{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,22]],"date-time":"2024-08-22T09:59:25Z","timestamp":1724320765779},"reference-count":44,"publisher":"MDPI AG","issue":"4","license":[{"start":{"date-parts":[[2020,2,17]],"date-time":"2020-02-17T00:00:00Z","timestamp":1581897600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Research Grant Council General Research Fund of Hong Kong","award":["CUHK14635916","CUHK14605917"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["No.41401370"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Hyperspectral data has been widely used in species discrimination of plants with rich spectral information in hundreds of spectral bands, while the availability of hyperspectral data has hindered its applications in many specific cases. The successful operation of the Chinese satellite, Gaofen-5 (GF-5), provides potentially promising new hyperspectral dataset with 330 spectral bands in visible and near infrared range. Therefore, there is much demand for assessing the effectiveness and superiority of GF-5 hyperspectral data in plants species mapping, particularly mangrove species mapping, to better support the efficient mangrove management. In this study, mangrove forest in Mai Po Nature Reserve (MPNR), Hong Kong was selected as the study area. Four dominant native mangrove species were investigated in this study according to the field surveys. Two machine learning methods, Random Forests and Support Vector Machines, were employed to classify mangrove species with Landsat 8, Simulated Hyperion and GF-5 data sets. The results showed that 97 more bands of GF-5 over Hyperion brought a higher over accuracy of 87.12%, in comparison with 86.82% from Hyperion and 73.89% from Landsat 8. The higher spectral resolution of 5 nm in GF-5 was identified as making the major contribution, especially for the mapping of Aegiceras corniculatum. Therefore, GF-5 is likely to improve the classification accuracy of mangrove species mapping via enhancing spectral resolution and thus has promising potential to improve mangrove monitoring at species level to support mangrove management.<\/jats:p>","DOI":"10.3390\/rs12040656","type":"journal-article","created":{"date-parts":[[2020,2,20]],"date-time":"2020-02-20T08:20:03Z","timestamp":1582186803000},"page":"656","source":"Crossref","is-referenced-by-count":37,"title":["GF-5 Hyperspectral Data for Species Mapping of Mangrove in Mai Po, Hong Kong"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-8202-510X","authenticated-orcid":false,"given":"Luoma","family":"Wan","sequence":"first","affiliation":[{"name":"Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong 999077, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8769-8506","authenticated-orcid":false,"given":"Yinyi","family":"Lin","sequence":"additional","affiliation":[{"name":"Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong 999077, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6135-9442","authenticated-orcid":false,"given":"Hongsheng","family":"Zhang","sequence":"additional","affiliation":[{"name":"Department of Geography, The University of Hong Kong, Hong Kong 999077, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2378-9126","authenticated-orcid":false,"given":"Feng","family":"Wang","sequence":"additional","affiliation":[{"name":"Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University, Shanghai 200433, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4962-7691","authenticated-orcid":false,"given":"Mingfeng","family":"Liu","sequence":"additional","affiliation":[{"name":"Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Hong Kong 999077, China"}]},{"given":"Hui","family":"Lin","sequence":"additional","affiliation":[{"name":"Key Lab of Poyang Lake Wetland and Watershed Research of Ministry of Education\/School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China"}]}],"member":"1968","published-online":{"date-parts":[[2020,2,17]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"111223","DOI":"10.1016\/j.rse.2019.111223","article-title":"A review of remote sensing for mangrove forests: 1956\u20132018","volume":"231","author":"Wang","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"154","DOI":"10.1111\/j.1466-8238.2010.00584.x","article-title":"Status and distribution of mangrove forests of the world using earth observation satellite data","volume":"20","author":"Giri","year":"2011","journal-title":"Glob. Ecol. Biogeogr."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"729","DOI":"10.1111\/geb.12449","article-title":"Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21)","volume":"25","author":"Hamilton","year":"2016","journal-title":"Glob. Ecol. Biogeogr."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1126\/science.317.5834.41b","article-title":"A World Without Mangroves?","volume":"317","author":"Duke","year":"2007","journal-title":"Science"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"377","DOI":"10.1016\/j.ecss.2004.09.027","article-title":"Mapping mangrove leaf area index at the species level using IKONOS and LAI-2000 sensors for the Agua Brava Lagoon, Mexican Pacific","volume":"62","author":"Kovacs","year":"2005","journal-title":"Estuar. Coast. Shelf Sci."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Wang, T., Zhang, H.S., Lin, H., and Fang, C.Y. (2016). Textural-Spectral Feature-Based Species Classification of Mangroves in Mai Po Nature Reserve from Worldview-3 Imagery. Remote Sens., 8.","DOI":"10.3390\/rs8010024"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Fatoyinbo, T., Feliciano, E.A., Lagomasino, D., Lee, S.K., and Trettin, C. (2018). Estimating mangrove aboveground biomass from airborne LiDAR data: A case study from the Zambezi River delta. Environ. Res. Lett., 13.","DOI":"10.1088\/1748-9326\/aa9f03"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Liu, M., Zhang, H., Lin, G., Lin, H., and Tang, D. (2018). Zonation and Directional Dynamics of Mangrove Forests Derived from Time-Series Satellite Imagery in Mai Po, Hong Kong. Sustainability, 10.","DOI":"10.3390\/su10061913"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Pham, T.D., Yokoya, N., Bui, D.T., Yoshino, K., and Friess, D.A. (2019). Remote Sensing Approaches for Monitoring Mangrove Species, Structure, and Biomass: Opportunities and Challenges. Remote Sens., 11.","DOI":"10.3390\/rs11030230"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1016\/j.rse.2018.12.034","article-title":"Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges","volume":"223","author":"Yin","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Pham, T.D., Bui, D.T., Yoshino, K., and Le, N.N. (2018). Optimized rule-based logistic model tree algorithm for mapping mangrove species using ALOS PALSAR imagery and GIS in the tropical region. Environ. Earth Sci., 77.","DOI":"10.1007\/s12665-018-7373-y"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1016\/j.landurbplan.2017.12.009","article-title":"A manifold learning approach to urban land cover classification with optical and radar data","volume":"172","author":"Zhang","year":"2018","journal-title":"Landsc. Urban Plan."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"5655","DOI":"10.1080\/014311602331291215","article-title":"Integration of object-based and pixel-based classification for mapping mangroves with IKONOS imagery","volume":"25","author":"Wang","year":"2004","journal-title":"Int. J. Remote Sens."},{"key":"ref_14","first-page":"226","article-title":"Mapping the distribution of mangrove species in the Core Zone of Mai Po Marshes Nature Reserve, Hong Kong, using hyperspectral data and high-resolution data","volume":"33","author":"Jia","year":"2014","journal-title":"Int. J. Appl. Earth Observ. Geoinf."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1080\/14498596.2008.9635137","article-title":"Mangrove species and stand mapping in GAzi bay (Kenya) using Quickbird satellite imagery","volume":"53","author":"Neukermans","year":"2008","journal-title":"J. Spat. Sci."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Wang, D.Z., Wan, B., Qiu, P.H., Su, Y.J., Guo, Q.H., and Wu, X.C. (2018). Artificial Mangrove Species Mapping Using Pleiades-1: An Evaluation of Pixel-Based and Object-Based Classifications with Selected Machine Learning Algorithms. Remote Sens., 10.","DOI":"10.3390\/rs10020294"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"3680","DOI":"10.1109\/JSTARS.2016.2553170","article-title":"Multitemporal Analysis of High-Spatial-Resolution Optical Satellite Imagery for Mangrove Species Mapping in Bali, Indonesia","volume":"9","author":"Viennois","year":"2016","journal-title":"IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"861","DOI":"10.1007\/s13157-017-0925-1","article-title":"Mangrove Species Discrimination from Very High Resolution Imagery Using Gaussian Markov Random Field Model","volume":"38","author":"Wan","year":"2018","journal-title":"Wetlands"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"4753","DOI":"10.3390\/rs70404753","article-title":"Object-Based Approach for Multi-Scale Mangrove Composition Mapping Using Multi-Resolution Image Datasets","volume":"7","author":"Kamal","year":"2015","journal-title":"Remote Sens."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"432","DOI":"10.1016\/j.rse.2004.04.005","article-title":"Comparison of IKONOS and QuickBird images for mapping mangrove species on the Caribbean coast of Panama","volume":"91","author":"Wang","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"371","DOI":"10.1016\/j.ecss.2005.06.014","article-title":"Tropical mangrove species discrimination using hyperspectral data: A laboratory study","volume":"65","author":"Vaiphasa","year":"2005","journal-title":"Estuar. Coast. Shelf Sci."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1267","DOI":"10.1080\/01431160802474014","article-title":"Distinguishing mangrove species with laboratory measurements of hyperspectral leaf reflectance","volume":"30","author":"Wang","year":"2009","journal-title":"Int. J. Remote Sens."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"400","DOI":"10.1080\/15481603.2013.814275","article-title":"Discrimination of mangrove species and mudflat classes using in situ hyperspectral data: A case study of Indian Sundarbans","volume":"50","author":"Manjunath","year":"2013","journal-title":"Gisci. Remote Sens."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"11673","DOI":"10.3390\/rs61211673","article-title":"Separating Mangrove Species and Conditions Using Laboratory Hyperspectral Data: A Case Study of a Degraded Mangrove Forest of the Mexican Pacific","volume":"6","author":"Zhang","year":"2014","journal-title":"Remote Sens."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Cao, J.J., Liu, K., Liu, L., Zhu, Y.H., Li, J., and He, Z. (2018). Identifying Mangrove Species Using Field Close-Range Snapshot Hyperspectral Imaging and Machine-Learning Techniques. Remote Sens., 10.","DOI":"10.3390\/rs10122047"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"2739","DOI":"10.1080\/0143116031000066323","article-title":"High resolution mapping of tropical mangrove ecosystems using hyperspectral and radar remote sensing","volume":"24","author":"Held","year":"2003","journal-title":"Int. J. Remote Sens."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1136","DOI":"10.18520\/cs\/v116\/i7\/1136-1142","article-title":"Mangrove species discrimination and health assessment using AVIRIS-NG hyperspectral data","volume":"116","author":"Chaube","year":"2019","journal-title":"Curr. Sci."},{"key":"ref_28","unstructured":"Wong, K.K. Mangrove Species Mapping and Leaf Area Index Modeling Using Optical and Microwave Remote Sensing Technologies in Hong Kong. Phd, The Chinese University of Hong Kong, Hong Kong, 2012."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Koedsin, W., and Vaiphasa, C. (2013). Discrimination of Tropical Mangroves at the Species Level with EO-1 Hyperion Data. Remote Sens., 5.","DOI":"10.3390\/rs5073562"},{"key":"ref_30","unstructured":"Krebs, G. (2019, December 23). Gaofen 5 (GF 5). Available online: https:\/\/space.skyrocket.de\/doc_sdat\/gf-5.htm."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1109\/MGRS.2019.2927687","article-title":"The Advanced Hyperspectral Imager: Aboard China\u2019s GaoFen-5 Satellite","volume":"7","author":"Liu","year":"2019","journal-title":"IEEE Geosci. Remote Sens. Mag."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"878","DOI":"10.3390\/rs3050878","article-title":"Remote Sensing of Mangrove Ecosystems: A Review","volume":"3","author":"Kuenzer","year":"2011","journal-title":"Remote Sens."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"7828","DOI":"10.1080\/01431161.2014.978034","article-title":"Combining EO-1 Hyperion and Envisat ASAR data for mangrove species classification in Mai Po Ramsar Site, Hong Kong","volume":"35","author":"Wong","year":"2014","journal-title":"Int. J. Remote Sens."},{"key":"ref_34","first-page":"689","article-title":"Current progress of hyperspectral remote sensing in China","volume":"20","author":"Tong","year":"2016","journal-title":"J. Remote Sens."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"1062","DOI":"10.1109\/TGRS.2015.2473705","article-title":"Advancement of hyperspectral image processing and information extraction","volume":"20","author":"Zhang","year":"2016","journal-title":"J. Remote Sens."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.rse.2013.10.028","article-title":"Improving the impervious surface estimation with combined use of optical and SAR remote sensing images","volume":"141","author":"Zhang","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_38","first-page":"18","article-title":"Classification and regression by randomForest","volume":"2","author":"Liaw","year":"2002","journal-title":"R News"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/BF00994018","article-title":"Support-vector networks","volume":"20","author":"Cortes","year":"1995","journal-title":"Mach. Learn."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"2297","DOI":"10.1109\/TGRS.2009.2039484","article-title":"Feature Selection for Classification of Hyperspectral Data by SVM","volume":"48","author":"Pal","year":"2010","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/1961189.1961199","article-title":"LIBSVM: A library for support vector machines","volume":"2","author":"Chang","year":"2011","journal-title":"ACM Trans. Intell. Syst. Technol."},{"key":"ref_42","unstructured":"Hsu, C.-W., Chang, C.-C., and Lin, C.-J. (2019, May 24). A Practical Guide to Support Vector Classification. Available online: https:\/\/www.csie.ntu.edu.tw\/~cjlin\/papers\/guide\/guide.pdf."},{"key":"ref_43","first-page":"1671","article-title":"Assessing Landsat Classification Accuracy Using Discrete Multivariate Analysis Statistical Techniques","volume":"49","author":"Congalton","year":"1983","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.isprsjprs.2017.03.013","article-title":"Monitoring mangrove biomass change in Vietnam using SPOT images and an object-based approach combined with machine learning algorithms","volume":"128","author":"Pham","year":"2017","journal-title":"Isprs J. Photogramm. Remote Sens."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/4\/656\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,24]],"date-time":"2024-06-24T12:27:07Z","timestamp":1719232027000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/4\/656"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2,17]]},"references-count":44,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2020,2]]}},"alternative-id":["rs12040656"],"URL":"https:\/\/doi.org\/10.3390\/rs12040656","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,2,17]]}}}