{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,2]],"date-time":"2024-09-02T23:31:08Z","timestamp":1725319868923},"reference-count":64,"publisher":"MDPI AG","issue":"16","license":[{"start":{"date-parts":[[2019,8,7]],"date-time":"2019-08-07T00:00:00Z","timestamp":1565136000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000844","name":"European Space Agency","doi-asserted-by":"publisher","award":["AO\/1-8897\/17\/NL\/MP","RFP\/3-15477\/18\/NL\/NA","4000122454\/17\/NL\/FF"],"id":[{"id":"10.13039\/501100000844","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Retrieval of Sun-Induced Chlorophyll Fluorescence (F) spectrum is one of the challenging perspectives for further advancing F studies towards a better characterization of vegetation structure and functioning. In this study, a simplified Spectral Fitting retrieval algorithm suitable for retrieving the F spectrum with a limited number of parameters is proposed (two parameters for F). The novel algorithm is developed and tested on a set of radiative transfer simulations obtained by coupling SCOPE and MODTRAN5 codes, considering different chlorophyll content, leaf area index and noise levels to produce a large variability in fluorescence and reflectance spectra. The retrieval accuracy is quantified based on several metrics derived from the F spectrum (i.e., red and far-red peaks, O2 bands and spectrally-integrated values). Further, the algorithm is employed to process experimental field spectroscopy measurements collected over different crops during a long-lasting field campaign. The reliability of the retrieval algorithm on experimental measurements is evaluated by cross-comparison with F values computed by an independent retrieval method (i.e., SFM at O2 bands). For the first time, the evolution of the F spectrum along the entire growing season for a forage crop is analyzed and three diverse F spectra are identified at different growing stages. The results show that red F is larger for young canopy; while red and far-red F have similar intensity in an intermediate stage; finally, far-red F is significantly larger for the rest of the season.<\/jats:p>","DOI":"10.3390\/rs11161840","type":"journal-article","created":{"date-parts":[[2019,8,7]],"date-time":"2019-08-07T14:56:38Z","timestamp":1565189798000},"page":"1840","source":"Crossref","is-referenced-by-count":36,"title":["A Spectral Fitting Algorithm to Retrieve the Fluorescence Spectrum from Canopy Radiance"],"prefix":"10.3390","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7192-2032","authenticated-orcid":false,"given":"Sergio","family":"Cogliati","sequence":"first","affiliation":[{"name":"Remote Sensing of Environmental Dynamics Lab., DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7249-7106","authenticated-orcid":false,"given":"Marco","family":"Celesti","sequence":"additional","affiliation":[{"name":"Remote Sensing of Environmental Dynamics Lab., DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy"}]},{"given":"Ilaria","family":"Cesana","sequence":"additional","affiliation":[{"name":"Remote Sensing of Environmental Dynamics Lab., DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy"}]},{"given":"Franco","family":"Miglietta","sequence":"additional","affiliation":[{"name":"Institute of Biometeorology, National Research Council (CNR- IBIMET), Via Caproni 8, 50145 Florence, Italy"}]},{"given":"Lorenzo","family":"Genesio","sequence":"additional","affiliation":[{"name":"Institute of Biometeorology, National Research Council (CNR- IBIMET), Via Caproni 8, 50145 Florence, Italy"}]},{"given":"Tommaso","family":"Julitta","sequence":"additional","affiliation":[{"name":"JB Hyperspectral Devices UG, 40225 D\u00fcsseldorf, Germany"}]},{"given":"Dirk","family":"Schuettemeyer","sequence":"additional","affiliation":[{"name":"ESA-ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands"}]},{"given":"Matthias","family":"Drusch","sequence":"additional","affiliation":[{"name":"ESA-ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9993-4588","authenticated-orcid":false,"given":"Uwe","family":"Rascher","sequence":"additional","affiliation":[{"name":"Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum J\u00fclich GmbH, Leo-Brandt-Str., 52425 J\u00fclich, Germany"}]},{"given":"Pedro","family":"Jurado","sequence":"additional","affiliation":[{"name":"ESA-ESTEC, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands"}]},{"given":"Roberto","family":"Colombo","sequence":"additional","affiliation":[{"name":"Remote Sensing of Environmental Dynamics Lab., DISAT, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy"}]}],"member":"1968","published-online":{"date-parts":[[2019,8,7]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"95","DOI":"10.1016\/j.rse.2019.01.016","article-title":"What is global photosynthesis? History, uncertainties and opportunities","volume":"223","author":"Ryu","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"4065","DOI":"10.1093\/jxb\/eru191","article-title":"Linking chlorophyll a fluorescence to photosynthesis for remote sensing applications: Mechanisms and challenges","volume":"65","author":"Atherton","year":"2014","journal-title":"J. Exp. Bot."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"E2510","DOI":"10.1073\/pnas.1406600111","article-title":"Let\u2019s exploit available knowledge on vegetation fluorescence","volume":"111","author":"Magnani","year":"2014","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"L03801","DOI":"10.1029\/2010GL045896","article-title":"Disentangling chlorophyll fluorescence from atmospheric scattering effects in O2 A-band spectra of reflected sun-light","volume":"38","author":"Frankenberg","year":"2011","journal-title":"Geophys. Res. Lett."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"236","DOI":"10.1016\/j.rse.2012.02.006","article-title":"Retrieval and global assessment of terrestrial chlorophyll fluorescence from GOSAT space measurements","volume":"121","author":"Guanter","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"637","DOI":"10.5194\/bg-8-637-2011","article-title":"First observations of global and seasonal terrestrial chlorophyll fluorescence from space","volume":"8","author":"Joiner","year":"2011","journal-title":"Biogeosciences"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"2589","DOI":"10.5194\/amt-8-2589-2015","article-title":"A linear method for the retrieval of sun-induced chlorophyll fluorescence from GOME-2 and SCIAMACHY data","volume":"8","author":"Guanter","year":"2015","journal-title":"Atmos. Meas. Tech."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1446","DOI":"10.1109\/LGRS.2015.2407051","article-title":"Simplified physically based retrieval of sun-induced chlorophyll fluorescence from GOSAT data","volume":"12","author":"Kohler","year":"2015","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"808","DOI":"10.1016\/j.rse.2018.02.016","article-title":"Overview of Solar-Induced chlorophyll Fluorescence (SIF) from the Orbiting Carbon Observatory-2: Retrieval, cross-mission comparison, and global monitoring for GPP","volume":"209","author":"Sun","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"3939","DOI":"10.5194\/amt-9-3939-2016","article-title":"New methods for retrieval of chlorophyll red fluorescence from hyper-spectral satellite instruments: Simulations and application to GOME-2 and SCIAMACHY","volume":"9","author":"Joiner","year":"2016","journal-title":"Atmos. Meas. Tech."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.rse.2015.05.018","article-title":"Global retrieval of marine and terrestrial chlorophyll fluorescence at its red peak using hyperspectral top of atmosphere radiance measurements: Feasibility study and first results","volume":"166","author":"Wolanin","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Rossini, M., Meroni, M., Celesti, M., Cogliati, S., Julitta, T., Panigada, C., Rascher, U., van der Tol, C., and Colombo, R. (2016). Analysis of red and far-red sun-induced chlorophyll fluorescence and their ratio in different canopies based on observed and modeled data. Remote Sens., 8.","DOI":"10.3390\/rs8050412"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1016\/j.rse.2018.05.013","article-title":"Exploring the physiological information of Sun-induced chlorophyll fluorescence through radiative transfer model inversion","volume":"215","author":"Celesti","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Campbell, P., Huemmrich, K., Middleton, E., Ward, L., Julitta, T., Daughtry, C., Burkart, A., Russ, A., Kustas, W., and Campbell, P.K.E. (2019). Diurnal and seasonal variations in chlorophyll fluorescence associated with photosynthesis at leaf and canopy scales. Remote Sens., 11.","DOI":"10.3390\/rs11050488"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"311","DOI":"10.1016\/j.rse.2018.07.002","article-title":"PhotoSpec: A new instrument to measure spatially distributed red and far-red solar-induced chlorophyll fluorescence","volume":"216","author":"Grossmann","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Du, S., Liu, L., Liu, X., Guo, J., Hu, J., Wang, S., Zhang, Y., Du, S., Liu, L., and Liu, X. (2019). SIFSpec: Measuring solar-induced chlorophyll fluorescence observations for remote sensing of photosynthesis. Sensors, 19.","DOI":"10.3390\/s19133009"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1632","DOI":"10.1002\/2014GL062943","article-title":"Red and far red Sun-induced chlorophyll fluorescence as a measure of plant photosynthesis","volume":"42","author":"Rossini","year":"2015","journal-title":"Geophys. Res. Lett."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"2980","DOI":"10.1111\/gcb.14097","article-title":"Variability of sun-induced chlorophyll fluorescence according to stand age-related processes in a managed loblolly pine forest","volume":"24","author":"Colombo","year":"2018","journal-title":"Glob. Chang. Biol."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"4673","DOI":"10.1111\/gcb.13017","article-title":"Sun-induced fluorescence\u2014A new probe of photosynthesis: First maps from the imaging spectrometer HyPlant","volume":"21","author":"Rascher","year":"2015","journal-title":"Glob. Chang. Biol."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"654","DOI":"10.1016\/j.rse.2016.07.025","article-title":"Airborne based spectroscopy of red and far-red sun-induced chlorophyll fluorescence: Implications for improved estimates of gross primary productivity","volume":"184","author":"Wieneke","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Middleton, E.M., Rascher, U., Corp, L.A., Huemmrich, K.F., Cook, B.D., Noormets, A., Schickling, A., Pinto, F., Alonso, L., and Damm, A. (2017). The 2013 FLEX\u2014US airborne campaign at the parker tract loblolly pine plantation in North Carolina, USA. Remote Sens., 9.","DOI":"10.3390\/rs9060612"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Bandopadhyay, S., Rastogi, A., Rascher, U., Rademske, P., Schickling, A., Cogliati, S., Julitta, T., Mac Arthur, A., Hueni, A., and Tomelleri, E. (2019). Hyplant-derived Sun-induced fluorescence\u2014A new Opportunity to disentangle complex vegetation signals from diverse vegetation types. Remote Sens., 11.","DOI":"10.3390\/rs11141691"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.rse.2015.06.002","article-title":"Global sensitivity analysis of the SCOPE model: What drives simulated canopy-leaving sun-induced fluorescence?","volume":"166","author":"Verrelst","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"3109","DOI":"10.5194\/bg-6-3109-2009","article-title":"An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance","volume":"6","author":"Verhoef","year":"2009","journal-title":"Biogeosciences"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"2312","DOI":"10.1002\/2014JG002713","article-title":"Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence","volume":"119","author":"Berry","year":"2014","journal-title":"J. Geophys. Res. Biogeosci."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1273","DOI":"10.1109\/TGRS.2016.2621820","article-title":"The fluorescence EXplorer mission concept-ESA\u2019s earth explorer 8","volume":"55","author":"Drusch","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"7014","DOI":"10.1364\/OE.16.007014","article-title":"Sun-induced leaf fluorescence retrieval in the O2-B atmospheric absorption band","volume":"16","author":"Mazzoni","year":"2008","journal-title":"Opt. Express"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1016\/j.rse.2009.09.010","article-title":"Performance of spectral fitting methods for vegetation fluorescence quantification","volume":"114","author":"Meroni","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"15649","DOI":"10.1364\/OE.18.015649","article-title":"High-resolution methods for fluorescence retrieval from space","volume":"18","author":"Mazzoni","year":"2010","journal-title":"Opt. Express"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1016\/j.rse.2012.04.025","article-title":"Retrieval of maize canopy fluorescence and reflectance by spectral fitting in the O2-A absorption band","volume":"124","author":"Mazzoni","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"344","DOI":"10.1016\/j.rse.2015.08.022","article-title":"Retrieval of sun-induced fluorescence using advanced spectral fitting methods","volume":"169","author":"Cogliati","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"942","DOI":"10.1016\/j.rse.2017.08.006","article-title":"Hyperspectral radiative transfer modeling to explore the combined retrieval of biophysical parameters and canopy fluorescence from FLEX\u2014Sentinel-3 tandem mission multi-sensor data","volume":"204","author":"Verhoef","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1016\/j.rse.2014.06.022","article-title":"The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange","volume":"152","author":"Joiner","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Frankenberg, C., Fisher, J.B., Worden, J., Badgley, G., Saatchi, S.S., Lee, J.E., Toon, G.C., Butz, A., Jung, M., and Kuze, A. (2011). New global observations of the terrestrial carbon cycle from GOSAT: Patterns of plant fluorescence with gross primary productivity. Geophys. Res. Lett., 38.","DOI":"10.1029\/2011GL048738"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"2037","DOI":"10.1016\/j.rse.2009.05.003","article-title":"Remote sensing of solar-induced chlorophyll fluorescence: Review of methods and applications","volume":"113","author":"Meroni","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Cendrero-Mateo, M.P., Wieneke, S., Damm, A., Alonso, L., Pinto, F., Moreno, J., Guanter, L., Celesti, M., Rossini, M., and Sabater, N. (2019). Sun-induced chlorophyll fluorescence III: Benchmarking retrieval methods and sensor characteristics for proximal sensing. Remote Sens., 11.","DOI":"10.3390\/rs11080962"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1117\/12.7971842","article-title":"MK II Fraunhofer line discriminator (FLD-II) for airborne and orbital remote-sensing of solar-stimulated luminescence","volume":"14","author":"Plascyk","year":"1975","journal-title":"Opt. Eng."},{"key":"ref_38","unstructured":"Maier, S.W., Gunther, K.P., and Stellmes, M. (2002). Remote sensing and modeling of solar induced fluorescence. Remote Sens. Solar Induc. Veg."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"620","DOI":"10.1109\/LGRS.2008.2001180","article-title":"Improved fraunhofer line discrimination method for vegetation fluorescence quantification","volume":"5","author":"Alonso","year":"2008","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"10171","DOI":"10.3390\/rs61010171","article-title":"A method to reconstruct the solar-induced canopy fluorescence spectrum from hyperspectral measurements","volume":"6","author":"Zhao","year":"2014","journal-title":"Remote Sens."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"10626","DOI":"10.3390\/rs70810626","article-title":"New spectral fitting method for full-spectrum solar-induced chlorophyll fluorescence retrieval based on principal components analysis","volume":"7","author":"Liu","year":"2015","journal-title":"Remote Sens."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1016\/j.rse.2018.10.021","article-title":"Reconstruction of the full spectrum of solar-induced chlorophyll fluorescence: Intercomparison study for a novel method","volume":"219","author":"Zhao","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"111177","DOI":"10.1016\/j.rse.2019.04.030","article-title":"Remote sensing of solar-induced chlorophyll fluorescence (SIF) in vegetation: 50 years of progress","volume":"231","author":"Mohammed","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_44","unstructured":"(2011, August 20). Mathworks Matlab User Manual (2018) APTKNT. Available online: https:\/\/it.mathworks.com\/help\/curvefit\/aptknt.html."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"110772","DOI":"10.1016\/j.rse.2018.05.035","article-title":"Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model","volume":"231","author":"Liu","year":"2019","journal-title":"Remote Sens. Environ."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"432","DOI":"10.1038\/s41477-018-0189-7","article-title":"Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations","volume":"4","author":"Camino","year":"2018","journal-title":"Nat. Plants"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1016\/j.rse.2017.10.035","article-title":"Modeling re-absorption of fluorescence from the leaf to the canopy level","volume":"204","author":"Romero","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.rse.2018.02.029","article-title":"Linking canopy scattering of far-red sun-induced chlorophyll fluorescence with reflectance","volume":"209","author":"Yang","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"283","DOI":"10.1016\/S0176-1617(98)80143-0","article-title":"Leaf chlorophyll fluorescence corrected for re-absorption by means of absorption and reflectance measurements","volume":"152","author":"Gitelson","year":"1998","journal-title":"J. Plant Physiol."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"166","DOI":"10.1016\/j.rse.2006.12.013","article-title":"Coupled soil\u2013leaf-canopy and atmosphere radiative transfer modeling to simulate hyperspectral multi-angular surface reflectance and {TOA} radiance data","volume":"109","author":"Verhoef","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/j.rse.2011.10.034","article-title":"Simulation of Sentinel-3 images by four-stream surface\u2013atmosphere radiative transfer modeling in the optical and thermal domains","volume":"120","author":"Verhoef","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Coppo, P., Taiti, A., Pettinato, L., Francois, M., Taccola, M., and Drusch, M. (2017). Fluorescence imaging spectrometer (FLORIS) for ESA FLEX mission. Remote Sens., 9.","DOI":"10.3390\/rs9070649"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1016\/j.rse.2015.03.027","article-title":"Continuous and long-term measurements of reflectance and sun-induced chlorophyll fluorescence by using novel automated field spectroscopy systems","volume":"164","author":"Cogliati","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"2565","DOI":"10.5194\/bg-9-2565-2012","article-title":"Remote sensing-based estimation of gross primary production in a subalpine grassland","volume":"9","author":"Rossini","year":"2012","journal-title":"Biogeosciences"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"4603","DOI":"10.1109\/JSEN.2015.2422894","article-title":"A method for uncertainty assessment of passive Sun-induced chlorophyll fluorescence retrieval using an infrared reference light","volume":"15","author":"Burkart","year":"2015","journal-title":"IEEE Sens. J."},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Julitta, T., Corp, L.A., Rossini, M., Burkart, A., Cogliati, S., Davies, N., Hom, M., Mac Arthur, A., Middleton, E.M., and Rascher, U. (2016). Comparison of sun-induced chlorophyll fluorescence estimates obtained from four portable field spectroradiometers. Remote Sens., 8.","DOI":"10.3390\/rs8020122"},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Sabater, N., Vicent, J., Alonso, L., Verrelst, J., Middleton, E., Porcar-Castell, A., Moreno, J., Sabater, N., Vicent, J., and Alonso, L. (2018). Compensation of oxygen transmittance effects for proximal sensing retrieval of canopy\u2013leaving sun\u2013induced chlorophyll fluorescence. Remote Sens., 10.","DOI":"10.3390\/rs10101551"},{"key":"ref_58","doi-asserted-by":"crossref","unstructured":"Liu, X., Guo, J., Hu, J., Liu, L., Liu, X., Guo, J., Hu, J., and Liu, L. (2019). Atmospheric correction for tower-based solar-induced chlorophyll fluorescence observations at O2-A band. Remote Sens., 11.","DOI":"10.3390\/rs11030355"},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"5403","DOI":"10.1080\/0143116042000274015","article-title":"The MERIS terrestrial chlorophyll index","volume":"25","author":"Dash","year":"2004","journal-title":"Int. J. Remote Sens."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"276","DOI":"10.1016\/j.rse.2017.12.009","article-title":"On the relationship between sub-daily instantaneous and daily total gross primary production: Implications for interpreting satellite-based SIF retrievals","volume":"205","author":"Zhang","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"596","DOI":"10.1016\/j.rse.2016.09.017","article-title":"Fluspect-B: A model for leaf fluorescence, reflectance and transmittance spectra","volume":"186","author":"Vilfan","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1016\/j.rse.2016.10.036","article-title":"FluorWPS: A Monte Carlo ray-tracing model to compute sun-induced chlorophyll fluorescence of three-dimensional canopy","volume":"187","author":"Zhao","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1016\/j.rse.2017.02.012","article-title":"Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure","volume":"193","author":"North","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"1667","DOI":"10.3390\/rs70201667","article-title":"Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes","volume":"7","author":"Yin","year":"2015","journal-title":"Remote Sens."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/11\/16\/1840\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,19]],"date-time":"2024-06-19T17:38:47Z","timestamp":1718818727000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/11\/16\/1840"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,8,7]]},"references-count":64,"journal-issue":{"issue":"16","published-online":{"date-parts":[[2019,8]]}},"alternative-id":["rs11161840"],"URL":"https:\/\/doi.org\/10.3390\/rs11161840","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,8,7]]}}}