{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,15]],"date-time":"2025-01-15T05:28:04Z","timestamp":1736918884103,"version":"3.33.0"},"reference-count":65,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2020,3,7]],"date-time":"2020-03-07T00:00:00Z","timestamp":1583539200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior - Brasil (CAPES) - Finance Code 001","award":["88887.373249\/2019-00"]},{"DOI":"10.13039\/501100001807","name":"S\u00e3o Paulo Research Foundation","doi-asserted-by":"publisher","award":["2019\/14697-0"],"id":[{"id":"10.13039\/501100001807","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Accurate forest parameters are essential for forest inventory. Traditionally, parameters such as diameter at breast height (DBH) and total height are measured in the field by level gauges and hypsometers. However, field inventories are usually based on sample plots, which, despite providing valuable and necessary information, are laborious, expensive, and spatially limited. Most of the work developed for remote measurement of DBH has used terrestrial laser scanning (TLS), which has high density point clouds, being an advantage for the accurate forest inventory. However, TLS still has a spatial limitation to application because it needs to be manually carried to reach the area of interest, requires sometimes challenging field access, and often requires a field team. UAV-borne (unmanned aerial vehicle) lidar has great potential to measure DBH as it provides much higher density point cloud data as compared to aircraft-borne systems. Here, we explore the potential of a UAV-lidar system (GatorEye) to measure individual-tree DBH and total height using an automatic approach in an integrated crop-livestock-forest system with seminal forest plantations of Eucalyptus benthamii. A total of 63 trees were georeferenced and had their DBH and total height measured in the field. In the high-density (>1400 points per meter squared) UAV-lidar point cloud, we applied algorithms (usually used for TLS) for individual tree detection and direct measurement of tree height and DBH. The correlation coefficients (r) between the field-observed and UAV lidar-derived measurements were 0.77 and 0.91 for DBH and total tree height, respectively. The corresponding root mean square errors (RMSE) were 11.3% and 7.9%, respectively. UAV-lidar systems have the potential for measuring relatively broad-scale (thousands of hectares) forest plantations, reducing field effort, and providing an important tool to aid decision making for efficient forest management. We recommend that this potential be explored in other tree plantations and forest environments.<\/jats:p>","DOI":"10.3390\/rs12050863","type":"journal-article","created":{"date-parts":[[2020,3,9]],"date-time":"2020-03-09T09:37:34Z","timestamp":1583746654000},"page":"863","source":"Crossref","is-referenced-by-count":126,"title":["Measuring Individual Tree Diameter and Height Using GatorEye High-Density UAV-Lidar in an Integrated Crop-Livestock-Forest System"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-8529-5554","authenticated-orcid":false,"given":"Ana Paula","family":"Dalla Corte","sequence":"first","affiliation":[{"name":"Department of Forest Engineering, Federal University of Paran\u00e1\u2013UFPR, Curitiba, PR 80.210-170, Brazil"}]},{"given":"Franciel Eduardo","family":"Rex","sequence":"additional","affiliation":[{"name":"Department of Forest Engineering, Federal University of Paran\u00e1\u2013UFPR, Curitiba, PR 80.210-170, Brazil"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8747-0085","authenticated-orcid":false,"given":"Danilo Roberti Alves de","family":"Almeida","sequence":"additional","affiliation":[{"name":"Department of Forest Sciences, \u201cLuiz de Queiroz\u201d College of Agriculture, University of S\u00e3o Paulo (USP\/ESALQ), Piracicaba, SP 13.418-900, Brazil"}]},{"given":"Carlos Roberto","family":"Sanquetta","sequence":"additional","affiliation":[{"name":"Department of Forest Engineering, Federal University of Paran\u00e1\u2013UFPR, Curitiba, PR 80.210-170, Brazil"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7844-3560","authenticated-orcid":false,"given":"Carlos A.","family":"Silva","sequence":"additional","affiliation":[{"name":"Spatial Ecology and Conservation Lab, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA"},{"name":"Department of Geographical Sciences, University of Maryland, College Park, Maryland, MD 20740, USA"}]},{"given":"Marks M.","family":"Moura","sequence":"additional","affiliation":[{"name":"Department of Forest Engineering, Federal University of Paran\u00e1\u2013UFPR, Curitiba, PR 80.210-170, Brazil"}]},{"given":"Ben","family":"Wilkinson","sequence":"additional","affiliation":[{"name":"Spatial Ecology and Conservation Lab, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA"}]},{"given":"Angelica Maria Almeyda","family":"Zambrano","sequence":"additional","affiliation":[{"name":"Spatial Ecology and Conservation Lab, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA"}]},{"given":"Ernandes M. da","family":"Cunha Neto","sequence":"additional","affiliation":[{"name":"Department of Forest Engineering, Federal University of Paran\u00e1\u2013UFPR, Curitiba, PR 80.210-170, Brazil"}]},{"given":"Hudson F. P.","family":"Veras","sequence":"additional","affiliation":[{"name":"Department of Forest Engineering, Federal University of Paran\u00e1\u2013UFPR, Curitiba, PR 80.210-170, Brazil"}]},{"given":"Anibal de","family":"Moraes","sequence":"additional","affiliation":[{"name":"Department of Forest Engineering, Federal University of Paran\u00e1\u2013UFPR, Curitiba, PR 80.210-170, Brazil"}]},{"given":"Carine","family":"Klauberg","sequence":"additional","affiliation":[{"name":"Federal University of S\u00e3o Jo\u00e3o Del Rei\u2013UFSJ, Sete Lagoas, MG 35.701-970, Brazil"}]},{"given":"Midhun","family":"Mohan","sequence":"additional","affiliation":[{"name":"Department of Geography, University of California\u2013Berkeley, Berkeley, CA 94709, USA"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0185-3959","authenticated-orcid":false,"given":"Adri\u00e1n","family":"Cardil","sequence":"additional","affiliation":[{"name":"Tecnosylva. Parque Tecnol\u00f3gico de Le\u00f3n, 24009 Le\u00f3n, Spain"}]},{"given":"Eben North","family":"Broadbent","sequence":"additional","affiliation":[{"name":"Spatial Ecology and Conservation Lab, School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32603, USA"}]}],"member":"1968","published-online":{"date-parts":[[2020,3,7]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"372","DOI":"10.1073\/pnas.1213841110","article-title":"Joint analysis of stressors and ecosystem services to enhance restoration effectiveness","volume":"110","author":"Allan","year":"2013","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"394","DOI":"10.1016\/j.agee.2014.10.008","article-title":"Adoption and development of integrated crop\u2013livestock\u2013forestry systems in Mato Grosso, Brazil","volume":"199","author":"Gil","year":"2015","journal-title":"Agric. Ecosyst. Environ."},{"key":"ref_3","unstructured":"Governo Federal do Brasil (2019, December 20). Decreto Federal n. 8.972, de 23 de Janeiro de 2017, Available online: http:\/\/www.planalto.gov.br\/ccivil_03\/_ato2015-2018\/2017\/decreto\/D8972.htm."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1016\/j.wdp.2016.11.011","article-title":"Overcoming barriers to low carbon agriculture and forest restoration in Brazil: The Rural Sustent\u00e1vel project","volume":"4","author":"Newton","year":"2016","journal-title":"World Dev. Perspect."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"102","DOI":"10.1016\/j.envint.2016.10.020","article-title":"Low-carbon agriculture in South America to mitigate global climate change and advance food security","volume":"98","author":"Lal","year":"2017","journal-title":"Environ. Int."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"3432","DOI":"10.1016\/j.rser.2011.04.022","article-title":"Analyses and perspectives for Brazilian low carbon technological development in the energy sector","volume":"15","author":"Lampreia","year":"2011","journal-title":"Renew. Sustain. Energy Rev."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"1933","DOI":"10.1007\/s00484-016-1180-5","article-title":"Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest","volume":"60","author":"Karvatte","year":"2016","journal-title":"Int. J. Biometeorol."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1111\/j.1526-100X.2009.00570.x","article-title":"Agro-successional restoration as a strategy to facilitate tropical forest recovery","volume":"17","author":"Vieira","year":"2009","journal-title":"Restor. Ecol."},{"key":"ref_9","unstructured":"Behling, M., Wruck, F.J., Antonio, D., Meneguci, J.L.P., Pedreira, B.C., Carnevalli, R.A., Cordeiro, L.A.M., de Farias Neto, A.L., Domit, L.A., and Silva, J. (2013). Integra\u00e7\u00e3o Lavoura-Pecu\u00e1ria-Floresta (iLPF). Embrapa Agrossilvipastoril-Cap\u00edtulo em livro Cient\u00edfico (ALICE), Sede da Embrapa."},{"key":"ref_10","unstructured":"EMBRAPA (2020, January 30). ILPF em N\u00fam3r05. 2016. Sinop, MT: Embrapa. Available online: https:\/\/ainfo.cnptia.embrapa.br\/digital\/bitstream\/item\/158636\/1\/2016-cpamt-ilpf-em-numeros.pdf."},{"key":"ref_11","unstructured":"Oliveira, P.P.A., Pezzopane, J.R.M., de Meo Filho, P., Berndt, A., Pedroso, A.D.F., and Bernardi, A.C.D.C. (2017). Balan\u00e7o e emiss\u00f5es de gases de efeito estufa em sistemas integrados. Congresso Brasileiro de Sistemas Integrados de Produ\u00e7\u00e3o Agropecu\u00e1ria, UTFPR. 1\u00ba Encontro de Integra\u00e7\u00e3o Lavoura-Pecu\u00e1ria no sul do Brasil. Intensifica\u00e7\u00e3o com Sustentabilidade."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.isprsjprs.2016.01.006","article-title":"Terrestrial laser scanning in forest inventories","volume":"115","author":"Liang","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Aijazi, A.K., Checchin, P., Malaterre, L., and Trassoudaine, L. (2017). Automatic detection and parameter estimation of trees for forest inventory applications using 3D terrestrial lidar. Remote Sens., 9.","DOI":"10.3390\/rs9090946"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1007\/s11355-010-0132-1","article-title":"Canopy-cover thematic-map generation for Military Map products using remote sensing data in inaccessible areas","volume":"7","author":"Chang","year":"2011","journal-title":"Landsc. Ecol. Eng."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"West, P.W., and West, P.W. (2009). Tree and Forest Measurement, Springer.","DOI":"10.1007\/978-3-540-95966-3"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1339","DOI":"10.1080\/01431160701736489","article-title":"Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests","volume":"29","author":"Leckie","year":"2008","journal-title":"Int. J. Remote Sens."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1007\/s10342-010-0381-4","article-title":"Retrieval of forest structural parameters using lidar remote sensing","volume":"129","author":"Nieuwenhuis","year":"2010","journal-title":"Eur. J. For. Res."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"393","DOI":"10.1046\/j.1466-822x.2002.00303.x","article-title":"lidar remote sensing of above-ground biomass in three biomes","volume":"11","author":"Lefsky","year":"2002","journal-title":"Glob. Ecol. Biogeogr."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1191\/0309133303pp360ra","article-title":"Lidar sensoriamento remoto da estrutura da floresta","volume":"27","author":"Lim","year":"2003","journal-title":"Prog. Phys. Geogr."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"13761","DOI":"10.1364\/OE.23.013761","article-title":"Aplica\u00e7\u00e3o sin\u00e9rgica de caracter\u00edsticas geom\u00e9tricas e radiom\u00e9tricas dos dados lidar para o mapeamento da cobertura do solo urbano","volume":"23","author":"Qin","year":"2015","journal-title":"Opt. Express"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.rse.2012.02.023","article-title":"Quantifying aboveground forest carbon pools and fluxes from repeat lidar surveys","volume":"123","author":"Hudak","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_22","first-page":"1","article-title":"Aboveground forest biomass estimation with Landsat and lidar data and uncertainty analysis of the estimates","volume":"2012","author":"Lu","year":"2012","journal-title":"Int. J. For. Res."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1016\/j.rse.2012.10.017","article-title":"A meta-analysis of terrestrial aboveground biomass estimation using lidar remote sensing","volume":"128","author":"Zolkos","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Rex, F.E., Corte AP, D., Machado SD, A., Silva, C.A., and Sanquetta, C.R. (2019). Estimating Above-Ground Biomass of Araucaria angustifolia (Bertol.) Kuntze Using lidar Data. Floresta E Ambiente, 26.","DOI":"10.1590\/2179-8087.110717"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0034-4257(95)00224-3","article-title":"Estimation of tree heights and stand volume using an airborne lidar system","volume":"56","author":"Nilsson","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/S0924-2716(97)83000-6","article-title":"Determination of mean tree height of forest stands using airborne laser scanner data","volume":"52","year":"1997","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"355","DOI":"10.5589\/m06-030","article-title":"A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods","volume":"32","author":"Andersen","year":"2006","journal-title":"Can. J. Remote Sens."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1590\/0001-3765201820160071","article-title":"Estimating Stand Height and Tree Density in Pinus taeda plantations using in-situ data, airborne lidar and k-Nearest Neighbor Imputation","volume":"90","author":"Silva","year":"2018","journal-title":"Anais da Academia Brasileira de Ci\u00eancias"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"969","DOI":"10.1109\/36.921414","article-title":"A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners","volume":"39","author":"Hyyppa","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"501","DOI":"10.1016\/j.rse.2007.02.028","article-title":"Estimating field-plot data of forest stands using airborne laser scanning and SPOT HRG data","volume":"110","author":"Wallerman","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1016\/S0034-4257(98)00071-6","article-title":"Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA","volume":"67","author":"Lefsky","year":"1999","journal-title":"Remote Sens. Environ."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1016\/S0034-4257(01)00290-5","article-title":"Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data","volume":"80","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1080\/2150704X.2015.1035770","article-title":"Estimation of forest stand diameter class using airborne lidar and field data","volume":"6","author":"Chang","year":"2015","journal-title":"Remote Sens. Lett."},{"key":"ref_34","first-page":"79","article-title":"Extraction of individual tree dbh and height based on terrestrial laser scanner data","volume":"34","author":"Li","year":"2012","journal-title":"J. Beijing For. Univ."},{"key":"ref_35","first-page":"26","article-title":"Individual Tree dbh and Height Estimation Using Terrestrial Laser Scanning (TLS) in A Subtropical Forest","volume":"52","author":"Liu","year":"2016","journal-title":"Sci. Silvae Sin."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Liu, G., Wang, J., Dong, P., Chen, Y., and Liu, Z. (2018). Estimating Individual Tree Height and Diameter at Breast Height (dbh) from Terrestrial Laser Scanning (TLS) Data at Plot Level. Forests, 9.","DOI":"10.3390\/f9070398"},{"key":"ref_37","first-page":"67","article-title":"Detailed stem measurements of standing trees from ground-based scanning lidar","volume":"52","author":"Henning","year":"2006","journal-title":"For. Sci."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1579","DOI":"10.1080\/01431160701736406","article-title":"Automatic forest inventory parameter determination from terrestrial laser scanner data","volume":"29","author":"Maas","year":"2008","journal-title":"Int. J. Remote Sens."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.compag.2017.10.019","article-title":"Performance of stem denoising and stem modelling algorithms on single tree point clouds from terrestrial laser scanning","volume":"143","author":"Olofsson","year":"2017","journal-title":"Comput. Electron. Agric."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1016\/j.isprsjprs.2018.11.001","article-title":"Estimating forest structural attributes using UAV-lidar data in Ginkgo plantations","volume":"146","author":"Liu","year":"2018","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1007\/s12371-014-0104-1","article-title":"Using terrestrial laser scanning for the recognition and promotion of high-alpine geomorphosites","volume":"6","author":"Ravanel","year":"2014","journal-title":"Geoheritage"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1890\/120150","article-title":"Lightweight unmanned aerial vehicles will revolutionize spatial ecology","volume":"11","author":"Anderson","year":"2013","journal-title":"Front. Ecol. Environ."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1890\/ES14-00217.1","article-title":"Ecohydrology with unmanned aerial vehicles","volume":"5","author":"Vivoni","year":"2014","journal-title":"Ecosphere"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1016\/j.rse.2017.04.007","article-title":"UAV lidar and hyperspectral fusion for forest monitoring in the southwestern USA","volume":"195","author":"Sankey","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_45","unstructured":"(2020, January 23). GatorEye. Available online: http:\/\/www.speclab.org\/gatoreye.html."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"196","DOI":"10.1016\/j.rse.2012.02.001","article-title":"Lidar sampling for large-area forest characterization: A review","volume":"121","author":"Wulder","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Alvares, A.C., Stape, J., Sentelhas, P., Gon\u00e7alves, J., and Sparovek, G. (2013). K\u00f6ppen\u2019s climate classification map for Brazil. Meteorol. Z., 22.","DOI":"10.1127\/0941-2948\/2013\/0507"},{"key":"ref_48","unstructured":"Porf\u00edrio-da-Silva, V., Medrado, M.J.S., Nicodemo, M.L.F., and Dereti, R.M. (2010). Arboriza\u00e7\u00e3o de Pastagens com Esp\u00e9cies Florestais Madeiras: Implanta\u00e7\u00e3o e Manejo, Embrapa Florestas."},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Wilkinson, B., Lassiter, H.A., Abd-Elrahman, A., Carthy, R.R., Ifju, P., Broadbent, E., and Grimes, N. (2019). Geometric Targets for UAS Lidar. Remote Sens., 11.","DOI":"10.3390\/rs11243019"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.ecolmodel.2017.10.009","article-title":"Enhancing of accuracy assessment for forest above-ground biomass estimates obtained from remote sensing via hypothesis testing and overfitting evaluation","volume":"366","author":"Valbuena","year":"2017","journal-title":"Ecol. Model."},{"key":"ref_51","unstructured":"R Core Team (2019). R: A Language and Environment for Statistical Computing, Version 3.6.1, R Foundation for Statistical Computing."},{"key":"ref_52","unstructured":"Isenburg, M. (2019, November 11). \u201cLAStools\u2014Efficient LiDAR Processing Software\u201d (Version 1.8, Licensed). Available online: http:\/\/rapidlasso.com\/LAStools."},{"key":"ref_53","first-page":"192","article-title":"Monitoring the structure of forest restoration plantations with a drone-lidar system","volume":"79","author":"Almeida","year":"2019","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.isprsjprs.2010.08.003","article-title":"Predicting individual tree attributes from airborne laser point clouds based on the random forest technique","volume":"66","author":"Yu","year":"2011","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"1148","DOI":"10.1016\/j.rse.2009.02.010","article-title":"Capturing tree crown formation through implicit surface reconstruction using airborne lidar data","volume":"113","author":"Kato","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"245","DOI":"10.1016\/j.rse.2012.11.024","article-title":"Tradeoffs between lidar pulse density and forest measurement accuracy","volume":"130","author":"Jakubowski","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1139\/x05-230","article-title":"Mapping stand-level forest biophysical variables for a mixedwood boreal forest using lidar: An examination of scanning density","volume":"36","author":"Thomas","year":"2006","journal-title":"Can. J. For. Res."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"164","DOI":"10.1080\/02827580310019257","article-title":"Practical large-scale forest stand inventory using a small-footprint airborne scanning laser","volume":"19","year":"2004","journal-title":"Scand. J. For. Res."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1016\/j.rse.2014.10.004","article-title":"Generalizing predictive models of forest inventory attributes using an area-based approach with airborne lidar data","volume":"156","author":"Bouvier","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_60","first-page":"925","article-title":"Detecting and measuring individual trees using an airborne laser scanner","volume":"68","author":"Persson","year":"2002","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Cao, L., Liu, H., Fu, X., Zhang, Z., Shen, X., and Ruan, H. (2019). Comparison of UAV LiDAR and digital aerial photogrammetry point clouds for estimating forest structural attributes in subtropical planted forests. Forests, 10.","DOI":"10.3390\/f10020145"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"368","DOI":"10.1016\/j.rse.2012.03.027","article-title":"Tree species classification and estimation of stem volume and dbh based on single tree extraction by exploiting airborne full-waveform lidar data","volume":"123","author":"Yao","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"1263","DOI":"10.1016\/j.rse.2010.01.016","article-title":"Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics","volume":"114","author":"Vauhkonen","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_64","unstructured":"Kaartinen, H., and Hyypp\u00e4, J. (2008). EuroSDR\/ISPRS Project, Commission II \u201cTree Extraction\u201d, EuroSDR. European Spatial Data Research. Official Publication, 53."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"1347","DOI":"10.1111\/2041-210X.13211","article-title":"ForestGapR: An r Package for forest gap analysis from canopy height models","volume":"10","author":"Silva","year":"2019","journal-title":"Methods Ecol. Evol."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/5\/863\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,14]],"date-time":"2025-01-14T19:09:40Z","timestamp":1736881780000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/5\/863"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,3,7]]},"references-count":65,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2020,3]]}},"alternative-id":["rs12050863"],"URL":"https:\/\/doi.org\/10.3390\/rs12050863","relation":{},"ISSN":["2072-4292"],"issn-type":[{"type":"electronic","value":"2072-4292"}],"subject":[],"published":{"date-parts":[[2020,3,7]]}}}