison against in-situ data. The metrics are evaluated as a function of the distance to the nearest coast and the sea state. The results of the assessment show that all novel retracking algorithms perform better in the majority of the metrics than the baseline algorithms currently used for operational generation of the products. Nevertheless, the performance of the retrackers strongly differ depending on the coastal proximity and the sea state. Some retrackers show high correlations with the wave models and in-situ data but significantly under- or overestimate large-scale spectral variability. We propose a weighting scheme to select the most suitable retrackers for the Sea State Climate Change Initiative programme.<\/jats:p>","DOI":"10.3390\/rs12081254","type":"journal-article","created":{"date-parts":[[2020,4,16]],"date-time":"2020-04-16T17:01:39Z","timestamp":1587056499000},"page":"1254","source":"Crossref","is-referenced-by-count":31,"title":["Round Robin Assessment of Radar Altimeter Low Resolution Mode and Delay-Doppler Retracking Algorithms for Significant Wave Height"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-6872-3668","authenticated-orcid":false,"given":"Florian","family":"Schlembach","sequence":"first","affiliation":[{"name":"Deutsches Geod\u00e4tisches Forschungsinstitut, Technische Universit\u00e4t M\u00fcnchen (DGFI-TUM), 80333 Munich, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3372-3948","authenticated-orcid":false,"given":"Marcello","family":"Passaro","sequence":"additional","affiliation":[{"name":"Deutsches Geod\u00e4tisches Forschungsinstitut, Technische Universit\u00e4t M\u00fcnchen (DGFI-TUM), 80333 Munich, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9132-9511","authenticated-orcid":false,"given":"Graham D.","family":"Quartly","sequence":"additional","affiliation":[{"name":"Plymouth Marine Laboratory (PML), Plymouth PL1 3DH, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3107-1608","authenticated-orcid":false,"given":"Andrey","family":"Kurekin","sequence":"additional","affiliation":[{"name":"Plymouth Marine Laboratory (PML), Plymouth PL1 3DH, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6107-2479","authenticated-orcid":false,"given":"Francesco","family":"Nencioli","sequence":"additional","affiliation":[{"name":"Plymouth Marine Laboratory (PML), Plymouth PL1 3DH, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0200-6858","authenticated-orcid":false,"given":"Guillaume","family":"Dodet","sequence":"additional","affiliation":[{"name":"Laboratoire d\u2019Oc\u00e9anographie Physique et Spatiale (LOPS), CNRS, IRD, Ifremer, IUEM, Univ. Brest, 29280 Plouzan\u00e9, France"}]},{"given":"Jean-Fran\u00e7ois","family":"Pioll\u00e9","sequence":"additional","affiliation":[{"name":"Laboratoire d\u2019Oc\u00e9anographie Physique et Spatiale (LOPS), CNRS, IRD, Ifremer, IUEM, Univ. Brest, 29280 Plouzan\u00e9, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9309-9681","authenticated-orcid":false,"given":"Fabrice","family":"Ardhuin","sequence":"additional","affiliation":[{"name":"Laboratoire d\u2019Oc\u00e9anographie Physique et Spatiale (LOPS), CNRS, IRD, Ifremer, IUEM, Univ. Brest, 29280 Plouzan\u00e9, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7423-5118","authenticated-orcid":false,"given":"Jean","family":"Bidlot","sequence":"additional","affiliation":[{"name":"European Centre for Medium-Range Weather Forecasts (ECMWF), Reading RG2 9AX, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4741-3449","authenticated-orcid":false,"given":"Christian","family":"Schwatke","sequence":"additional","affiliation":[{"name":"Deutsches Geod\u00e4tisches Forschungsinstitut, Technische Universit\u00e4t M\u00fcnchen (DGFI-TUM), 80333 Munich, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0718-6069","authenticated-orcid":false,"given":"Florian","family":"Seitz","sequence":"additional","affiliation":[{"name":"Deutsches Geod\u00e4tisches Forschungsinstitut, Technische Universit\u00e4t M\u00fcnchen (DGFI-TUM), 80333 Munich, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3682-5675","authenticated-orcid":false,"given":"Paolo","family":"Cipollini","sequence":"additional","affiliation":[{"name":"Telespazio VEGA UK for ESA Climate Office, ESA-ECSAT, Didcot OX11 0FD, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7359-0115","authenticated-orcid":false,"given":"Craig","family":"Donlon","sequence":"additional","affiliation":[{"name":"European Space Agency, ESA-ESTEC\/EOP-SME, 2200 AG Noordwijk, The Netherlands"}]}],"member":"1968","published-online":{"date-parts":[[2020,4,16]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/0034-4257(79)90011-7","article-title":"The Computation of Ocean Wave Heights from GEOS-3 Satellite Radar Altimeter Data","volume":"8","author":"Gower","year":"1979","journal-title":"Remote Sens. Environ."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/S0074-6142(01)80146-7","article-title":"Chapter 1 Satellite Altimetry","volume":"69","author":"Chelton","year":"2001","journal-title":"Int. Geophys."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Timmermans, B., Gommenginger, C., Dodet, G., and Bidlot, J.R. (2020). Global wave height trends and variability from new multi-mission satellite altimeter products, reanalyses and wave buoys. Geophys. Res. Lett., in review.","DOI":"10.5194\/egusphere-egu2020-19804"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1109\/JOE.1977.1145328","article-title":"The Average Impulse Response of a Rough Surface and Its Applications","volume":"2","author":"Brown","year":"1977","journal-title":"IEEE J. Ocean. Eng."},{"key":"ref_5","first-page":"6","article-title":"Radar Altimeter Mean Return Waveforms from Near-Normal-Incidence Ocean Surface Scattering","volume":"AP-28","author":"Hayne","year":"1980","journal-title":"IEEE Trans. Antennas Propag."},{"key":"ref_6","unstructured":"ESA (2020, April 13). SAMOSA Project: CCN Final Project Report V1.3, Available online: http:\/\/www.satoc.eu\/projects\/samosa\/index.html."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"911","DOI":"10.1109\/TGRS.2014.2330423","article-title":"SAR Altimeter Backscattered Waveform Model","volume":"53","author":"Ray","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_8","unstructured":"Gommenginger, C. (Development of SAR Altimetry Mode Studies and Applications over Ocean, Coastal Zones and Inland Water (SAMOSA): Detailed Processing Model (DPM) of the Sentinel-3 SRAL SAR Altimeter Ocean Waveform Retracker, 2017). Development of SAR Altimetry Mode Studies and Applications over Ocean, Coastal Zones and Inland Water (SAMOSA): Detailed Processing Model (DPM) of the Sentinel-3 SRAL SAR Altimeter Ocean Waveform Retracker, Version 2.5.2."},{"key":"ref_9","unstructured":"Dinardo, S. (2020). Techniques and Applications for Satellite SAR Altimetry over Water, Land and Ice. [Ph.D. Thesis, Technische Universitat]."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2146","DOI":"10.1109\/TGRS.2014.2356331","article-title":"Validation of Significant Wave Height From Improved Satellite Altimetry in the German Bight","volume":"53","author":"Passaro","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"2074","DOI":"10.1175\/1520-0426(2001)018<2074:AAASPO>2.0.CO;2","article-title":"Analyzing Altimeter Artifacts: Statistical Properties of Ocean Waveforms","volume":"18","author":"Quartly","year":"2001","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1109\/LGRS.2009.2039193","article-title":"Modeling Envisat RA-2 Waveforms in the Coastal Zone: Case Study of Calm Water Contamination","volume":"7","author":"Vignudelli","year":"2010","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Wang, X., and Ichikawa, K. (2017). Coastal Waveform Retracking for Jason-2 Altimeter Data Based on along-Track Echograms around the Tsushima Islands in Japan. Remote Sens., 9.","DOI":"10.3390\/rs9070762"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1337","DOI":"10.1175\/JTECH-D-13-00081.1","article-title":"Investigating Short-Wavelength Correlated Errors on Low-Resolution Mode Altimetry","volume":"31","author":"Dibarboure","year":"2014","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Ardhuin, F., Stopa, J.E., Chapron, B., Collard, F., Husson, R., Jensen, R.E., Johannessen, J., Mouche, A., Passaro, M., and Quartly, G.D. (2019). Observing Sea States. Front. Mar. Sci., 6.","DOI":"10.3389\/fmars.2019.00124"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1671","DOI":"10.1109\/TGRS.2014.2331193","article-title":"Waveform Aliasing in Satellite Radar Altimetry","volume":"53","author":"Smith","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_17","unstructured":"ESA (2020, April 13). CCI Sea State Project, Available online: http:\/\/cci.esa.int\/seastate."},{"key":"ref_18","unstructured":"ESA (2020, April 13). CCI: What Are the Development Phases for Each CCI Project and Their Associated Documentation?. Available online: http:\/\/cci.esa.int\/content\/what-are-development-phases-each-cci-project-and-their-associated-documentation."},{"key":"ref_19","unstructured":"ESA (2020, April 13). Sea Surface Temperate Project: Round Robin (Algorithm Comparison), Available online: http:\/\/www.esa-sst-cci.org\/?q=round%20robin."},{"key":"ref_20","unstructured":"ESA (2020, April 13). Soil Moisture Project: Round Robin Exercise, Available online: https:\/\/www.esa-soilmoisture-cci.org\/node\/122."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Brewin, B., Sathyendranath, S., M\u00fcller, D., Brockmann, C., Deschamps, P.Y., Devred, E., Doerffer, R., Fomferra, N., Franz, B., and Grant, M. (2015). The Ocean Colour Climate Change Initiative: III. A Round-Robin Comparison on in-Water Bio-Optical Algorithms. Remote Sens. Environ., 162.","DOI":"10.1016\/j.rse.2013.09.016"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"365","DOI":"10.1080\/01490419.2014.1001049","article-title":"SARAL\/AltiKa Wind and Wave Products: Monitoring, Validation and Assimilation","volume":"38","author":"Abdalla","year":"2015","journal-title":"Mar. Geod."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1421","DOI":"10.1016\/j.asr.2018.01.044","article-title":"Assessment of CryoSat-2 SAR Mode Wind and Wave Data","volume":"62","author":"Abdalla","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_24","unstructured":"ESA (2020, April 13). SCOOP Project, Available online: http:\/\/www.satoc.eu\/projects\/SCOOP\/."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Yang, J., and Zhang, J. (2019). Validation of Sentinel-3A\/3B Satellite Altimetry Wave Heights with Buoy and Jason-3 Data. Sensors, 19.","DOI":"10.3390\/s19132914"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Nencioli, F., and Quartly, G.D. (2019). Evaluation of Sentinel-3A Wave Height Observations Near the Coast of Southwest England. Remote Sens., 11.","DOI":"10.3390\/rs11242998"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"2641","DOI":"10.1016\/j.asr.2015.02.014","article-title":"The German Bight: A Validation of CryoSat-2 Altimeter Data in SAR Mode","volume":"55","author":"Dinardo","year":"2015","journal-title":"Adv. Space Res."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1371","DOI":"10.1016\/j.asr.2017.12.018","article-title":"Coastal SAR and PLRM Altimetry in German Bight and West Baltic Sea","volume":"62","author":"Dinardo","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_29","unstructured":"(2020, April 13). Jason-3: Aviso+. Available online: https:\/\/www.aviso.altimetry.fr\/en\/missions\/current-missions\/jason-3.html."},{"key":"ref_30","unstructured":"EUMETSAT (2020, April 13). Copernicus Online Data Access. Available online: https:\/\/coda.eumetsat.int\/."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"2285","DOI":"10.1029\/JC093iC03p02285","article-title":"Expected Differences between Buoy and Radar Altimeter Estimates of Wind Speed and Significant Wave Height and Their Implications on Buoy-Altimeter Comparisons","volume":"93","author":"Monaldo","year":"1988","journal-title":"J. Geophys. Res."},{"key":"ref_32","first-page":"1","article-title":"Operational Global Reanalysis: Progress, Future Directions and Synergies with NWP Including Updates on the ERA5 Production Status","volume":"27","author":"Hersbach","year":"2018","journal-title":"ERA Rep. Ser. No. 27"},{"key":"ref_33","unstructured":"ECMWF (2020, April 13). Model Upgrade Improves Ocean Wave Forecasts. Available online: https:\/\/www.ecmwf.int\/en\/newsletter\/159\/news\/model-upgrade-improves-ocean-wave-forecasts."},{"key":"ref_34","unstructured":"ECMWF (2020, April 13). Upgrade to Boost Quality of Ocean Wave Forecasts. Available online: https:\/\/www.ecmwf.int\/en\/about\/media-centre\/news\/2019\/upgrade-boost-quality-ocean-wave-forecasts."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"3741","DOI":"10.1109\/TGRS.2018.2886998","article-title":"Removing Intra-1-Hz Covariant Error to Improve Altimetric Profiles of \u03c30 and Sea Surface Height","volume":"57","author":"Quartly","year":"2019","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1175\/JTECH-D-15-0164.1","article-title":"Identification and Reduction of Retracker-Related Noise in Altimeter-Derived Sea Surface Height Measurements","volume":"33","author":"Zaron","year":"2016","journal-title":"J. Atmos. Oceanic Technol."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"253","DOI":"10.1029\/2018GL081029","article-title":"Ocean Surface Wave-Current Signatures From Satellite Altimeter Measurements","volume":"46","author":"Quilfen","year":"2019","journal-title":"Geophys. Res. Lett."},{"key":"ref_38","unstructured":"ESA (2020, April 13). Sea State CCI: Algorithm Theoretical Basis Document v1.1, Available online: http:\/\/cci.esa.int\/sites\/default\/files\/Sea_State_cci_ATBD_v1.1-signed_0.pdf."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1080\/01490410490465210","article-title":"Improving the Jason-1 Ground Retracking to Better Account for Attitude Effects","volume":"27","author":"Amarouche","year":"2004","journal-title":"Mar. Geod."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1111\/j.1365-246X.2005.02724.x","article-title":"Retracking ERS-1 Altimeter Waveforms for Optimal Gravity Field Recovery","volume":"163","author":"Sandwell","year":"2005","journal-title":"Geophys. J. Int."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1175\/1520-0426(1989)006<0407:PCASLT>2.0.CO;2","article-title":"Pulse Compression and Sea Level Tracking in Satellite Altimetry","volume":"6","author":"Chelton","year":"1989","journal-title":"J. Atmos. Oceanic Technol."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.rse.2014.02.008","article-title":"ALES: A Multi-Mission Adaptive Subwaveform Retracker for Coastal and Open Ocean Altimetry","volume":"145","author":"Passaro","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1093\/comjnl\/7.4.308","article-title":"A Simplex Method for Function Minimization","volume":"7","author":"Nelder","year":"1965","journal-title":"Comput. J."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Peng, F., and Deng, X. (2018). Validation of Improved Significantwave Heights from the Brown-Peaky (BP) Retracker along the East Coast of Australia. Remote Sens., 10.","DOI":"10.3390\/rs10071072"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1080\/01490419.2017.1381656","article-title":"A New Retracking Technique for Brown Peaky Altimetric Waveforms","volume":"41","author":"Peng","year":"2018","journal-title":"Mar. Geod."},{"key":"ref_46","unstructured":"Passaro, M. (2015). Design, Validation and Application of a New Coastal Altimetry Strategy. [Ph.D. Thesis, University of Southampton]."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"1445","DOI":"10.1016\/j.asr.2017.11.039","article-title":"A Fast Convolution Based Waveform Model for Conventional and Unfocused SAR Altimetry","volume":"62","author":"Buchhaupt","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1016\/j.rse.2017.07.024","article-title":"STAR: Spatio-Temporal Altimeter Waveform Retracking Using Sparse Representation and Conditional Random Fields","volume":"201","author":"Roscher","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"1578","DOI":"10.1109\/36.718861","article-title":"The Delay\/Doppler Radar Altimeter","volume":"36","author":"Raney","year":"1998","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_50","unstructured":"Lourakis, M. (2020, April 13). Levmar: Levenberg-Marquardt Nonlinear Least Squares Algorithms in C\/C++ 2004. Available online: http:\/\/users.ics.forth.gr\/~lourakis\/levmar\/."},{"key":"ref_51","unstructured":"(2020, April 13). Estimating Significant Wave Heights from SAR Waveforms with a Leading Edge Retracker. Available online: https:\/\/mediatum.ub.tum.de\/1487516."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1464","DOI":"10.1016\/j.asr.2018.04.004","article-title":"Evaluation of the Precision of Different Delay-Doppler Processor (DDP) Algorithms Using CryoSat-2 Data over Open Ocean","volume":"62","author":"Makhoul","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"148","DOI":"10.1109\/TGRS.2016.2601958","article-title":"CryoSat-2 SAR-Mode Over Oceans: Processing Methods, Global Assessment, and Benefits","volume":"55","author":"Boy","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_54","unstructured":"PacIOOS (2020, April 13). Distance to Nearest Coastline: 0.01-Degree Grid: Ocean. Available online: http:\/\/www.pacioos.hawaii.edu\/metadata\/dist2coast_1deg_ocean.html."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"1229","DOI":"10.1175\/1520-0426(1995)012<1229:TEOROR>2.0.CO;2","article-title":"The Effects of Rain on ERS-1 Radar Altimeter Data","volume":"12","author":"Guymer","year":"1995","journal-title":"J. Atmos. Oceanic Technol."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"84","DOI":"10.1016\/j.rse.2011.12.009","article-title":"Outlier Detection in Satellite Data Using Spatial Coherence","volume":"119","author":"Sirjacobs","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Quilfen, Y., and Chapron, B. (2020). On Denoising Satellite Altimeter Measurements for High-Resolution Geophysical Signal Analysis. Adv. Space Res.","DOI":"10.1016\/j.asr.2020.01.005"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1109\/TAU.1967.1161901","article-title":"The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms","volume":"15","author":"Welch","year":"1967","journal-title":"IEEE Trans. Audio Electroacoust."},{"key":"ref_59","unstructured":"Gommenginger, C., Martin-Puig, C., Amarouche, L., and Raney, R.K. (2020, April 13). Review of State of Knowledge for SAR Altimetry over Ocean. Report of the EUMETSAT JASON-CS SAR Mode Error Budget Study. Available online: https:\/\/eprints.soton.ac.uk\/366765\/."},{"key":"ref_60","unstructured":"ESA (2020, April 13). Cryosat Plus for Oceans: CP4O, Available online: http:\/\/lps16.esa.int\/posterfiles\/paper0519\/CP4O_FinalReport.pdf."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1080\/01490410701438166","article-title":"On the Impact of Mispointing Error and Hamming Filtering on Altimeter Waveform Retracking and Skewness Retrieval","volume":"30","author":"Srokosz","year":"2007","journal-title":"Mar. Geod."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"4500","DOI":"10.1002\/2016JC012413","article-title":"Small-Scale Open Ocean Currents Have Large Effects on Wind Wave Heights","volume":"122","author":"Ardhuin","year":"2017","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"2256","DOI":"10.1175\/2008JPO3810.1","article-title":"Mesoscale to Submesoscale Transition in the California Current System. Part III: Energy Balance and Flux","volume":"38","author":"Capet","year":"2008","journal-title":"J. Phys. Oceanogr."},{"key":"ref_64","unstructured":"McWilliams, J.C. (2020, April 13). Submesoscale Currents in the Ocean | Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. Available online: https:\/\/royalsocietypublishing.org\/doi\/10.1098\/rspa.2016.0117."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"495","DOI":"10.1080\/01490410490883478","article-title":"Long-Term Validation of Wave Height Measurements from Altimeters","volume":"27","author":"Queffeulou","year":"2004","journal-title":"Mar. Geod."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1007\/s13131-013-0382-5","article-title":"The Validation of HY-2 Altimeter Measurements of a Significant Wave Height Based on Buoy Data","volume":"32","author":"Wang","year":"2013","journal-title":"Acta Oceanol. Sin."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"238","DOI":"10.1080\/01490419.2012.718611","article-title":"Calibration of Ocean Wave Measurements by the TOPEX, Jason-1, and Jason-2 Satellites","volume":"35","author":"Ray","year":"2012","journal-title":"Mar. Geod."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"2549","DOI":"10.1175\/2009JTECHA1303.1","article-title":"Joint Calibration of Multiplatform Altimeter Measurements of Wind Speed and Wave Height over the Past 20 Years","volume":"26","author":"Zieger","year":"2009","journal-title":"J. Atmos. Oceanic Technol."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"1503","DOI":"10.5194\/os-14-1503-2018","article-title":"Synergy of Wind Wave Model Simulations and Satellite Observations during Extreme Events","volume":"14","author":"Wiese","year":"2018","journal-title":"Ocean Sci."},{"key":"ref_70","doi-asserted-by":"crossref","unstructured":"Idris, N.H. (2019). Wave Energy Resource Assessment with Improved Satellite Altimetry Data over the Malaysian Coastal Sea. Arabian J. Geosci., 12.","DOI":"10.1007\/s12517-019-4670-z"},{"key":"ref_71","doi-asserted-by":"crossref","unstructured":"Dodet, G., Piolle, J.F., Quilfen, Y., Abdalla, S., Accensi, M., Ardhuin, F., Ash, E., Bidlot, J.R., Gommenginger, C., and Marechal, G. (2020). The Sea State CCI Dataset v1: Towards a Sea State Climate Data Record Based on Satellite Observations. Earth Syst. Sci. Data Discuss., in review.","DOI":"10.5194\/essd-2019-253"},{"key":"ref_72","unstructured":"ESA (2020, April 13). Sea State CCI: User Requirements Document V1.0, Available online: http:\/\/cci.esa.int\/sites\/default\/files\/Sea_State_cci_URD_v1.0-signed.pdf."},{"key":"ref_73","unstructured":"ESA (2020, April 13). Sea State CCI Project: Round Robin: Final Selection and Ranking of Algorithms V1.1, Available online: http:\/\/cci.esa.int\/sites\/default\/files\/Sea_State_cci_RR_Final_Selection_v1.1-signed.pdf."},{"key":"ref_74","unstructured":"EUMETSAT (2020, April 13). Major Evolution of Sentinel-3 Altimetry Products. Available online: https:\/\/www.eumetsat.int\/website\/home\/News\/DAT_4762430.html."}],"updated-by":[{"updated":{"date-parts":[[2020,4,16]],"date-time":"2020-04-16T00:00:00Z","timestamp":1586995200000},"DOI":"10.3390\/rs13061182","type":"correction","label":"Correction"}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/8\/1254\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,26]],"date-time":"2024-06-26T22:46:27Z","timestamp":1719441987000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/8\/1254"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,4,16]]},"references-count":74,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2020,4]]}},"alternative-id":["rs12081254"],"URL":"https:\/\/doi.org\/10.3390\/rs12081254","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,4,16]]}}}