{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,1]],"date-time":"2024-09-01T01:50:01Z","timestamp":1725155401603},"reference-count":132,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2020,4,8]],"date-time":"2020-04-08T00:00:00Z","timestamp":1586304000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Remote sensing has been recognized as the main technique to extract land cover\/land use (LC\/LU) data, required to address many environmental issues. Therefore, over the years, many approaches have been introduced and explored to optimize the resultant classification maps. Particularly, index-based methods have highlighted its efficiency and effectiveness in detecting LC\/LU in a multitemporal and multisensors analysis perspective. Nevertheless, the developed indices are suitable to extract a specific class but not to completely classify the whole area. In this study, a new Landsat Images Classification Algorithm (LICA) is proposed to automatically detect land cover (LC) information using satellite open data provided by different Landsat missions in order to perform a multitemporal and multisensors analysis. All the steps of the proposed method were implemented within Google Earth Engine (GEE) to automatize the procedure, manage geospatial big data, and quickly extract land cover information. The algorithm was tested on the experimental site of Siponto, a historic municipality located in Apulia Region (Southern Italy) using 12 radiometrically and atmospherically corrected satellite images collected from Landsat archive (four images, one for each season, were selected from Landsat 5, 7, and 8, respectively). Those images were initially used to assess the performance of 82 traditional spectral indices. Since their classification accuracy and the number of identified LC categories were not satisfying, an analysis of the different spectral signatures existing in the study area was also performed, generating a new algorithm based on the sequential application of two new indices (SwirTirRed (STRed) index and SwiRed index). The former was based on the integration of shortwave infrared (SWIR), thermal infrared (TIR), and red bands, whereas the latter featured a combination of SWIR and red bands. The performance of LICA was preferable to those of conventional indices both in terms of accuracy and extracted classes number (water, dense and sparse vegetation, mining areas, built-up areas versus water, and dense and sparse vegetation). GEE platform allowed us to go beyond desktop system limitations, reducing acquisition and processing times for geospatial big data.<\/jats:p>","DOI":"10.3390\/rs12071201","type":"journal-article","created":{"date-parts":[[2020,4,9]],"date-time":"2020-04-09T07:40:19Z","timestamp":1586418019000},"page":"1201","source":"Crossref","is-referenced-by-count":35,"title":["Landsat Images Classification Algorithm (LICA) to Automatically Extract Land Cover Information in Google Earth Engine Environment"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4103-1992","authenticated-orcid":false,"given":"Alessandra","family":"Capolupo","sequence":"first","affiliation":[{"name":"Department of Civil, Environmental, Land, Construction and Chemistry (DICATECh), Politecnico di Bari, via Orabona 4, Bari 70125, Italy"}]},{"given":"Cristina","family":"Monterisi","sequence":"additional","affiliation":[{"name":"Department of Civil, Environmental, Land, Construction and Chemistry (DICATECh), Politecnico di Bari, via Orabona 4, Bari 70125, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2468-0771","authenticated-orcid":false,"given":"Eufemia","family":"Tarantino","sequence":"additional","affiliation":[{"name":"Department of Civil, Environmental, Land, Construction and Chemistry (DICATECh), Politecnico di Bari, via Orabona 4, Bari 70125, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2020,4,8]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Waldner, F., Fritz, S., Gregorio, D.A., and Defourny, P. (2015). Mapping Priorities to Focus Cropland Mapping Activities: Fitness Assessment of Existing Global, Regional and National Cropland Maps. Remote Sens.","DOI":"10.3390\/rs70607959"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"6531","DOI":"10.1080\/01431160903121134","article-title":"Mapping urban areas on a global scale: Which of the eight maps now available is more accurate?","volume":"30","author":"Potere","year":"2009","journal-title":"Int. J. Remote Sens."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1733","DOI":"10.1016\/j.rse.2010.03.003","article-title":"Mapping global urban areas using MODIS 500-m data: New methods and datasets based on \u2018urban ecoregions\u2019","volume":"114","author":"Schneider","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_4","unstructured":"Fritz, S., Bartholome, E., Belward, A., Hartley, A., Stibig, H., Eva, H., Mayaux, P., Bartalev, S., Latifovic, R., and Kolmert, S. (2003). Harmonisation, Mosaicking and Production of the Global Land Cover 2000 Database, European Commission."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"1959","DOI":"10.1080\/01431160412331291297","article-title":"GLC2000: A new approach to global land cover mapping from Earth observation data","volume":"26","author":"Belward","year":"2005","journal-title":"Int. J. Remote Sens."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Arino, O., Gross, D., Ranera, F., Bourg, L., Leroy, M., Bicheron, P., Latham, J., Gregorio, A., Brockman, C., and Witt, R. (2007, January 23\u201328). GlobCover: ESA Service for Global Land Cover from MERIS. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain.","DOI":"10.1109\/IGARSS.2007.4423328"},{"key":"ref_7","unstructured":"Bicheron, P., Defourny, P., Brockmann, C., and Schouten, L. (2019, November 23). Globcover: Products Description and Validation Report. Available online: https:\/\/core.ac.uk\/download\/pdf\/11773712.pdf."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1016\/j.rse.2009.08.016","article-title":"MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets","volume":"114","author":"Friedl","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1303","DOI":"10.1080\/014311600210191","article-title":"Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data","volume":"21","author":"Loveland","year":"2010","journal-title":"Int. J. Remote Sens."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Fritz, S., See, L., McCallum, I., Schill, C., Obersteiner, M., van der Velde, M., Boettcher, H., Havl\u00edk, P., and Achard, F. (2011). Highlighting continued uncertainty in global land cover maps for the user community. Environ. Res. Lett., 6.","DOI":"10.1088\/1748-9326\/6\/4\/044005"},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Ramankutty, N., Evan, A.T., Monfreda, C., and Foley, J.A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles, 22.","DOI":"10.1029\/2007GB002952"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"850","DOI":"10.1126\/science.1244693","article-title":"Observing the forest and the trees: The first high resolution global maps of forest cover change","volume":"342","author":"Hansen","year":"2013","journal-title":"Science"},{"key":"ref_13","first-page":"199","article-title":"Multitemporal settlement and population mapping from Landsat using Google Earth Engine","volume":"35","author":"Patel","year":"2015","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"2607","DOI":"10.1080\/01431161.2012.748992","article-title":"Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data","volume":"34","author":"Gong","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.isprsjprs.2014.09.002","article-title":"Global land cover mapping at 30 m resolution: A POK-based operational approach","volume":"103","author":"Chen","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1016\/j.rse.2018.02.055","article-title":"High-resolution multi-temporal mapping of global urban land using Landsat images based on the Google Earth Engine Platform","volume":"209","author":"Liu","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"2685","DOI":"10.1080\/01431160050110232","article-title":"Landscape pattern and species richness; regional scale analysis from remote sensing","volume":"21","author":"Griffiths","year":"2000","journal-title":"Int. J. Remote Sens."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"548","DOI":"10.1016\/j.rse.2010.10.001","article-title":"Regional-scale boreal forest cover and change mapping using Landsat data composites for European Russia","volume":"115","author":"Potapov","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_19","first-page":"167","article-title":"Multi-temporal land use analysis of AN ephemeral river area using an artificial neural network approach on landsat imagery","volume":"1","author":"Aquilino","year":"2013","journal-title":"ISPRS Int. Arch. Photogramm."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Novelli, A., Tarantino, E., Caradonna, G., Apollonio, C., Balacco, G., and Piccinni, F. (2016). Improving the ANN Classification Accuracy of Landsat Data Through Spectral Indices and Linear Transformations (PCA and TCT) Aimed at LU\/LC Monitoring of a River Basin. International Conference on Computational Science and Its Applications, Springer.","DOI":"10.1007\/978-3-319-42108-7_32"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"111563","DOI":"10.1016\/j.rse.2019.111563","article-title":"Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping","volume":"237","author":"Li","year":"2020","journal-title":"Remote Sens. Environ."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1515","DOI":"10.1007\/s13762-014-0728-3","article-title":"A comparison of supervised, unsupervised and synthetic land use classification methods in the north of Iran","volume":"12","author":"Mohammady","year":"2015","journal-title":"Int. J. Environ. Sci. Technol."},{"key":"ref_23","unstructured":"Andernach, M., Wyss, D., and Kappas, M. (2020). An Evaluation of the Land Cover Classification Product Sentinel 2 Prototype Land Cover 20 m Map of Africa 2016 for Namibia. Namibian J. Environ., 4."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Stromann, O., Nascetti, A., Yousif, O., and Ban, Y. (2020). Dimensionality Reduction and Feature Selection for Object-Based Land Cover Classification based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine. Remote Sens., 12.","DOI":"10.3390\/rs12010076"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Kumar LMutanga, O. (2018). Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens., 10.","DOI":"10.3390\/rs10101509"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.rse.2017.06.031","article-title":"Google Earth Engine: Planetary-scale geospatial analysis for everyone","volume":"202","author":"Gorelick","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1016\/j.isprsjprs.2013.06.003","article-title":"Clustering based on eigenspace transformation\u2014CBEST for efficient classification","volume":"83","author":"Chen","year":"2013","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_28","first-page":"1499","article-title":"Maximum likelihood method modified in estimating a prior probability and in improving misclassification errors","volume":"33","author":"Susaki","year":"2000","journal-title":"Int. Arch. Photogramm. Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1080\/15481603.2019.1650447","article-title":"Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data","volume":"57","author":"Abdi","year":"2020","journal-title":"GIScience Remote Sens."},{"key":"ref_30","first-page":"800","article-title":"A novel approach for detecting agricultural terraced landscapes from historical and contemporaneous photogrammetric aerial photos","volume":"73","author":"Capolupo","year":"2018","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1171","DOI":"10.3390\/rs1041171","article-title":"A class-oriented strategy for features extraction from multidate ASTER imagery","volume":"1","author":"Crocetto","year":"2009","journal-title":"Remote Sens."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1913","DOI":"10.3390\/rs4071913","article-title":"Mapping rural areas with widespread plastic covered vineyards using true color aerial data","volume":"4","author":"Tarantino","year":"2012","journal-title":"Remote Sens."},{"key":"ref_33","first-page":"403","article-title":"Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almer\u00eda","volume":"52","author":"Novelli","year":"2016","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1016\/j.isprsjprs.2016.03.008","article-title":"Optical remotely sensed time series data for land cover classification: A review","volume":"116","author":"White","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Pal, M., Rasmussen, T., and Porwal, A. (2020). Optimized Lithological Mapping from Multispectral and Hyperspectral Remote Sensing Images Using Fused Multi-Classifiers. Remote Sens., 12.","DOI":"10.3390\/rs12010177"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"369","DOI":"10.14358\/PERS.69.4.369","article-title":"Land-use\/land-cover change detection using improved change-vector analysis","volume":"69","author":"Chen","year":"2003","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"617","DOI":"10.1080\/01431160701352154","article-title":"The application of artificial neural networks to the analysis of remotely sensed data","volume":"29","author":"Mas","year":"2008","journal-title":"Int. J. Remote Sens."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.isprsjprs.2010.11.001","article-title":"Support vector machines in remote sensing: A review","volume":"66","author":"Mountrakis","year":"2011","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1016\/j.isprsjprs.2016.01.011","article-title":"Random forest in remote sensing: A review of applications and future directions","volume":"114","author":"Belgiu","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"3127","DOI":"10.1007\/s11269-013-0337-9","article-title":"Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application","volume":"27","author":"Srivastava","year":"2013","journal-title":"Water Resour. Manag."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"78","DOI":"10.1016\/j.isprsjprs.2012.04.001","article-title":"Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points","volume":"70","author":"Shao","year":"2012","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/S0304-3800(03)00139-X","article-title":"A multi-scale segmentation\/object relationship modelling methodology for landscape analysis","volume":"168","author":"Burnett","year":"2003","journal-title":"Ecol. Model."},{"key":"ref_44","first-page":"884","article-title":"Comparing object-based and pixel-based classifications for mapping savannas","volume":"136","author":"Whiteside","year":"2011","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"829","DOI":"10.14358\/PERS.70.7.829","article-title":"Development of a 2001 national land cover database for the United States","volume":"70","author":"Homer","year":"2004","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"211","DOI":"10.1016\/j.jag.2016.04.001","article-title":"An efficient unsupervised index based approach for mapping urban vegetation from IKONOS imagery","volume":"50","author":"Anchang","year":"2016","journal-title":"Int. J. Appl. Earth Observ. Geoinform."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/0034-4257(79)90013-0","article-title":"Red and photographic infrared linear combinations for monitoring vegetation","volume":"8","author":"Tucker","year":"1979","journal-title":"Remote Sens. Environ."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"555","DOI":"10.1016\/j.scitotenv.2015.08.055","article-title":"Assessment of flood hazard areas at a regional scale using an index-based approach and Analytical Hierarchy Process: Application in Rhodope\u2013Evros region, Greece","volume":"538","author":"Kazakis","year":"2015","journal-title":"Sci. Total Environ."},{"key":"ref_49","unstructured":"De Martini, P.M., Burrato, P., Pantosti, D., Maramai, A., Graziani, L., and Abramson, H. (2003). Identification of tsunami deposits and liquefaction features in the Gargano area (Italy): Paleo seismological implication. Ann. Geophys., 45."},{"key":"ref_50","first-page":"117","article-title":"Aree costiere: Attuali e future criticit\u00e0. Geologi e Territorio","volume":"3\u20134","author":"Petrillo","year":"2007","journal-title":"Periodico dell\u2019Ordine dei Geologi della Puglia"},{"key":"ref_51","first-page":"6267","article-title":"Application of hyperspectral imaging sensor to differentiate between the moisture and reflectance of healthy and infected tobacco leaves","volume":"6","author":"Yusuf","year":"2011","journal-title":"Afr. J. Agric. Res."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/0034-4257(95)00186-7","article-title":"Optimization of soil-adjusted vegetation indices","volume":"55","author":"Rondeaux","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"968","DOI":"10.2134\/agronj2005.0200","article-title":"Aerial color infrared photography for determining early in-season nitrogen requirements in corn","volume":"98","author":"Sripada","year":"2006","journal-title":"Agron. J."},{"key":"ref_54","first-page":"139","article-title":"A new bare-soil index for rapid mapping developing areas using landsat 8 data. The International Archives of Photogrammetry","volume":"40","author":"Li","year":"2014","journal-title":"Remote Sens. Spat. Inf. Sci."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"689","DOI":"10.1080\/0143116031000139917","article-title":"An assessment of Landsat TM band 6 thermal data for analysing land cover in tropical dry forest regions","volume":"25","author":"Southworth","year":"2004","journal-title":"Int. J. Remote Sens."},{"key":"ref_56","unstructured":"Rouse, J., Haas, R.H., Schell, J.A., and Deering, D.W. (1974). Monitoring Vegetation Systems in the Great Plains with ERTS."},{"key":"ref_57","unstructured":"Brivio, P., Lechi, G., and Zilioli, E. (2006). Principi e Metodi di Telerilevamento, CittaStudi."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"2792","DOI":"10.3390\/ijgi4042792","article-title":"Estimating plant traits of grasslands from UAV-acquired hyperspectral images: A comparison of statistical approaches","volume":"4","author":"Capolupo","year":"2015","journal-title":"ISPRS Int. J. Geo-Inf."},{"key":"ref_59","first-page":"143","article-title":"A change detection experiment using vegetation indices","volume":"64","author":"Lyon","year":"1998","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"10","DOI":"10.1016\/S0034-4257(01)00190-0","article-title":"AFRI\u2014Aerosol free vegetation index","volume":"77","author":"Karnieli","year":"2001","journal-title":"Remote Sens. Environ."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1109\/36.134076","article-title":"Atmospherically resistant vegetation index (ARVI) for EOS-MODIS","volume":"30","author":"Kaufman","year":"1992","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1080\/01431168308948549","article-title":"Adjusting the tasselled-cap brightness and greenness factors for atmospheric path radiance and absorption on a pixel by pixel basis","volume":"2","author":"Jackson","year":"1983","journal-title":"Int. J. Remote Sens."},{"key":"ref_63","unstructured":"Ashburn, P. (1978, January 23\u201326). The Vegetative Index Number and Crop Identification. Proceedings of the Technical Session of the LACIE Symposium, Houston, TX, USA."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.rse.2013.08.029","article-title":"Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery","volume":"140","author":"Feyisa","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"867","DOI":"10.1007\/s12524-015-0460-6","article-title":"A new spectral index for extraction of built-up area using Landsat-8 data","volume":"43","author":"Bouzekri","year":"2015","journal-title":"J. Indian Soc. Remote Sens."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.rse.2012.09.009","article-title":"BCI: A biophysical composition index for remote sensing of urban environments","volume":"127","author":"Deng","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"1531","DOI":"10.1080\/10106049.2018.1497094","article-title":"A new spectral index for the extraction of built-up land features from Landsat 8 satellite imagery","volume":"34","author":"Bouhennache","year":"2019","journal-title":"Geocarto Int."},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Luo, N., Wan, T., Hao, H., and Lu, Q. (2019). Fusing high-spatial-resolution remotely sensed imagery and OpenStreetMap data for land cover classification over urban areas. Remote Sens., 11.","DOI":"10.3390\/rs11010088"},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"1844","DOI":"10.23953\/cloud.ijarsg.64","article-title":"Identification and area measurement of the built-up area with the built-up index (BUI)","volume":"5","author":"Kaimaris","year":"2016","journal-title":"Int. J. Adv. Remote Sens. GIS"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"41224","DOI":"10.1109\/ACCESS.2018.2857405","article-title":"Combinational biophysical composition index (CBCI) for effective mapping biophysical composition in urban areas","volume":"6","author":"Zhang","year":"2018","journal-title":"IEEE Access"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1078\/0176-1617-00887","article-title":"Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves","volume":"160","author":"Gitelson","year":"2003","journal-title":"J. Plant Physiol."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"224","DOI":"10.1109\/TPAMI.1979.4766909","article-title":"A clustering separation measure","volume":"1","author":"Davies","year":"1979","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_73","doi-asserted-by":"crossref","unstructured":"Rasul, A., Balzter, H., Ibrahim, G.R.F., Hameed, H.M., Wheeler, J., Adamu, B., and Najmaddin, P.M. (2018). Applying built-up and bare-soil indices from landsat 8 to cities in dry climates. Land, 7.","DOI":"10.3390\/land7030081"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/0034-4257(80)90007-3","article-title":"A spectral method for determining the percentage of green herbage material in clipped samples","volume":"9","author":"Tucker","year":"1980","journal-title":"Remote Sens. Environ."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"2957","DOI":"10.3390\/rs4102957","article-title":"Enhanced built-up and bareness index (EBBI) for mapping built-up and bare land in an urban area","volume":"4","author":"Adnyana","year":"2012","journal-title":"Remote Sens."},{"key":"ref_76","doi-asserted-by":"crossref","unstructured":"Chen, J., Yang, K., Chen, S., Yang, C., Zhang, S., and He, L. (2019). Enhanced normalized difference index for impervious surface area estimation at the plateau basin scale. J. Appl. Remote Sens., 13.","DOI":"10.1117\/1.JRS.13.016502"},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"2636","DOI":"10.3390\/s7112636","article-title":"Sensitivity of the enhanced vegetation index (EVI) and normalized difference vegetation index (NDVI) to topographic effects: A case study in high-density cypress forest","volume":"7","author":"Matsushita","year":"2007","journal-title":"Sensors"},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/S0034-4257(96)00072-7","article-title":"Use of a green channel in remote sensing of global vegetation from EOS-MODIS","volume":"58","author":"Gitelson","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.apgeog.2017.02.004","article-title":"\u201cGhost cities\u201d identification using multi-source remote sensing datasets: A case study in Yangtze River Delta","volume":"80","author":"Zheng","year":"2017","journal-title":"Appl. Geogr."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"1211","DOI":"10.3390\/rs6021211","article-title":"The generalized difference vegetation index (GDVI) for dryland characterization","volume":"6","author":"Wu","year":"2014","journal-title":"Remote Sens."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1007\/BF00031911","article-title":"GEMI: A non-linear index to monitor global vegetation from satellites","volume":"101","author":"Pinty","year":"1992","journal-title":"Vegetatio"},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1080\/10106040108542184","article-title":"Spatially located platform and aerial photography for documentation of grazing impacts on wheat","volume":"16","author":"Louhaichi","year":"2001","journal-title":"Geocarto Int."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"2369","DOI":"10.3390\/rs2102369","article-title":"Applicability of green-red vegetation index for remote sensing of vegetation phenology","volume":"2","author":"Motohka","year":"2010","journal-title":"Remote Sens."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1016\/0034-4257(83)90010-X","article-title":"Spectral indices in n-space","volume":"13","author":"Jackson","year":"1983","journal-title":"Remote Sens. Environ."},{"key":"ref_85","first-page":"301","article-title":"A new index-based built-up index (IBI) and its eco-environmental significance","volume":"22","author":"Xu","year":"2011","journal-title":"Remote Sens. Technol. Appl."},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/0034-4257(90)90085-Z","article-title":"Calculating the vegetation index faster","volume":"34","author":"Crippen","year":"1990","journal-title":"Remote Sens. Environ."},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"337","DOI":"10.1016\/j.rse.2003.12.013","article-title":"Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture","volume":"90","author":"Haboudane","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"1917","DOI":"10.1080\/014311699212542","article-title":"The MERIS Global Vegetation Index (MGVI): Description and preliminary application","volume":"20","author":"Gobron","year":"1999","journal-title":"Int. J. Remote Sens."},{"key":"ref_89","unstructured":"Fall, A.G.U. (2016, January 12\u201316). Snow Monitoring Using Remote Sensing Data: Modification of Normalized Difference Snow Index. Proceedings of the AGU Fall Meeting, San Francisco, CA, USA."},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"3025","DOI":"10.1080\/01431160600589179","article-title":"Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery","volume":"27","author":"Xu","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"1355","DOI":"10.1109\/TGRS.2003.812910","article-title":"Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data","volume":"40","author":"Gong","year":"2003","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1016\/0034-4257(94)90134-1","article-title":"A modified soil adjusted vegetation index","volume":"48","author":"Qi","year":"1994","journal-title":"Remote Sens. Environ."},{"key":"ref_93","unstructured":"Misra, P.N., Wheeler, S.G., and Oliver, R.E. (1997). Kauth-Thomas Brigthness and Greenness Axes."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"229","DOI":"10.1080\/07038992.1996.10855178","article-title":"Evaluation of vegetation indices and a modified simple ratio for boreal applications","volume":"22","author":"Chen","year":"1996","journal-title":"Can. J. Remote Sens."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1016\/j.rse.2005.11.016","article-title":"Remote sensing image-based analysis of the relationship between urban heat island and land use\/cover changes","volume":"104","author":"Chen","year":"2006","journal-title":"Remote Sens. Environ."},{"key":"ref_96","doi-asserted-by":"crossref","unstructured":"Li, H., Wang, C., Zhong, C., Su, A., Xiong, C., Wang, J., and Liu, J. (2017). Mapping urban bare land automatically from Landsat imagery with a simple index. Remote Sens., 9.","DOI":"10.3390\/rs9030249"},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"1886","DOI":"10.23953\/cloud.ijarsg.67","article-title":"Urban built-up area extraction and change detection of adama municipal area using time-series landsat images","volume":"58","author":"Sinha","year":"2016","journal-title":"Int. J. Adv. Remote Sens. GIS"},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"1764","DOI":"10.1016\/j.asr.2007.07.043","article-title":"Using the MIR bands in vegetation indices for the estimation of grassland biophysical parameters from satellite remote sensing in the Alps region of Trentino","volume":"41","author":"Vescovo","year":"2008","journal-title":"Adv. Space Res."},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"583","DOI":"10.1080\/01431160304987","article-title":"Use of normalized difference built-up index in automatically mapping urban areas from TM imagery","volume":"24","author":"Zha","year":"2003","journal-title":"Int. J. Remote Sens."},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"557","DOI":"10.14358\/PERS.76.5.557","article-title":"Analysis of impervious surface and its impact on urban heat environment using the normalized difference impervious surface index (NDISI)","volume":"76","author":"Xu","year":"2010","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"364","DOI":"10.1016\/j.rse.2004.10.012","article-title":"Comparison of time series tasseled cap wetness and the normalized difference moisture index in detecting forest disturbances","volume":"94","author":"Jin","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_102","first-page":"87","article-title":"Using Thematic Mapper data to identify contrasting soil plains and tillage practices","volume":"63","author":"Ward","year":"1997","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"1425","DOI":"10.1080\/01431169608948714","article-title":"The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features","volume":"17","author":"McFeeters","year":"1996","journal-title":"Int. J. Remote Sens."},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"309","DOI":"10.1080\/02757259409532252","article-title":"Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: A computer simulation","volume":"10","author":"Goel","year":"1994","journal-title":"Remote Sens. Rev."},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1016\/0034-4257(94)00114-3","article-title":"Estimating PAR absorbed by vegetation from bidirectional reflectance measurements","volume":"51","author":"Roujean","year":"1995","journal-title":"Remote Sens. Environ."},{"key":"ref_106","unstructured":"Pearson, R.L., and Miller, L.D. (1972, January 2\u20136). Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Shortgrass Prairie, Pawnee National Grasslands, Colorado. Proceedings of the 8th International Symposium on Remote Sensing of the Environment II, Ann Arbor, MI, USA."},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/0034-4257(88)90106-X","article-title":"A soil-adjusted vegetation index (SAVI)","volume":"25","author":"Huete","year":"1988","journal-title":"Remote Sens. Environ."},{"key":"ref_108","first-page":"1087","article-title":"Using Landsat digital data to detect moisture stress in corn-soybean growing regions","volume":"46","author":"Thompson","year":"1980","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_109","first-page":"183","article-title":"Estimation of canopy-average surface-specific leaf area using Landsat TM data","volume":"66","author":"Lymburner","year":"2000","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"663","DOI":"10.2307\/1936256","article-title":"Derivation of leaf area index from quality of light on the forest floor","volume":"50","author":"Jordan","year":"1969","journal-title":"Ecology"},{"key":"ref_111","unstructured":"Bandari, A., Asalhi, H., and Teillet, P.M. (2002, January 24\u201328). Transformed Difference Vegetation Index (TDVI) for Vegetation Cover Mapping. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada."},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/S0034-4257(00)00197-8","article-title":"Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density","volume":"76","author":"Broge","year":"2000","journal-title":"Remote Sens. Environ."},{"key":"ref_113","first-page":"103","article-title":"A visible band index for remote sensing leaf chlorophyll content at the canopy scale","volume":"21","author":"Hunt","year":"2013","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_114","unstructured":"Kawamura, M. (, January September). Relation between Social and Environmental Conditions in Colombo Sri Lanka and the Urban Index Estimated by Satellite Remote Sensing Data. Proceedings of the 51st Annual Conference of the Japan Society of Civil Engineers, Nagoya, Japan. Available online: https:\/\/ci.nii.ac.jp\/naid\/10003189515\/."},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"2537","DOI":"10.1080\/01431160110107806","article-title":"Vegetation and soil lines in visible spectral space: A concept and technique for remote estimation of vegetation fraction","volume":"23","author":"Gittelson","year":"2001","journal-title":"Int. J. Remote Sens."},{"key":"ref_116","first-page":"250","article-title":"Study on remote sensing monitoring of vegetation coverage in the field","volume":"4511","author":"Liu","year":"2014","journal-title":"Trans. Csam"},{"key":"ref_117","doi-asserted-by":"crossref","first-page":"6361","DOI":"10.1080\/01431161.2012.687842","article-title":"Efficient segmentation of urban areas by the VIBI","volume":"33","author":"Stathakis","year":"2012","journal-title":"Int. J. Remote Sens."},{"key":"ref_118","unstructured":"Lobell, D.B., and Asner, G.P. (2004). Hyperion Studies of Crop Stress in Mexico."},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"3091","DOI":"10.1016\/j.rse.2011.06.015","article-title":"Estimating daily gross primary production of maize based only on MODIS WDRVI and shortwave radiation data","volume":"115","author":"Sakamoto","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/j.rse.2015.12.055","article-title":"Comparing Landsat water index methods for automated water classification in eastern Australia","volume":"175","author":"Fisher","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_121","first-page":"83900","article-title":"Using WorldView-2 Vis-NIR multispectral imagery to support land mapping and feature extraction using normalized difference index ratios","volume":"8390","author":"Wolf","year":"2012","journal-title":"SPIE Def. Secur. Sens."},{"key":"ref_122","unstructured":"Kauth, R.J., and Thomas, G.S. (1976). The Tasselled Cap\u2014A Graphic Description of the Spectraltemporal Development of Agricultural Crops as Seen by Landsat. Symposium on Machine Processing of Remotely Sensed Data, Purdue University."},{"key":"ref_123","doi-asserted-by":"crossref","unstructured":"Mateo-Garc\u00eda, G., G\u00f3mez-Chova, L., Amor\u00f3s-L\u00f3pez, J., Mu\u00f1oz-Mar\u00ed, J., and Camps-Valls, G. (2018). Multitemporal cloud masking in the Google Earth Engine. Remote Sens., 10.","DOI":"10.3390\/rs10071079"},{"key":"ref_124","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1080\/22797254.2018.1451782","article-title":"Using Google Earth Engine to detect land cover change: Singapore as a use case","volume":"51","author":"Sidhu","year":"2018","journal-title":"Eur. J. Remote Sens."},{"key":"ref_125","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.rse.2015.01.018","article-title":"A global reference database from very high-resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data","volume":"165","author":"Pengra","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_126","doi-asserted-by":"crossref","first-page":"5768","DOI":"10.1080\/01431161.2012.674230","article-title":"A global land-cover validation data set. part I: Fundamental design principles","volume":"33","author":"Stehman","year":"2012","journal-title":"Int. J. Remote Sens."},{"key":"ref_127","first-page":"127","article-title":"Accuracy assessment of per-field classification integrating very fine spatial resolution satellite imagery with topographic data","volume":"3","author":"Caprioli","year":"2001","journal-title":"J. Geospat. Eng."},{"key":"ref_128","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1155\/2017\/1353691","article-title":"Significant remote sensing vegetation indices: A review of developments and applications","volume":"2017","author":"Xue","year":"2017","journal-title":"J. Sens."},{"key":"ref_129","first-page":"1666","article-title":"Use of Normalized Difference Bareness Index in Quickly Mapping Bare Areas from TM\/ETM+","volume":"3","author":"Zhao","year":"2005","journal-title":"Int. Geosci. Remote Sens. Symp."},{"key":"ref_130","doi-asserted-by":"crossref","first-page":"162","DOI":"10.5589\/m06-015","article-title":"Object-oriented land cover classification of lidar-derived surfaces","volume":"32","author":"Brennan","year":"2006","journal-title":"Can. J. Remote Sens."},{"key":"ref_131","first-page":"231","article-title":"Performance evaluation of vegetation indices using remotely sensed data","volume":"2","author":"Chandra","year":"2011","journal-title":"Int. J. Geomat. Geosci."},{"key":"ref_132","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1080\/15230406.2015.1072736","article-title":"Using historical maps to analyze two hundred years of land cover changes: Case study of Sorrento peninsula","volume":"43","author":"Pindozzi","year":"2016","journal-title":"Cartogr. Geogr. Inf. Sci."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/7\/1201\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,26]],"date-time":"2024-06-26T17:01:12Z","timestamp":1719421272000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/7\/1201"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,4,8]]},"references-count":132,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2020,4]]}},"alternative-id":["rs12071201"],"URL":"https:\/\/doi.org\/10.3390\/rs12071201","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,4,8]]}}}