{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,12]],"date-time":"2024-09-12T15:53:14Z","timestamp":1726156394563},"reference-count":66,"publisher":"MDPI AG","issue":"9","license":[{"start":{"date-parts":[[2019,5,13]],"date-time":"2019-05-13T00:00:00Z","timestamp":1557705600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Acquisition of labeled data for supervised Hyperspectral Image (HSI) classification is expensive in terms of both time and costs. Moreover, manual selection and labeling are often subjective and tend to induce redundancy into the classifier. Active learning (AL) can be a suitable approach for HSI classification as it integrates data acquisition to the classifier design by ranking the unlabeled data to provide advice for the next query that has the highest training utility. However, multiclass AL techniques tend to include redundant samples into the classifier to some extent. This paper addresses such a problem by introducing an AL pipeline which preserves the most representative and spatially heterogeneous samples. The adopted strategy for sample selection utilizes fuzziness to assess the mapping between actual output and the approximated a-posteriori probabilities, computed by a marginal probability distribution based on discriminative random fields. The samples selected in each iteration are then provided to the spectral angle mapper-based objective function to reduce the inter-class redundancy. Experiments on five HSI benchmark datasets confirmed that the proposed Fuzziness and Spectral Angle Mapper (FSAM)-AL pipeline presents competitive results compared to the state-of-the-art sample selection techniques, leading to lower computational requirements.<\/jats:p>","DOI":"10.3390\/rs11091136","type":"journal-article","created":{"date-parts":[[2019,5,13]],"date-time":"2019-05-13T15:00:57Z","timestamp":1557759657000},"page":"1136","source":"Crossref","is-referenced-by-count":58,"title":["Spatial Prior Fuzziness Pool-Based Interactive Classification of Hyperspectral Images"],"prefix":"10.3390","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3320-2261","authenticated-orcid":false,"given":"Muhammad","family":"Ahmad","sequence":"first","affiliation":[{"name":"Dipartimento di Matematica e Informatica\u2014MIFT, University of Messina, Messina 98121, Italy"},{"name":"Department of Computer Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan"},{"name":"Institute of Data Science and Artificial Intelligence, Innopolis University, Innopolis 420500, Russia"}]},{"given":"Asad","family":"Khan","sequence":"additional","affiliation":[{"name":"School of Computer Science, South China Normal University, Guangzhou 510000, China"}]},{"given":"Adil Mehmood","family":"Khan","sequence":"additional","affiliation":[{"name":"Institute of Data Science and Artificial Intelligence, Innopolis University, Innopolis 420500, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3860-4948","authenticated-orcid":false,"given":"Manuel","family":"Mazzara","sequence":"additional","affiliation":[{"name":"Institute of Software Development and Engineering, Innopolis University, Innopolis 420500, Russia"}]},{"given":"Salvatore","family":"Distefano","sequence":"additional","affiliation":[{"name":"Dipartimento di Matematica e Informatica\u2014MIFT, University of Messina, Messina 98121, Italy"}]},{"given":"Ahmed","family":"Sohaib","sequence":"additional","affiliation":[{"name":"Department of Computer Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2149-2975","authenticated-orcid":false,"given":"Omar","family":"Nibouche","sequence":"additional","affiliation":[{"name":"Faculty of Computing, Engineering and the Built Environment, Ulster University, Newtownabbey, Co Antrim BT37 0QB, UK"}]}],"member":"1968","published-online":{"date-parts":[[2019,5,13]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Schneider, A., and Feussner, H. (2017). Diagnostic Procedures, Institute of Minimally Invasive Interdisciplinary Therapeutic Interventions (MITI), Technische Universit\u00e4t M\u00fcnchen (TUM), Biomedical Engineering in Gastrointestinal Surgery. Chapter 5.","DOI":"10.1016\/B978-0-12-803230-5.00005-1"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"370","DOI":"10.1016\/j.ijleo.2018.10.142","article-title":"Segmented and non-segmented stacked denoising autoencoder for hyperspectral band reduction","volume":"180","author":"Ahmad","year":"2019","journal-title":"Optik Int. J. Light Electron Opt."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Qu, Y., Qi, H., and Kwan, C. (2018). Unsupervised Sparse Dirichlet-Net for Hyperspectral Image Super-Resolution. arXiv.","DOI":"10.1109\/CVPR.2018.00266"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/j.ijleo.2017.03.051","article-title":"Metric similarity regularizer to enhance pixel similarity performance for hyperspectral unmixing","volume":"140","author":"Ahmad","year":"2017","journal-title":"Optik Int. J. Light Electron Opt."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Ahmad, M., Khan, A.M., Mazzara, M., and Distefano, S. (2019, January 25\u201327). Multi-layer Extreme Learning Machine-based Autoencoder for Hyperspectral Image Classification. Proceedings of the 14th International Conference on Computer Vision Theory and Applications (VISAPP\u201919), Prague, Czech Republic.","DOI":"10.5220\/0007258000002108"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"809","DOI":"10.1109\/TGRS.2011.2162649","article-title":"Spectral-Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields","volume":"50","author":"Li","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"239","DOI":"10.1109\/LGRS.2013.2254108","article-title":"Hyperspectral Remote Sensing Image Classification Based on Rotation Forest","volume":"11","author":"Xia","year":"2014","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"4177","DOI":"10.1109\/TGRS.2017.2689805","article-title":"Hierarchical Guidance Filtering-Based Ensemble Classification for Hyperspectral Images","volume":"55","author":"Pan","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1975","DOI":"10.1109\/JSTARS.2017.2655516","article-title":"R-VCANet: A New Deep-Learning-Based Hyperspectral Image Classification Method","volume":"10","author":"Pan","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"123","DOI":"10.3724\/SP.J.1010.2008.00123","article-title":"Hyperspectral Remote Sensing Image Classification Based on Support Vector Machine","volume":"27","author":"Tan","year":"2013","journal-title":"J. Infrared Millim. Waves"},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Ahmad, M., Protasov, S., Khan, A.M., Hussian, R., Khattak, A.M., and Khan, W.A. (2018). Fuzziness-based active learning framework to enhance hyperspectral image classification performance for discriminative and generative classifiers. PLoS ONE, 13.","DOI":"10.1371\/journal.pone.0188996"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1109\/TIT.1968.1054102","article-title":"On the mean accuracy of statistical pattern recognizers","volume":"14","author":"Hughes","year":"1968","journal-title":"IEEE Trans. Inf. Theory"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"6937","DOI":"10.1109\/TGRS.2014.2305805","article-title":"Active and Semisupervised Learning for the Classification of Remote Sensing Images","volume":"52","author":"Persello","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1109\/LGRS.2013.2273792","article-title":"Semi-Supervised Hyperspectral Image Classification Using Spatio-Spectral Laplacian Support Vector Machine","volume":"11","author":"Yang","year":"2014","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"1529","DOI":"10.1109\/TKDE.2005.186","article-title":"Tri-Training: Exploiting Unlabeled Data Using Three Classifiers","volume":"17","author":"Zhou","year":"2005","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1310","DOI":"10.1049\/iet-ipr.2017.0168","article-title":"Graph-based spatial\u2013spectral feature learning for hyperspectral image classification","volume":"11","author":"Ahmad","year":"2017","journal-title":"IET Image Process."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"3872","DOI":"10.1109\/TGRS.2013.2277251","article-title":"Sparse Graph-Based Discriminant Analysis for Hyperspectral Imagery","volume":"52","author":"Ly","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"143","DOI":"10.1080\/10095020.2012.719684","article-title":"Recent advances in hyperspectral image processing","volume":"15","author":"Zhang","year":"2012","journal-title":"Geo-Spat. Inf. Sci."},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Ahmad, M., Khan, A.M., Hussain, R., Protasov, S., Chow, F., and Khattak, A.M. (2016, January 6\u20139). Unsupervised geometrical feature learning from hyperspectral data. Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece.","DOI":"10.1109\/SSCI.2016.7850136"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"2218","DOI":"10.1109\/TGRS.2008.2010404","article-title":"Active Learning Methods for Remote Sensing Image Classification","volume":"47","author":"Tuia","year":"2009","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"4032","DOI":"10.1109\/TGRS.2012.2228275","article-title":"Semisupervised Self-Learning for Hyperspectral Image Classification","volume":"51","author":"Dopido","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Yang, L., MacEachren, A.M., Mitra, P., and Onorati, T. (2018). Visually-Enabled Active Deep Learning for (Geo) Text and Image Classification: A Review. ISPRS Int. J. Geo-Inf., 7.","DOI":"10.3390\/ijgi7020065"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1088","DOI":"10.1109\/TNNLS.2018.2855446","article-title":"Active Learning from Imbalanced Data: A Solution of Online Weighted Extreme Learning Machine","volume":"30","author":"Yu","year":"2018","journal-title":"IEEE Trans. Neural Netw. Learn. Syst."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1109\/TGRS.2017.2747862","article-title":"Feature-Driven Active Learning for Hyperspectral Image Classification","volume":"56","author":"Liu","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"247","DOI":"10.1016\/j.isprsjprs.2010.11.001","article-title":"Support vector machines in remote sensing: A review","volume":"66","author":"Mountrakis","year":"2011","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Pasolli, E., Melgani, F., Tuia, D., Pacifici, F., and Emery, W.J. (2011, January 1\u20135). Improving active learning methods using spatial information. Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Sendai, Japan.","DOI":"10.1109\/IGARSS.2011.6050089"},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Liu, A., Jun, G., and Ghosh, J. (2009, January 12\u201317). Active learning of hyperspectral data with spatially dependent label acquisition costs. Proceedings of the 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, South Africa.","DOI":"10.1109\/IGARSS.2009.5417684"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"606","DOI":"10.1109\/JSTSP.2011.2139193","article-title":"A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification","volume":"5","author":"Tuia","year":"2011","journal-title":"IEEE J. Sel. Top. Signal Process."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"2217","DOI":"10.1109\/TGRS.2013.2258676","article-title":"SVM Active Learning Approach for Image Classification Using Spatial Information","volume":"52","author":"Pasolli","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"590","DOI":"10.1162\/neco.1992.4.4.590","article-title":"Information-Based Objective Functions for Active Data Selection","volume":"4","author":"MacKay","year":"1992","journal-title":"Neural Comput."},{"key":"ref_31","unstructured":"Saul, L.K., Weiss, Y., and Bottou, L. (2005). On Semi-Supervised Classification. Advances in Neural Information Processing Systems 17, MIT Press."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"844","DOI":"10.1109\/TGRS.2012.2205263","article-title":"Spectral\u2013Spatial Classification of Hyperspectral Data Using Loopy Belief Propagation and Active Learning","volume":"51","author":"Li","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_33","unstructured":"Luo, T., Kramer, K., Samson, S., Remsen, A., Goldgof, D.B., Hall, L.O., and Hopkins, T. (2004, January 23\u201326). Active learning to recognize multiple types of plankton. Proceedings of the 17th International Conference on Pattern Recognition, Cambridge, UK."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"3947","DOI":"10.1109\/TGRS.2011.2128330","article-title":"Hyperspectral Image Segmentation Using a New Bayesian Approach With Active Learning","volume":"49","author":"Li","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"2037","DOI":"10.1109\/TIP.2015.2405335","article-title":"Spatial Coherence-Based Batch-Mode Active Learning for Remote Sensing Image Classification","volume":"24","author":"Shi","year":"2015","journal-title":"IEEE Trans. Image Process."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"1014","DOI":"10.1109\/TGRS.2010.2072929","article-title":"Batch-Mode Active-Learning Methods for the Interactive Classification of Remote Sensing Images","volume":"49","author":"Demir","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Lewis, D.D., and Gale, A.W. (1994, January 3\u20136). A Sequential Algorithm for Training Text Classifiers. Proceedings of the 17th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland.","DOI":"10.1007\/978-1-4471-2099-5_1"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"618","DOI":"10.1109\/JSTSP.2011.2123077","article-title":"Active Learning via Multi-View and Local Proximity Co-Regularization for Hyperspectral Image Classification","volume":"5","author":"Di","year":"2011","journal-title":"IEEE J. Sel. Top. Signal Process."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"5213","DOI":"10.1109\/JSTARS.2017.2747600","article-title":"A Spectral-Spatial Multicriteria Active Learning Technique for Hyperspectral Image Classification","volume":"10","author":"Patra","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Li, J. (2015, January 2\u20135). Active learning for hyperspectral image classification with a stacked autoencoders based neural network. Proceedings of the 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan.","DOI":"10.1109\/WHISPERS.2015.8075429"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1613\/jair.295","article-title":"Active Learning with Statistical Models","volume":"4","author":"David","year":"1996","journal-title":"J. Artif. Intell. Res."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1231","DOI":"10.1109\/TGRS.2007.910220","article-title":"An Active Learning Approach to Hyperspectral Data Classification","volume":"46","author":"Rajan","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Seung, H.S., Opper, M., and Sompolinsky, H. (1992, January 27\u201329). Query by Committee. Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA.","DOI":"10.1145\/130385.130417"},{"key":"ref_44","unstructured":"Haines, T., and Xiang, T. (September, January 29). Active Learning using Dirichlet Processes for Rare Class Discovery and Classification. Proceedings of the British Machine Vision Conference, Dundee, UK."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Michel, J., Malik, J., and Inglada, J. (2010, January 25\u201330). Lazy yet efficient land-cover map generation for HR optical images. Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA.","DOI":"10.1109\/IGARSS.2010.5653286"},{"key":"ref_46","first-page":"59","article-title":"Active Batch Learning with Stochastic Query-by-Forest (SQBF)","volume":"16","author":"Borisov","year":"2011","journal-title":"Proc. Mach. Learn. Res."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"3751","DOI":"10.1109\/TGRS.2012.2185504","article-title":"Semisupervised Classification of Remote Sensing Images with Active Queries","volume":"50","author":"Tuia","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1579","DOI":"10.1109\/TGRS.2017.2765364","article-title":"Recent Advances on Spectral\u2013Spatial Hyperspectral Image Classification: An Overview and New Guidelines","volume":"56","author":"He","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"140","DOI":"10.1016\/j.neucom.2015.04.019","article-title":"AL-ELM: One uncertainty-based active learning algorithm using extreme learning machine","volume":"166","author":"Yu","year":"2015","journal-title":"Neurocomputing"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"179","DOI":"10.1007\/s11263-006-7007-9","article-title":"Discriminative Random Fields","volume":"68","author":"Kumar","year":"2006","journal-title":"Int. J. Comput. Vis."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"301","DOI":"10.1016\/S0019-9958(72)90199-4","article-title":"A Definition of a Non-Probabilistic Entropy in the Setting of Fuzzy Sets Theory","volume":"20","author":"Luca","year":"1972","journal-title":"J. Inf. Control"},{"key":"ref_52","unstructured":"Yeung, D.S., and Trillas, E. (2012). Measures of Fuzziness under Different Uses of Fuzzy Sets. Advances in Computational Intelligence, Springer."},{"key":"ref_53","unstructured":"Yuhas, R.H., Goetz, A.F.H., and Boardman, J.W. (1992). Discrimination Among Semi-Arid Landscape Endmembers Using the Spectral Angle Mapper (SAM) Algorithm, Summaries of the 4th JPL Airborne Earth Science Workshop."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1245","DOI":"10.1080\/014311697218395","article-title":"Spectral characterization of ophiolite lithologies in the Troodos ophiolite complex of Cyprus and its potential in prospecting for massive sulphide deposits","volume":"18","year":"1997","journal-title":"Int. J. Remote Sens."},{"key":"ref_55","unstructured":"Carvalho, O.A.D., and Meneses, P.R. (2000). Spectral Correlation Mapper (SCM); An Improvement on the Spectral Angle Mapper (SAM), Summaries of the 9th JPL Airborne Earth Science Workshop."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"439","DOI":"10.1111\/j.1477-9730.2011.00664.x","article-title":"Review of Geometric and Radiometric Analyses of Paintings","volume":"26","author":"Remondino","year":"2011","journal-title":"Photogramm. Rec."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"263","DOI":"10.4236\/ars.2015.44021","article-title":"Evaluation of EO-1 Hyperion Data for Crop Studies in Part of Indo-Gangatic Plains: A Case Study of Meerut District","volume":"4","author":"Singh","year":"2015","journal-title":"Adv. Remote Sens."},{"key":"ref_58","unstructured":"(2018, June 30). Hyperspectral Datasets Description. Available online: http:\/\/www.ehu.eus\/ccwintco\/index.php\/Hyperspectral_Remote_Sensing_Scenes."},{"key":"ref_59","unstructured":"Bikakis, A., and Zheng, X. (2015). Imbalanced Extreme Learning Machine Based on Probability Density Estimation. Multi-Disciplinary Trends in Artificial Intelligence, Springer International Publishing."},{"key":"ref_60","unstructured":"Woodward, M., and Finn, C. (2017). Active One-shot Learning. arXiv."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1007\/s12530-012-9060-7","article-title":"Single-pass active learning with conflict and ignorance","volume":"3","author":"Lughofer","year":"2012","journal-title":"Evol. Syst."},{"key":"ref_62","doi-asserted-by":"crossref","unstructured":"Ceci, M., Hollm\u00e9n, J., Todorovski, L., Vens, C., and D\u017eeroski, S. (2017). Early Active Learning with Pairwise Constraint for Person Re-identification. Machine Learning and Knowledge Discovery in Databases, Springer International Publishing.","DOI":"10.1007\/978-3-319-71246-8"},{"key":"ref_63","unstructured":"Nie, F., Wang, H., Huang, H., and Ding, C. (2013, January 3\u20139). Early Active Learning via Robust Representation and Structured Sparsity. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, Beijing, China."},{"key":"ref_64","doi-asserted-by":"crossref","unstructured":"Ou, D., Tan, K., Du, Q., Zhu, J., Wang, X., and Chen, Y. (2019). A Novel Tri-Training Technique for the Semi-Supervised Classification of Hyperspectral Images Based on Regularized Local Discriminant Embedding Feature Extraction. Remote Sens., 11.","DOI":"10.3390\/rs11060654"},{"key":"ref_65","doi-asserted-by":"crossref","unstructured":"Hu, J., He, Z., Li, J., He, L., and Wang, Y. (2018). 3D-Gabor Inspired Multiview Active Learning for Spectral-Spatial Hyperspectral Image Classification. Remote Sens., 10.","DOI":"10.3390\/rs10071070"},{"key":"ref_66","unstructured":"Preet, P., Batra, S.S. (2015). Feature Selection for classification of hyperspectral data by minimizing a tight bound on the VC dimension. arXiv."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/11\/9\/1136\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,17]],"date-time":"2024-06-17T19:30:35Z","timestamp":1718652635000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/11\/9\/1136"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,5,13]]},"references-count":66,"journal-issue":{"issue":"9","published-online":{"date-parts":[[2019,5]]}},"alternative-id":["rs11091136"],"URL":"https:\/\/doi.org\/10.3390\/rs11091136","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,5,13]]}}}