{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,6]],"date-time":"2024-08-06T18:55:27Z","timestamp":1722970527097},"reference-count":55,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2020,3,2]],"date-time":"2020-03-02T00:00:00Z","timestamp":1583107200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"This study aimed at evaluating the potential of machine learning (ML) for estimating forest biomass from polarimetric Synthetic Aperture Radar (SAR) data. Retrieval algorithms based on two different machine-learning methods, namely Artificial Neural Networks (ANNs) and Supported Vector Regressions (SVRs), were implemented and validated using the airborne polarimetric SAR data derived from the AfriSAR, BioSAR, and TropiSAR campaigns. These datasets, composed of polarimetric airborne SAR data at P-band and corresponding biomass values from in situ and LiDAR measurements, were made available by the European Space Agency (ESA) in the framework of the Biomass Retrieval Algorithm Inter-Comparison Exercise (BRIX). The sensitivity of the SAR measurements at all polarizations to the target biomass was evaluated on the entire set of data from all the campaigns, and separately on the dataset of each campaign. Based on the results of the sensitivity analysis, the retrieval was attempted by implementing general algorithms, using the entire dataset, and specific algorithms, using data of each campaign. Algorithm inputs are the SAR data and the corresponding local incidence angles, and output is the estimated biomass. To allow the comparison, both ANN and SVR were trained using the same subset of data, composed of 50% of the available dataset, and validated on the remaining part of the dataset. The validation of the algorithms demonstrated that both machine-learning methods were able to estimate the forest biomass with comparable accuracies. In detail, the validation of the general ANN algorithm resulted in a correlation coefficient R = 0.88, RMSE = 60 t\/ha, and negligible BIAS, while the specific ANN for data obtained R from 0.78 to 0.94 and RMSE between 15 and 50 t\/ha, depending on the dataset. Similarly, the general SVR was able to estimate the target parameter with R = 0.84, RMSE = 69 t\/ha, and BIAS negligible, while the specific algorithms obtained 0.22 \u2264 R \u2264 0.92 and 19 \u2264 RMSE \u2264 70 (t\/ha). The study also pointed out that the computational cost is similar for both methods. In this respect, the training is the only time-demanding part, while applying the trained algorithm to the validation set or to any other dataset occurs in near real time. As a final step of the study, the ANN and SVR algorithms were applied to the available SAR images for obtaining biomass maps from the available SAR images.<\/jats:p>","DOI":"10.3390\/rs12050804","type":"journal-article","created":{"date-parts":[[2020,3,3]],"date-time":"2020-03-03T18:06:23Z","timestamp":1583258783000},"page":"804","source":"Crossref","is-referenced-by-count":15,"title":["Machine-Learning Applications for the Retrieval of Forest Biomass from Airborne P-Band SAR Data"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1882-6321","authenticated-orcid":false,"given":"Emanuele","family":"Santi","sequence":"first","affiliation":[{"name":"Institute for Applied Physics of National Research Council (CNR-IFAC), 50019 Florence, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3414-4531","authenticated-orcid":false,"given":"Simonetta","family":"Paloscia","sequence":"additional","affiliation":[{"name":"Institute for Applied Physics of National Research Council (CNR-IFAC), 50019 Florence, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3155-8918","authenticated-orcid":false,"given":"Simone","family":"Pettinato","sequence":"additional","affiliation":[{"name":"Institute for Applied Physics of National Research Council (CNR-IFAC), 50019 Florence, Italy"}]},{"given":"Giovanni","family":"Cuozzo","sequence":"additional","affiliation":[{"name":"Institute for Earth Observation, EURAC Research, 39100 Bolzano, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4740-1648","authenticated-orcid":false,"given":"Antonio","family":"Padovano","sequence":"additional","affiliation":[{"name":"Institute for Earth Observation, EURAC Research, 39100 Bolzano, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1968-0125","authenticated-orcid":false,"given":"Claudia","family":"Notarnicola","sequence":"additional","affiliation":[{"name":"Institute for Earth Observation, EURAC Research, 39100 Bolzano, Italy"}]},{"given":"Clement","family":"Albinet","sequence":"additional","affiliation":[{"name":"ESRIN ESA\u2019s Centre for Earth Observation, 00044 Rome, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2020,3,2]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Waring, H.R., and Running, S.W. (2007). Forest Ecosystems. Analysis at Multiples Scales, Academic Press. [3rd ed.].","DOI":"10.1016\/B978-012370605-8.50005-0"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"709","DOI":"10.1109\/TGRS.1989.1398243","article-title":"Multitemporal and dualpolarization observations of agricultural vegetation covers by X-band SAR images","volume":"27","author":"Laur","year":"1989","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_3","unstructured":"Ulaby, F.T., and Dobson, M.C. (1989). Handbook of Radar Statistics for Terrain, Artech House."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/0034-4257(94)90056-6","article-title":"The effects of changes in loblolly pine biomass and soil moisture on ERS-1 SAR backscatter","volume":"49","author":"Wang","year":"1994","journal-title":"Remote Sens. Environ."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"324","DOI":"10.1016\/0034-4257(95)00140-9","article-title":"Understanding the radar backscattering from flooded and nonflooded Amazonian forests: Results from canopy backscatter modeling","volume":"54","author":"Wang","year":"1995","journal-title":"Remote Sens. Environ."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"388","DOI":"10.1109\/36.295053","article-title":"Mapping biomass of a northern forest using multifrequency SAR data","volume":"32","author":"Ranson","year":"1994","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/36.774723","article-title":"The Potential of L- and C-Band SAR in Estimating Vegetation Biomass: The ERS-1 and JERS-1 Experiments","volume":"37","author":"Paloscia","year":"1999","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/S0034-4257(96)00148-4","article-title":"The use of imaging radars for ecological applications\u2014A review","volume":"59","author":"Kasischke","year":"1997","journal-title":"Remote Sens. Environ."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Ackermann, N., Thiel, C., Borgeaud, M., and Schmullius, C. (2012, January 22\u201327). Cosmo-SkyMed backscatter intensity and interferometric coherence signatures over Germany\u2019s low mountain range forested areas. Proceedings of the Geoscience and Remote Sensing Symposium (IGARSS2012), Munich, Germany.","DOI":"10.1109\/IGARSS.2012.6352357"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Kaasalainen, S., Holopainen, M., Karjalainen, M., Vastaranta, M., Kankare, V., Karila, K., and Osmanoglu, B. (2015). Combining LiDAR and Synthetic Aperture Radar Data to Estimate Forest Biomass: Status and Prospects. Forests, 6.","DOI":"10.3390\/f6010252"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"2015","DOI":"10.1109\/JSTARS.2014.2353661","article-title":"Evaluation of ALOS\/PALSAR L-Band Data for the Estimation of Eucalyptus Plantations Aboveground Biomass in Brazil","volume":"8","author":"Baghdadi","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"412","DOI":"10.1109\/36.134090","article-title":"Dependence of radar backscatter on coniferous forest biomass","volume":"30","author":"Dobson","year":"1992","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1109\/36.134089","article-title":"Relating forest biomass to SAR data","volume":"30","author":"Beaudoin","year":"1992","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1007\/s10584-004-3155-5","article-title":"Relating radar remote sensing of biomass to modelling of forest carbon budgets","volume":"67","author":"Quegan","year":"2004","journal-title":"Clim. Chang."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1109\/36.551929","article-title":"The potential of multifrequency polarimetric SAR in assessing agricultural and arboreous biomass","volume":"35","author":"Ferrazzoli","year":"1997","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"3505","DOI":"10.1038\/s41598-017-03469-3","article-title":"Understanding \u2018saturation\u2019 of radar signals over forests","volume":"7","author":"Joshi","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/j.rse.2014.12.019","article-title":"Decrease of L-band SAR backscatter with biomass of dense forests","volume":"159","author":"Mermoz","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1109\/36.841999","article-title":"Estimation of crown and stem water content and biomass of boreal forest using polarimetric SAR imagery","volume":"38","author":"Saatchi","year":"2000","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"14899","DOI":"10.1029\/2000JD900058","article-title":"Estimating subcanopy soil moisture with radar","volume":"105","author":"Moghaddam","year":"2000","journal-title":"J. Geophys. Res."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"2850","DOI":"10.1016\/j.rse.2011.03.020","article-title":"The BIOMASS Mission: Mapping global forest biomass to better understand the terrestrial carbon cycle","volume":"115","author":"Quegan","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"111372","DOI":"10.1016\/j.rse.2019.111372","article-title":"Mapping the spatial-temporal variability of tropical forests by ALOS-2 L-band SAR big data analysis","volume":"233","author":"Christian","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"2874","DOI":"10.1016\/j.rse.2010.03.018","article-title":"L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest","volume":"115","author":"Sandberg","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"2836","DOI":"10.1016\/j.rse.2010.07.015","article-title":"Impact of spatial variability of tropical forest structure on radar estimation of aboveground biomass","volume":"115","author":"Saatchi","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Cazcarra-Bes, V., Tello-Alonso, M., Fischer, R., Heym, M., and Papathanassiou, K. (2017). Monitoring of Forest Structure Dynamics by Means of L-Band SAR Tomography. Remote Sens., 9.","DOI":"10.3390\/rs9121229"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1030","DOI":"10.1109\/LGRS.2018.2819884","article-title":"Forest Biomass Retrieval from L-Band SAR Using Tomographic Ground Backscatter Removal","volume":"15","author":"Blomberg","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"414","DOI":"10.1109\/LGRS.2013.2264159","article-title":"A Bayesian Change Detection Approach for Retrieval of Soil Moisture Variations under Different Roughness Conditions","volume":"11","author":"Notarnicola","year":"2014","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1080","DOI":"10.1109\/LGRS.2011.2156759","article-title":"Estimating soil moisture with the support vector regression technique","volume":"8","author":"Pasolli","year":"2011","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1109\/JSTARS.2013.2257698","article-title":"A Prototype Software Package to Retrieve Soil Moisture from Sentinel-1 Data by Using a Bayesian Multitemporal Algorithm","volume":"7","author":"Pierdicca","year":"2014","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/S0034-4257(02)00105-0","article-title":"Retrieving soil moisture and agricultural variables by microwave radiometry using neural networks","volume":"84","author":"Ferrazzoli","year":"2003","journal-title":"Remote Sens. Environ."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"3274","DOI":"10.1109\/TGRS.2008.920370","article-title":"A comparison of algorithms for retrieving soil moisture from ENVISAT\/ASAR images","volume":"46","author":"Paloscia","year":"2008","journal-title":"IEEE Tran. Geosci. Remote Sens."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.rse.2013.02.027","article-title":"Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation","volume":"134","author":"Paloscia","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_32","first-page":"61","article-title":"Application of artificial neural networks for the soil moisture retrieval from active and passive microwave spaceborne sensors","volume":"48","author":"Santi","year":"2016","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"673","DOI":"10.5721\/EuJRS20154837","article-title":"Application of Neural Networks for the retrieval of forest woody volume from SAR multifrequency data at L and C bands","volume":"48","author":"Santi","year":"2015","journal-title":"Eur. J. Remote Sens."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.rse.2017.07.038","article-title":"The potential of multifrequency SAR images for estimating forest biomass in Mediterranean areas","volume":"200","author":"Santi","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1023\/A:1018946025316","article-title":"Regularization Networks and Support Vector Machines","volume":"13","author":"Evgeniou","year":"2000","journal-title":"Adv. Comput. Math."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1023\/B:STCO.0000035301.49549.88","article-title":"A tutorial on support vector regression","volume":"14","author":"Smola","year":"2004","journal-title":"Stat. Comput."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Pasolli, L., Notarnicola, C., Bruzzone, L., Bertoldi, G., Della Chiesa, S., Hell, V., Niedrist, G., Tappeiner, U., Zebisch, M., and Del Frate, F. (2011). Estimation of Soil Moisture in an Alpine Catchment with RADARSAT2 Images. Hindawi Publishing Corporation. Appl. Environ. Soil Sci.","DOI":"10.1155\/2011\/175473"},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Fatoyinbo, L., Pinto, N., Hofton, M., Simard, M., Blair, B., Saatchi, S., Lou, Y., Dubayah, R., Hensley, S., and Armston, J. (2017, January 23\u201328). The 2016 NASA AfriSAR campaign: Airborne SAR and Lidar measurements of tropical forest structure and biomass in support of future satellite missions. Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA.","DOI":"10.1109\/IGARSS.2017.8127949"},{"key":"ref_39","unstructured":"Hajnsek, I., Scheiber, R., Lee, S., Ulander, L., Gustavsson, A., Tebaldini, S., and Monte Guarnieri, A. (2008). BioSAR 2007. Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the BioSAR 2007 Experiment: Final Report without Synthesis. [Ph.D. Thesis, European Space Agency]."},{"key":"ref_40","unstructured":"Hajnsek, I., Scheiber, R., Keller, M., Horn, R., Lee, S., Ulander, L., Gustavsson, A., Sandberg, G., le Toan, T., and Tebaldini, S. (2009). BioSAR 2008. Technical assistance for the development of airborne SAR and geophysical measurements during the BioSAR 2008 Experiment DRAFT Final Report-BIOSAR Campaign. [Ph.D. Thesis, European Space Agency]."},{"key":"ref_41","unstructured":"Ulander, L.M., Gustavsson, A., Dubois-Fernandez, P., Dupuis, X., Fransson, J.E., Holmgren, J., Wallerman, J., Eriksson, L., Sandberg, G., and Soja, M. (2011, January 25\u201329). Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada."},{"key":"ref_42","unstructured":"Dubois-Fernandez, P., Oriot, H., Coulombeix, C., Cantalloube, H., du Plessis, O.R., Le Toan, T., Daniel, S., Chave, J., Blanc, L., and Davidson, M. (2010, January 7\u201310). TropiSAR a SAR data acquisition campaign in French Guiana. Proceedings of the 8th European Conference on Synthetic Aperture Radar, Aachen, Germany."},{"key":"ref_43","unstructured":"Dubois-Fernandez, P., Le Toan, T., Chave, J., Blanc, L., Daniel, S., Oriot, H., Arnaubec, A., R\u00e9jou-M\u00e9chain, M., Villard, L., and Lasne, Y. (2011). Technical Assistance for the Development of Airborne SAR and Geophysical Measurements during the TropiSAR 2009 Experiment: Final Report, European Space Agency. TROPISAR-Final Report, ESA CONTRACT N\u00b0 22446\/09\/NL\/CT."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"1791","DOI":"10.1109\/TGRS.2012.2205264","article-title":"Incidence Angle Normalization of Radar Backscatter Data","volume":"51","author":"Mladenova","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1109\/JSTARS.2014.2359231","article-title":"Relating P-Band SAR Intensity to Biomass for Tropical Dense Forests in Hilly Terrain: \u03b30ort0","volume":"8","author":"Villard","year":"2015","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"153","DOI":"10.1109\/36.210456","article-title":"The effect of topography on radar scattering from vegetated areas IEEE Trans","volume":"31","year":"1993","journal-title":"Geosci. Remote Sens."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Schlund, M., and Davidson, M.W.J. (2018). Aboveground Forest Biomass Estimation Combining L- and P-Band SAR Acquisitions. Remote Sens., 10.","DOI":"10.3390\/rs10071151"},{"key":"ref_48","unstructured":"(2020, February 26). Available online: https:\/\/earth.esa.int\/web\/sppa\/meetings-workshops\/hosted-and-co-sponsored-meetings\/brix."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"359","DOI":"10.1016\/0893-6080(89)90020-8","article-title":"Multilayer feed forward network are universal approximators","volume":"2","author":"Hornik","year":"1989","journal-title":"Neural Netw."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"425","DOI":"10.1109\/IJCNN.1989.118277","article-title":"Inversion of multi-layer nets","volume":"2","author":"Linden","year":"1989","journal-title":"Proc. Int. Joint Conf. Neural Netw."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"159","DOI":"10.1109\/TGRS.2004.839818","article-title":"Robust multiple estimator system for the analysis of biophysical parameters from remotely sensed data","volume":"43","author":"Bruzzone","year":"2005","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Pasolli, L., Notarnicola, C., Bertoldi, G., Bruzzone, L., Remelgado, R., Greifeneder, F., Niedrist, G., Della Chiesa Tappeiner, U., and Zebisch, M. (2015). Estimation of Soil Moisture in Mountain Areas Using SVR Technique Applied to Multiscale Active Radar Images at C-Band. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.","DOI":"10.1109\/JSTARS.2014.2378795"},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Vapnik, V. (1995). The Nature of Statistical Learning Theory, Springer.","DOI":"10.1007\/978-1-4757-2440-0"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"3425","DOI":"10.1080\/01431160600646037","article-title":"Assessment of stand-wise stem volume retrieval in boreal forest from JERS-1 L-band SAR backscatter","volume":"27","author":"Santoro","year":"2006","journal-title":"Int. J. Remote Sens."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"357","DOI":"10.1029\/RS013i002p00357","article-title":"Vegetation modeled as a water cloud","volume":"13","author":"Attema","year":"1978","journal-title":"Radio Sci."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/5\/804\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,25]],"date-time":"2024-06-25T02:12:09Z","timestamp":1719281529000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/5\/804"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,3,2]]},"references-count":55,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2020,3]]}},"alternative-id":["rs12050804"],"URL":"https:\/\/doi.org\/10.3390\/rs12050804","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,3,2]]}}}