{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,5]],"date-time":"2024-08-05T23:46:20Z","timestamp":1722901580482},"reference-count":57,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2020,2,3]],"date-time":"2020-02-03T00:00:00Z","timestamp":1580688000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000844","name":"European Space Agency","doi-asserted-by":"publisher","award":["ESA\/AO\/1-7875\/14\/I-NC (4000114738\/15\/I-SBO)"],"id":[{"id":"10.13039\/501100000844","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Near real-time precipitation is essential to many applications. In Africa, the lack of dense rain-gauge networks and ground weather radars makes the use of satellite precipitation products unavoidable. Despite major progresses in estimating precipitation rate from remote sensing measurements over the past decades, satellite precipitation products still suffer from quantitative uncertainties and biases compared to ground data. Consequently, almost all precipitation products are provided in two modes: a real-time mode (also called early-run or raw product) and a corrected mode (also called final-run, adjusted or post-processed product) in which ground precipitation measurements are integrated in algorithms to correct for bias, generally at a monthly timescale. This paper describes a new methodology to provide a near-real-time precipitation product based on satellite precipitation and soil moisture measurements. Recent studies have shown that soil moisture intrinsically contains information on past precipitation and can be used to correct precipitation uncertainties. The PrISM (Precipitation inferred from Soil Moisture) methodology is presented and its performance is assessed for five in situ rainfall measurement networks located in Africa in semi-arid to wet areas: Niger, Benin, Burkina Faso, Central Africa, and East Africa. Results show that the use of SMOS (Soil Moisture and Ocean Salinity) satellite soil moisture measurements in the PrISM algorithm most often improves the real-time satellite precipitation products, and provides results comparable to existing adjusted products, such as TRMM (Tropical Rainfall Measuring Mission), GPCC (Global Precipitation Climatology Centre) and IMERG (Integrated Multi-satellitE Retrievals for GPM), which are available a few weeks or months after their detection.<\/jats:p>","DOI":"10.3390\/rs12030481","type":"journal-article","created":{"date-parts":[[2020,2,5]],"date-time":"2020-02-05T08:18:48Z","timestamp":1580890728000},"page":"481","source":"Crossref","is-referenced-by-count":30,"title":["The Precipitation Inferred from Soil Moisture (PrISM) Near Real-Time Rainfall Product: Evaluation and Comparison"],"prefix":"10.3390","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4157-1446","authenticated-orcid":false,"given":"Thierry","family":"Pellarin","sequence":"first","affiliation":[{"name":"CNRS, IRD, Univ. Grenoble Alpes, Grenoble INP, IGE, F-38000 Grenoble, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4724-8102","authenticated-orcid":false,"given":"Carlos","family":"Rom\u00e1n-Casc\u00f3n","sequence":"additional","affiliation":[{"name":"CNRS, IRD, Univ. Grenoble Alpes, Grenoble INP, IGE, F-38000 Grenoble, France"},{"name":"Laboratoire d\u2019A\u00e9rologie, Universit\u00e9 Toulouse Paul Sabatier, CNRS, F-31400 Toulouse, France"}]},{"given":"Christian","family":"Baron","sequence":"additional","affiliation":[{"name":"CIRAD UMR TETIS, Maison de la T\u00e9l\u00e9d\u00e9tection, 500 rue J.F. Breton, F-34093 Montpellier, France"}]},{"given":"Rajat","family":"Bindlish","sequence":"additional","affiliation":[{"name":"NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9080-260X","authenticated-orcid":false,"given":"Luca","family":"Brocca","sequence":"additional","affiliation":[{"name":"Research Institute for Geo-Hydrological Protection, Via Madonna Alta 126, 06128 Perugia, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4896-2332","authenticated-orcid":false,"given":"Pierre","family":"Camberlin","sequence":"additional","affiliation":[{"name":"Centre de Recherches de Climatologie\/Biog\u00e9osciences, UMR 6282 CNRS, Universit\u00e9 Bourgogne Franche-Comt\u00e9, 21000 Dijon, France"}]},{"given":"Diego","family":"Fern\u00e1ndez-Prieto","sequence":"additional","affiliation":[{"name":"EO Science, Applications and Climate Department, Largo Galileo Galilei, 1, 00044 Frascati, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6352-1717","authenticated-orcid":false,"given":"Yann H.","family":"Kerr","sequence":"additional","affiliation":[{"name":"CESBIO (CNRS\/UPS\/IRD\/CNES), 18 av. Edouard Belin, bpi 2801, CEDEX 9, 31401 Toulouse, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0983-1276","authenticated-orcid":false,"given":"Christian","family":"Massari","sequence":"additional","affiliation":[{"name":"Research Institute for Geo-Hydrological Protection, Via Madonna Alta 126, 06128 Perugia, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6906-3654","authenticated-orcid":false,"given":"Geremy","family":"Panthou","sequence":"additional","affiliation":[{"name":"CNRS, IRD, Univ. Grenoble Alpes, Grenoble INP, IGE, F-38000 Grenoble, France"}]},{"given":"Benoit","family":"Perrimond","sequence":"additional","affiliation":[{"name":"CNRS, IRD, Univ. Grenoble Alpes, Grenoble INP, IGE, F-38000 Grenoble, France"}]},{"given":"Nathalie","family":"Philippon","sequence":"additional","affiliation":[{"name":"CNRS, IRD, Univ. Grenoble Alpes, Grenoble INP, IGE, F-38000 Grenoble, France"}]},{"given":"Guillaume","family":"Quantin","sequence":"additional","affiliation":[{"name":"CNRS, IRD, Univ. Grenoble Alpes, Grenoble INP, IGE, F-38000 Grenoble, France"}]}],"member":"1968","published-online":{"date-parts":[[2020,2,3]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1175\/2009WCAS1022.1","article-title":"Estimating the Potential Economic Value of Seasonal Forecasts in West Africa: A Long-Term Ex-Ante Assessment in Senegal","volume":"2","author":"Sultan","year":"2010","journal-title":"Weather Clim. Soc."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1355","DOI":"10.1175\/BAMS-87-10-1355","article-title":"African Climate Change: Taking the Shorter Route","volume":"87","author":"Washington","year":"2006","journal-title":"Bull. Am. Meteorol. Soc."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1337","DOI":"10.1175\/1520-0450(2003)042<1337:VOTAOR>2.0.CO;2","article-title":"Validation of TRMM and Other Rainfall Estimates with a High-Density Gauge Dataset for West Africa. Part I: Validation of GPCC Rainfall Product and Pre-TRMM Satellite and Blended Products","volume":"42","author":"Nicholson","year":"2003","journal-title":"J. Appl. Meteorol."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"923","DOI":"10.1002\/qj.2130","article-title":"Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks","volume":"139","author":"Gosset","year":"2013","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"2115","DOI":"10.1002\/qj.3547","article-title":"Evaluation of remotely sensed rainfall products over Central Africa","volume":"145","author":"Camberlin","year":"2019","journal-title":"Q. J. R. Meteorol. Soc."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Serrat-Capdevila, A., Merino, M., Valdes, J.B., and Durcik, M. (2016). Evaluation of the Performance of Three Satellite Precipitation Products over Africa. Remote Sens., 8.","DOI":"10.3390\/rs8100836"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"222","DOI":"10.1016\/j.jhydrol.2017.01.055","article-title":"Evaluating the performance of remotely sensed and reanalysed precipitation data over West Africa using HBV light","volume":"547","author":"Jackisch","year":"2017","journal-title":"J. Hydrol."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"308","DOI":"10.1002\/met.1283","article-title":"Evaluation of satellite-based and model re-analysis rainfall estimates for Uganda","volume":"20","author":"Maidment","year":"2013","journal-title":"Meteorol. Appl."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"715","DOI":"10.1175\/2009JAMC2318.1","article-title":"Comparing Satellite and Surface Rainfall Products over West Africa at Meteorologically Relevant Scales during the AMMA Campaign Using Error Estimates","volume":"49","author":"Roca","year":"2010","journal-title":"J. Appl. Meteorol. Clim."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2353","DOI":"10.1080\/01431161003698286","article-title":"An intercomparison of 10-day satellite precipitation products during West African monsoon","volume":"32","author":"Jobard","year":"2011","journal-title":"Int. J. Remote Sens."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1119","DOI":"10.1175\/JHM-D-15-0094.1","article-title":"Estimating Uncertainties in High-Resolution Satellite Precipitation Products: Systematic or Random Error?","volume":"17","author":"Maggioni","year":"2016","journal-title":"J. Hydrometeorol."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"1282","DOI":"10.1016\/j.rse.2007.02.039","article-title":"Estimation of regional terrestrial water cycle using multi-sensor remote sensing observations and data assimilation","volume":"112","author":"Pan","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"56","DOI":"10.1175\/JHM553.1","article-title":"A Novel Method for Quantifying Value in Spaceborne Soil Moisture Retrievals","volume":"8","author":"Crow","year":"2007","journal-title":"J. Hydrometeorol."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1029\/2007GL032243","article-title":"Using spaceborne surface soil moisture to constrain satellite precipitation estimates over West Africa","volume":"35","author":"Pellarin","year":"2008","journal-title":"Geophys. Res. Lett."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"430","DOI":"10.1016\/j.rse.2007.03.027","article-title":"Hydrological consistency using multi-sensor remote sensing data for water and energy cycle studies","volume":"112","author":"McCabe","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1175\/2008JHM986.1","article-title":"Improving Satellite-Based Rainfall Accumulation Estimates Using Spaceborne Surface Soil Moisture Retrievals","volume":"10","author":"Crow","year":"2009","journal-title":"J. Hydrometeorol."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1887","DOI":"10.5194\/hess-13-1887-2009","article-title":"Soil moisture mapping over West Africa with a 30-min temporal resolution using AMSR-E observations and a satellite-based rainfall product","volume":"13","author":"Pellarin","year":"2009","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"853","DOI":"10.1002\/grl.50173","article-title":"A new method for rainfall estimation through soil moisture observations","volume":"40","author":"Brocca","year":"2013","journal-title":"Geophys. Res. Lett."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"5128","DOI":"10.1002\/2014JD021489","article-title":"Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data","volume":"119","author":"Brocca","year":"2014","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"7213","DOI":"10.1002\/2016WR019024","article-title":"Precipitation Estimation Using L-Band and C-Band Soil Moisture Retrievals","volume":"52","author":"Koster","year":"2016","journal-title":"Water Resour. Res."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"4347","DOI":"10.5194\/hess-21-4347-2017","article-title":"An assessment of the performance of global rainfall estimates without ground-based observations","volume":"21","author":"Massari","year":"2017","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1016\/j.rse.2015.01.016","article-title":"Correction of real-time satellite precipitation with multi-sensor satellite observations of land surface variables","volume":"160","author":"Wanders","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"12062","DOI":"10.1002\/2016JD025382","article-title":"Rainfall estimation by inverting SMOS soil moisture estimates: A comparison of different methods over Australia","volume":"121","author":"Brocca","year":"2016","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1016\/j.rse.2017.08.022","article-title":"Correcting satellite-based precipitation products through SMOS soil moisture data assimilation in two land-surface models of different complexity: API and SURFEX","volume":"200","author":"Pellarin","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Zhang, Z., Wang, D., Wang, G., Qiu, J., and Liao, W. (2019). Use of SMAP Soil Moisture and Fitting Methods in Improving GPM Estimation in Near Real Time. Remote Sens., 11.","DOI":"10.3390\/rs11030368"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"49","DOI":"10.5194\/essd-6-49-2014","article-title":"Global gridded precipitation over land: A description of the new GPCC First Guess Daily product","volume":"6","author":"Schamm","year":"2014","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1147","DOI":"10.1175\/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2","article-title":"The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present)","volume":"4","author":"Adler","year":"2003","journal-title":"J. Hydrometeorol."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Adler, R.F., Sapiano, M.R.P., Huffman, G.J., Wang, J.-J., Gu, G., Bolvin, D., Chiu, L., Schneider, U., Becker, A., and Nelkin, E. (2018). The Global Precipitation Climatology Project (GPCP) Monthly Analysis (New Version 2.3) and a Review of 2017 Global Precipitation. Atmosphere, 9.","DOI":"10.3390\/atmos9040138"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3354\/cr021001","article-title":"A high-resolution data set of surface climate over global land areas","volume":"21","author":"New","year":"2002","journal-title":"Clim. Res."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"180062","DOI":"10.2136\/vzj2018.03.0062","article-title":"AMMA-CATCH, a Critical Zone Observatory in West Africa Monitoring a Region in Transition","volume":"17","author":"Galle","year":"2018","journal-title":"Vadose Zone J."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.jhydrol.2009.03.020","article-title":"AMMA-CATCH studies in the Sahelian region of West-Africa: An overview","volume":"375","author":"Lebel","year":"2009","journal-title":"J. Hydrol."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"477","DOI":"10.1007\/s00382-016-3088-5","article-title":"Temperature trends and variability in the Greater Horn of Africa: Interactions with precipitation","volume":"48","author":"Camberlin","year":"2017","journal-title":"Clim. Dyn."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1175\/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2","article-title":"CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution","volume":"5","author":"Joyce","year":"2004","journal-title":"J. Hydrometeorol."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1175\/JHM560.1","article-title":"The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales","volume":"8","author":"Huffman","year":"2007","journal-title":"J. Hydrometeorol."},{"key":"ref_35","unstructured":"Huffman, G.J., Bolvin, D.T., and Nelkin, E.J. (2018, November 07). 2015: Day 1 IMERG Final Run Release Notes, Available online: https:\/\/pmm.nasa.gov\/sites\/default\/files\/document_files\/IMERG_FinalRun_Day1_release_notes.pdf."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Massari, C., Brocca, L., Pellarin, T., Abramowitz, G., Filippucci, P., Ciabatta, L., Maggioni, V., Kerr, Y., and Prieto, D.F. (2020). A daily\/25 km short-latency rainfall product for data scarce regions based on the integration of the GPM IMERG Early Run with multiple satellite soil moisture products. Hydrol. Earth Syst. Sci., under review.","DOI":"10.5194\/hess-2019-387"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"1951","DOI":"10.1080\/01431160118816","article-title":"Comparison of TAMSAT and CPC rainfall estimates with raingauges, for southern Africa","volume":"22","author":"Thorne","year":"2001","journal-title":"Int. J. Remote Sens."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"170063","DOI":"10.1038\/sdata.2017.63","article-title":"A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa","volume":"4","author":"Maidment","year":"2017","journal-title":"Sci. Data"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"2805","DOI":"10.1175\/JAMC-D-14-0016.1","article-title":"Extension of the TAMSAT Satellite-Based Rainfall Monitoring over Africa and from 1983 to Present","volume":"53","author":"Tarnavsky","year":"2014","journal-title":"J. Appl. Meteorol. Clim."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"10619","DOI":"10.1002\/2014JD021927","article-title":"The 30 year TAMSAT African Rainfall Climatology And Time series (TARCAT) data set","volume":"119","author":"Maidment","year":"2014","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., and Hoell, A. (2015). The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data, 2.","DOI":"10.1038\/sdata.2015.66"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1515\/johh-2015-0016","article-title":"Rainfall estimation from in situ soil moisture observations at several sites in Europe: An evaluation of the SM2RAIN algorithm","volume":"63","author":"Brocca","year":"2015","journal-title":"J. Hydrol. Hydromech."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1016\/j.jhydrol.2016.12.057","article-title":"Daily precipitation estimation through different microwave sensors: Verification study over Italy","volume":"545","author":"Ciabatta","year":"2017","journal-title":"J. Hydrol."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"44","DOI":"10.1016\/j.advwatres.2014.08.004","article-title":"Potential of soil moisture observations in flood modelling: Estimating initial conditions and correcting rainfall","volume":"74","author":"Massari","year":"2014","journal-title":"Adv. Water Resour."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1583","DOI":"10.5194\/essd-11-1583-2019","article-title":"SM2RAIN-ASCAT (2007-2018): Global daily satellite rainfall data from ASCAT soil moisture observations","volume":"11","author":"Brocca","year":"2019","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"885","DOI":"10.1007\/s00382-012-1610-y","article-title":"Climate model dependence and the replicate Earth paradigm","volume":"41","author":"Bishop","year":"2013","journal-title":"Clim. Dyn."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"1317","DOI":"10.5194\/hess-22-1317-2018","article-title":"Derived Optimal Linear Combination Evapotranspiration (DOLCE): A global gridded synthesis ET estimate","volume":"22","author":"Hobeichi","year":"2018","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1729","DOI":"10.1109\/36.942551","article-title":"Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission","volume":"39","author":"Kerr","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"40","DOI":"10.1016\/j.rse.2016.02.042","article-title":"Overview of SMOS performance in terms of global soil moisture monitoring after six years in operation","volume":"180","author":"Kerr","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1016\/j.rse.2013.04.011","article-title":"A simple and effective method for correcting soil moisture and precipitation estimates using AMSR-E measurements","volume":"136","author":"Pellarin","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1023\/A:1008935410038","article-title":"On sequential Monte Carlo sampling methods for Bayesian filtering","volume":"10","author":"Doucet","year":"2000","journal-title":"Stat. Comput."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1029\/2004WR003604","article-title":"Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter","volume":"41","author":"Moradkhani","year":"2005","journal-title":"Water Resour. Res."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"4089","DOI":"10.1175\/2009MWR2835.1","article-title":"Particle Filtering in Geophysical Systems","volume":"137","year":"2009","journal-title":"Mon. Weather Rev."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"539","DOI":"10.1007\/s10236-004-0099-2","article-title":"Sampling strategies and square root analysis schemes for the EnKF","volume":"54","author":"Evensen","year":"2004","journal-title":"Ocean Dyn."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Reichle, R.H., Crow, W.T., Koster, R.D., Sharif, H.O., and Mahanama, S.P.P. (2008). Contribution of soil moisture retrievals to land data assimilation products. Geophys. Res. Lett., 35.","DOI":"10.1029\/2007GL031986"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TGRS.2015.2432067","article-title":"Improving Soil Moisture Profile Prediction With the Particle Filter-Markov Chain Monte Carlo Method","volume":"53","author":"Yan","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"7183","DOI":"10.1029\/2000JD900719","article-title":"Summarizing multiple aspects of model performance in a single diagram","volume":"106","author":"Taylor","year":"2001","journal-title":"J. Geophys. Res. Space Phys."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/3\/481\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,24]],"date-time":"2024-06-24T01:51:30Z","timestamp":1719193890000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/12\/3\/481"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,2,3]]},"references-count":57,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2020,2]]}},"alternative-id":["rs12030481"],"URL":"https:\/\/doi.org\/10.3390\/rs12030481","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020,2,3]]}}}