{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,8]],"date-time":"2024-08-08T11:15:31Z","timestamp":1723115731716},"reference-count":150,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2019,4,11]],"date-time":"2019-04-11T00:00:00Z","timestamp":1554940800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100000844","name":"European Space Agency","doi-asserted-by":"publisher","award":["4000111836\/14\/I-LG"],"id":[{"id":"10.13039\/501100000844","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Spaceborne radar altimeters record echo waveforms over all Earth surfaces, but their interpretation and quantitative exploitation over the Arctic Ocean is particularly challenging. Radar returns may be from all ocean, all sea ice, or a mixture of the two, so the first task is the determination of which surface and then an interpretation of the signal to give range. Subsequently, corrections have to be applied for various surface and atmospheric effects before making a comparison with a reference level. This paper discusses the drivers for improved altimetry in the Arctic and then reviews the various approaches that have been used to achieve the initial classification and subsequent retracking over these diverse surfaces, showing examples from both LRM (low resolution mode) and SAR (synthetic aperture radar) altimeters. The review then discusses the issues concerning corrections, including the choices between using other remote-sensing measurements and using those from models or climatology. The paper finishes with some perspectives on future developments, incorporating secondary frequency, interferometric SAR and opportunities for fusion with measurements from laser altimetry or from the SMOS salinity sensor, and provides a full list of relevant abbreviations.<\/jats:p>","DOI":"10.3390\/rs11070881","type":"journal-article","created":{"date-parts":[[2019,4,12]],"date-time":"2019-04-12T07:46:37Z","timestamp":1555055197000},"page":"881","source":"Crossref","is-referenced-by-count":40,"title":["Retrieving Sea Level and Freeboard in the Arctic: A Review of Current Radar Altimetry Methodologies and Future Perspectives"],"prefix":"10.3390","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9132-9511","authenticated-orcid":false,"given":"Graham","family":"Quartly","sequence":"first","affiliation":[{"name":"Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4796-3387","authenticated-orcid":false,"given":"Eero","family":"Rinne","sequence":"additional","affiliation":[{"name":"Finnish Meteorological Institute, Erik Palm\u00e9nin aukio 1, FI-00560 Helsinki, Finland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3372-3948","authenticated-orcid":false,"given":"Marcello","family":"Passaro","sequence":"additional","affiliation":[{"name":"Deutsches Geod\u00e4tisches Forschungsinstitut, Technische Universit\u00e4t M\u00fcnchen, (DGFI-TUM), 80333 M\u00fcnchen, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6685-3415","authenticated-orcid":false,"given":"Ole","family":"Andersen","sequence":"additional","affiliation":[{"name":"DTU Space, National Space Institute, Elektrovej Bygning 327, 2800 Kongens Lyngby, Denmark"}]},{"given":"Salvatore","family":"Dinardo","sequence":"additional","affiliation":[{"name":"He Space, Robert-Bosch-Strasse 7, 64293 Darmstadt, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3751-1387","authenticated-orcid":false,"given":"Sara","family":"Fleury","sequence":"additional","affiliation":[{"name":"LEGOS, 4 Avenue Edouard Belin, 31400 Toulouse, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7958-4675","authenticated-orcid":false,"given":"Amandine","family":"Guillot","sequence":"additional","affiliation":[{"name":"Centre National d\u2019Etudes Spatiales, 18 Avenue Edouard Belin, 31400 Toulouse, France"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1412-3146","authenticated-orcid":false,"given":"Stefan","family":"Hendricks","sequence":"additional","affiliation":[{"name":"Alfred Wegener Institute, Am Handelshafen 12, 27570 Bremerhaven, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3107-1608","authenticated-orcid":false,"given":"Andrey","family":"Kurekin","sequence":"additional","affiliation":[{"name":"Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4219-0407","authenticated-orcid":false,"given":"Felix","family":"M\u00fcller","sequence":"additional","affiliation":[{"name":"Deutsches Geod\u00e4tisches Forschungsinstitut, Technische Universit\u00e4t M\u00fcnchen, (DGFI-TUM), 80333 M\u00fcnchen, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6928-7757","authenticated-orcid":false,"given":"Robert","family":"Ricker","sequence":"additional","affiliation":[{"name":"Alfred Wegener Institute, Am Handelshafen 12, 27570 Bremerhaven, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4468-8033","authenticated-orcid":false,"given":"Henriette","family":"Skourup","sequence":"additional","affiliation":[{"name":"DTU Space, National Space Institute, Elektrovej Bygning 327, 2800 Kongens Lyngby, Denmark"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7034-5360","authenticated-orcid":false,"given":"Michel","family":"Tsamados","sequence":"additional","affiliation":[{"name":"Centre for Polar Observation and Modelling, Earth Sciences, University College London, 5, Gower Place, London WC1E 6BS, UK"}]}],"member":"1968","published-online":{"date-parts":[[2019,4,11]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Stammer, D., and Cazenave, A. (2017). The high latitudes and polar ocean. Satellite Altimetry over Oceans and Land Surfaces, CRC Press. Chapter 8.","DOI":"10.1201\/9781315151779"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"149","DOI":"10.3189\/S0260305500012751","article-title":"Satellite passive microwave observations and analysis of Arctic and Antarctic sea ice, 1978\u20131987","volume":"17","author":"Gloersen","year":"1993","journal-title":"Ann. Glaciol."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"515","DOI":"10.5194\/bg-8-515-2011","article-title":"Near-ubiquity of ice-edge blooms in the Arctic","volume":"8","author":"Perrette","year":"2011","journal-title":"Biogeoscience"},{"key":"ref_4","unstructured":"World Meteorological Organization (WMO) (2014). WMO Sea Ice Nomenclature Technical Report, World Meteorological Organization."},{"key":"ref_5","unstructured":"AMAP (2017). Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017, Arctic Monitoring and Assessment Programme AMAP. Technical Report."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"634","DOI":"10.1038\/s41558-018-0205-y","article-title":"Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import","volume":"8","author":"Lind","year":"2018","journal-title":"Nat. Clim. Chang."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"1849","DOI":"10.1175\/JPO-D-18-0003.1","article-title":"Observed Atlantification of the Barents Sea causes the Polar Front to limit the expansion of winter sea ice","volume":"48","author":"Barton","year":"2018","journal-title":"J. Phys. Oceanogr."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"103001","DOI":"10.1088\/1748-9326\/aade56","article-title":"Changing state of Arctic sea ice across all seasons","volume":"13","author":"Stroeve","year":"2018","journal-title":"Environ. Res. Lett."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"230","DOI":"10.1038\/nclimate3248","article-title":"Ice-free Arctic at 1.5 \u2218C?","volume":"7","author":"Screen","year":"2017","journal-title":"Nat. Clim. Chang."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"409","DOI":"10.1038\/s41558-018-0127-8","article-title":"Reduced probability of ice-free summers for 1.5 \u2218C compared to 2 \u2218C warming","volume":"8","author":"Jahn","year":"2018","journal-title":"Nat. Clim. Chang."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"D16","DOI":"10.1029\/2005JD006957","article-title":"Influence of sea ice on the atmosphere: A study with an Arctic atmospheric regional climate model","volume":"111","author":"Rinke","year":"2006","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"557","DOI":"10.5194\/essd-9-557-2017","article-title":"A new phase in the production of quality-controlled sea level data","volume":"9","author":"Quartly","year":"2017","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"281","DOI":"10.5194\/essd-10-281-2018","article-title":"An improved and homogeneous altimeter sea level record from the ESA Climate Change Initiative","volume":"10","author":"Legeais","year":"2018","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"2437","DOI":"10.5194\/tc-12-2437-2018","article-title":"Empirical parametrization of Envisat freeboard retrieval of Arctic and Antarctic sea ice based on CryoSat-2: progress in the ESA Climate Change Initiative","volume":"12","author":"Paul","year":"2018","journal-title":"Cryosphere"},{"key":"ref_15","unstructured":"GCOS (2019, April 10). Systematic Observation Requirements for Satellite-Based Data Products for Climate. Available online: http:\/\/cci.esa.int\/sites\/default\/files\/gcos-154.pdf."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"C3","DOI":"10.1029\/2003JC002007","article-title":"Secular sea level change in the Russian sector of the Arctic Ocean","volume":"109","author":"Proshutinsky","year":"2004","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Proshutinsky, A., Dukhovskoy, D., Timmermans, M.L., Krishfield, R., and Bamber, J.L. (2015). Arctic circulation regimes. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 373.","DOI":"10.1098\/rsta.2014.0160"},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Kwok, R., and Rothrock, D.A. (2009). Decline in Arctic sea ice thickness from submarine and ICESat records: 1958\u20132008. Geophys. Res. Lett., 36.","DOI":"10.1029\/2009GL039035"},{"key":"ref_19","unstructured":"Cavalieri, D., Parkinson, C., Gloersen, P., and Zwally, H. (2019, April 10). Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM\/I-SSMIS Passive Microwave Data, Version 1. Available online: https:\/\/nsidc.org\/data\/NSIDC-0051\/versions\/1."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1175\/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2","article-title":"Geographical variability of the first baroclinic Rossby radius of deformation","volume":"28","author":"Chelton","year":"1998","journal-title":"J. Phys. Oceanogr."},{"key":"ref_21","unstructured":"ISO (2010). ISO19906:2010 Petroleum and Natural Gas Industries\u2013Arctic Offshore Structures, ISO. Technical Report."},{"key":"ref_22","unstructured":"IMO (2017). International Maritime Organization Polar Code, IMO. Technical Report."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1175\/1520-0426(1989)006<0407:PCASLT>2.0.CO;2","article-title":"Pulse compression and sea level tracking in satellite altimetry","volume":"6","author":"Chelton","year":"1989","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1080\/01490419.2014.988835","article-title":"AltiKa altimeter: Instrument description and in flight performance","volume":"38","author":"Steunou","year":"2015","journal-title":"Mar. Geodesy"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1578","DOI":"10.1109\/36.718861","article-title":"The delay\/Doppler radar altimeter","volume":"36","author":"Raney","year":"1998","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"841","DOI":"10.1016\/j.asr.2005.07.027","article-title":"CryoSat: A mission to determine the fluctuations in Earth\u2019s land and marine ice fields","volume":"37","author":"Wingham","year":"2006","journal-title":"Adv. Space Res."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1109\/TAP.1977.1141536","article-title":"The average impulse response of a rough surface and its applications","volume":"25","author":"Brown","year":"1977","journal-title":"IEEE Trans. Antennas Propag."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"687","DOI":"10.1109\/TAP.1980.1142398","article-title":"Radar altimeter mean return waveforms from near-normal-incidence ocean surface scattering","volume":"28","author":"Hayne","year":"1980","journal-title":"IEEE Trans. Antennas Propag."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1080\/01490410490465210","article-title":"Improving the Jason-1 ground retracking to better account for attitude effects","volume":"27","author":"Amarouche","year":"2004","journal-title":"Mar. Geodesy"},{"key":"ref_30","first-page":"112","article-title":"Sea ice extent mapping using the ERS-1 radar altimeter","volume":"3","author":"Laxon","year":"1994","journal-title":"Adv. Remote Sens."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"522","DOI":"10.1080\/01490419.2015.1019655","article-title":"Sea ice leads detection using SARAL\/AltiKa altimeter","volume":"38","author":"Zakharova","year":"2015","journal-title":"Mar. Geodesy"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"947","DOI":"10.1038\/nature02050","article-title":"High interannual variability of sea ice thickness in the Arctic region","volume":"425","author":"Laxon","year":"2003","journal-title":"Nature"},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Peacock, N.R., and Laxon, S.W. (2004). Sea surface height determination in the Arctic Ocean from ERS altimetry. J. Geophys. Res. Oceans, 109.","DOI":"10.1029\/2001JC001026"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"5299","DOI":"10.1109\/TGRS.2018.2813061","article-title":"Development of an ENVISAT altimetry processor providing sea level continuity between open ocean and Arctic leads","volume":"56","author":"Poisson","year":"2018","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Lee, S., Im, J., Kim, J., Kim, M., Shin, M., Kim, H.C., and Quackenbush, L.J. (2016). Arctic sea ice thickness estimation from CryoSat-2 satellite data using machine learning-based lead detection. Remote Sens., 8.","DOI":"10.3390\/rs8090698"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"1315","DOI":"10.5194\/tc-7-1315-2013","article-title":"Waveform classification of airborne synthetic aperture radar altimeter over Arctic sea ice","volume":"7","author":"Zygmuntowska","year":"2013","journal-title":"Cryosphere"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"M\u00fcller, F.L., Dettmering, D., Bosch, W., and Seitz, F. (2017). Monitoring the Arctic seas: How satellite altimetry can be used to detect open water in sea-ice regions. Remote Sens., 9.","DOI":"10.3390\/rs9060551"},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Vignudelli, S., Kostianoy, A.G., Cipollini, P., and Benveniste, J. (2011). Retracking Altimeter Waveforms Near the Coasts. Coastal Altimetry, Springer.","DOI":"10.1007\/978-3-642-12796-0"},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Dettmering, D., Wynne, A., M\u00fcller, F.L., Passaro, M., and Seitz, F. (2018). Lead detection in polar oceans\u2014A comparison of different classification methods for Cryosat-2 SAR data. Remote Sens., 10.","DOI":"10.3390\/rs10081190"},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Long\u00e9p\u00e9, N., Thibaut, P., Vadaine, R., Poisson, J., Guillot, A., Boy, F., Picot, N., and Borde, F. (2019). Comparative evaluation of sea ice lead detection based on SAR imagery and altimeter data. IEEE Trans. Geosci. Remote Sens., accepted.","DOI":"10.1109\/TGRS.2018.2889519"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1955","DOI":"10.5194\/tc-9-1955-2015","article-title":"Lead detection in Arctic sea ice from CryoSat-2: Quality assessment, lead area fraction and width distribution","volume":"9","author":"Wernecke","year":"2015","journal-title":"Cryosphere"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1610","DOI":"10.1016\/j.asr.2017.07.011","article-title":"Lead detection using Cryosat-2 delay-doppler processing and Sentinel-1 SAR images","volume":"62","author":"Passaro","year":"2017","journal-title":"Adv. Space Res."},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Ricker, R., Hendricks, S., and Beckers, J.F. (2016). The impact of geophysical corrections on sea-ice freeboard retrieved from satellite altimetry. Remote Sens., 8.","DOI":"10.3390\/rs8040317"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"1948","DOI":"10.1109\/LGRS.2017.2743339","article-title":"Sea ice classification using Cryosat-2 altimeter data by optimal classifier-feature assembly","volume":"14","author":"Shen","year":"2017","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"4533","DOI":"10.1029\/94JC02393","article-title":"Arctic sea ice leads from advanced very high resolution radiometer images","volume":"100","author":"Lindsay","year":"1995","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Willmes, S., and Heinemann, G. (2016). Sea-ice wintertime lead frequencies and regional characteristics in the Arctic, 2003\u20132015. Remote Sens., 8.","DOI":"10.3390\/rs8010004"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"143","DOI":"10.5194\/tc-6-143-2012","article-title":"Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere","volume":"6","author":"Marcq","year":"2012","journal-title":"Cryosphere"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"2059","DOI":"10.5194\/tc-11-2059-2017","article-title":"Comparison of CryoSat-2 and ENVISAT radar freeboard over Arctic sea ice: Toward an improved Envisat freeboard retrieval","volume":"11","author":"Guerreiro","year":"2017","journal-title":"Cryosphere"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"1203","DOI":"10.1016\/j.asr.2017.10.051","article-title":"Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data","volume":"62","author":"Tilling","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Hakkinen, S., Proshutinsky, A., and Ashik, I. (2008). Sea ice drift in the Arctic since the 1950s. Geophys. Res. Lett., 35.","DOI":"10.1029\/2008GL034791"},{"key":"ref_51","unstructured":"Johannessen, O.M., Campbell, W.J., Shuchman, R., Sandven, S., Gloersen, P., Johannessen, J.A., Josberger, E.G., and Haugan, P.M. (2013). Microwave Study Programs of Air\u2013Ice\u2013Ocean Interactive Orocesses in the Seas. Microwave Remote Sensing of Sea Ice, American Geophysical Union (AGU). Chapter 13."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"732","DOI":"10.1002\/grl.50193","article-title":"CryoSat-2 estimates of Arctic sea ice thickness and volume","volume":"40","author":"Laxon","year":"2013","journal-title":"Geophys. Res. Lett."},{"key":"ref_53","unstructured":"Laxon, S.W.C. (1989). Satellite radar Altimetry Over Sea Ice. [Ph.D. Thesis, University College London]."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"915","DOI":"10.1080\/01431169408954124","article-title":"Sea ice altimeter processing scheme at the EODC","volume":"15","author":"Laxon","year":"1994","journal-title":"Int. J. Remote Sens."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"100","DOI":"10.5670\/oceanog.2013.33","article-title":"Sea Ice Monitoring by Synthetic Aperture Radar","volume":"26","author":"Dierking","year":"2013","journal-title":"Oceanography"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"1607","DOI":"10.5194\/tc-8-1607-2014","article-title":"Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation","volume":"8","author":"Ricker","year":"2014","journal-title":"Cryosphere"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"1035","DOI":"10.5194\/tc-7-1035-2013","article-title":"Sea ice thickness, freeboard, and snow depth products from Operation IceBridge airborne data","volume":"7","author":"Kurtz","year":"2013","journal-title":"Cryosphere"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"38","DOI":"10.1109\/TGRS.2012.2202666","article-title":"A sea-ice lead detection algorithm for use with high-resolution airborne visible imagery","volume":"51","author":"Onana","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"1123","DOI":"10.1002\/2017JC013233","article-title":"Comparison of freeboard retrieval and ice thickness calculation from ALS, ASIRAS, and CryoSat-2 in the Norwegian Arctic to field measurements made during the N-ICE2015 expedition","volume":"123","author":"King","year":"2018","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1016\/j.rse.2008.10.015","article-title":"Comparison of Envisat radar and airborne laser altimeter measurements over Arctic sea ice","volume":"113","author":"Connor","year":"2009","journal-title":"Remote Sens. Environ."},{"key":"ref_61","unstructured":"Fu, L.L., and Cazenave, A. (2001). Satellite Altimetry and Earth Sciences, Academic Press."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"1217","DOI":"10.5194\/tc-8-1217-2014","article-title":"An improved CryoSat-2 sea ice freeboard retrieval algorithm through the use of waveform fitting","volume":"8","author":"Kurtz","year":"2014","journal-title":"Cryosphere"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"553","DOI":"10.1029\/94GL00178","article-title":"A comparison of the performance of the ice and ocean tracking modes of the ERS-1 radar altimeter over non-ocean surfaces","volume":"21","author":"Scott","year":"1994","journal-title":"Geophys. Res. Lett."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"925","DOI":"10.1080\/01431169408954125","article-title":"Ice sheet altimeter processing scheme","volume":"15","author":"Bamber","year":"1994","journal-title":"Int. J. Remote Sens."},{"key":"ref_65","doi-asserted-by":"crossref","unstructured":"Giles, K.A., Laxon, S.W., and Ridout, A.L. (2008). Circumpolar thinning of Arctic sea ice following the 2007 record ice extent minimum. Geophys. Res. Lett., 35.","DOI":"10.1029\/2008GL035710"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"1415","DOI":"10.5194\/tc-10-1415-2016","article-title":"About the consistency between Envisat and CryoSat-2 radar freeboard retrieval over Antarctic sea ice","volume":"10","author":"Schwegmann","year":"2016","journal-title":"Cryosphere"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"1539","DOI":"10.5194\/tc-8-1539-2014","article-title":"Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2","volume":"8","author":"Helm","year":"2014","journal-title":"Cryosphere"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"529","DOI":"10.1109\/TGRS.2013.2242082","article-title":"Using the interferometric capabilities of the ESA CryoSat-2 mission to improve the accuracy of sea ice freeboard retrievals","volume":"52","author":"Armitage","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_69","unstructured":"Hendricks, S., Ricker, R., and Helm, V. (2016). AWI CryoSat-2 sea Ice Thickness Data Product, Data Product Manual; Alfred Wegener Institute."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"1607","DOI":"10.5194\/tc-11-1607-2017","article-title":"A weekly Arctic sea-ice thickness data record from merged CryoSat-2 and SMOS satellite data","volume":"11","author":"Ricker","year":"2017","journal-title":"Cryosphere"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"5014","DOI":"10.1002\/2014GL060993","article-title":"Simulated effects of a snow layer on retrieval of CryoSat-2 sea ice freeboard","volume":"41","author":"Kwok","year":"2014","journal-title":"Geophys. Res. Lett."},{"key":"ref_72","doi-asserted-by":"crossref","unstructured":"Kwok, R., and Cunningham, G.F. (2015). Variability of Arctic sea ice thickness and volume from CryoSat-2. Philos. Trans. R. Soc. Lond. A Math. Phys. Eng. Sci., 373.","DOI":"10.1098\/rsta.2014.0157"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"911","DOI":"10.1109\/TGRS.2014.2330423","article-title":"SAR altimeter backscattered waveform model","volume":"53","author":"Ray","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"2473","DOI":"10.1109\/LGRS.2015.2485119","article-title":"Amplitude and dilation compensation of the SAR altimeter backscattered power","volume":"12","author":"Ray","year":"2015","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"651","DOI":"10.1109\/36.752182","article-title":"Radar altimeter gate tracking: Theory and extension","volume":"37","author":"Jenson","year":"1999","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"1671","DOI":"10.1109\/TGRS.2014.2331193","article-title":"Waveform aliasing in satellite radar altimetry","volume":"53","author":"Smith","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"182","DOI":"10.1016\/j.rse.2007.02.037","article-title":"Combined airborne laser and radar altimeter measurements over the Fram Strait in May 2002","volume":"111","author":"Giles","year":"2007","journal-title":"Remote Sens. Environ."},{"key":"ref_78","unstructured":"Ivanova, N., Pedersen, L.T., Lavergne, T., Tonboe, R.T., and Rinne, E. (2014). Sea Ice Climate Change Initiative Phase 1, Algorithm Theoretical Basis Document (ATBDv2), ESA. Technical Report SICCI-ATBDv2-13-09."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"1371","DOI":"10.1016\/j.asr.2017.12.018","article-title":"Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea","volume":"62","author":"Dinardo","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"1576","DOI":"10.1016\/j.asr.2018.01.012","article-title":"Spectral windows for satellite radar altimeters","volume":"62","author":"Smith","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"6724","DOI":"10.1002\/2015GL064823","article-title":"Arctic sea ice freeboard from AltiKa and comparison with CryoSat-2 and Operation IceBridge","volume":"42","author":"Armitage","year":"2015","journal-title":"Geophys. Res. Lett."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"11411","DOI":"10.1029\/92JC00766","article-title":"Sea surface mean square slope from Ku-band backscatter data","volume":"97","author":"Jackson","year":"1992","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.rse.2018.02.074","article-title":"ALES+: Adapting a homogenous ocean retracker for satellite altimetry to sea ice leads, coastal and inland waters","volume":"211","author":"Passaro","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/j.rse.2014.02.008","article-title":"ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry","volume":"145","author":"Passaro","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_85","unstructured":"Fleury, S., Laforge, A., and Guerreiro, K. (2017). CryoSat-2 Freeboard Products Inter-Comparison, CryoSeaNice ESA Project WP1420, LEGOS. Technical Report."},{"key":"ref_86","unstructured":"Laforge, A., Fleury, S., Dinardo, S., Guerreiro, K., Remy, F., Garnier, F., and Verley, J. (2018). Inter-comparison of SAR processing options for sea-ice freeboard retrieval. IEEE Trans. Geosci. Remote Sens., submitted."},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"474","DOI":"10.1109\/LGRS.2009.2039193","article-title":"Modeling Envisat RA-2 waveforms in the coastal zone: Case study of calm water contamination","volume":"7","author":"Vignudelli","year":"2010","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"2160","DOI":"10.1016\/j.rse.2010.04.020","article-title":"Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions","volume":"114","author":"Calmant","year":"2010","journal-title":"Remote Sens. Environ."},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1016\/j.rse.2014.09.027","article-title":"New processing approaches on the retrieval of water levels in Envisat and SARAL radar altimetry over rivers: A case study of the S\u00e3o Francisco River, Brazil","volume":"156","author":"Maillard","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"1361","DOI":"10.1175\/1520-0426(1998)015<1361:DOORRA>2.0.CO;2","article-title":"Determination of oceanic rain rate and rain cell structure from altimeter waveform data Part I: Theory","volume":"15","author":"Quartly","year":"1998","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_91","unstructured":"Scagliola, M., Tagliani, N., and Fornari, M. (2014, January 12\u201314). Measuring the effective along-track resolution of CryoSat. Proceedings of the CryoSat Third User Workshop European Space Agency, Dresden, Germany."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1016\/j.rse.2016.07.013","article-title":"Potential for estimation of snow depth on Arctic sea ice from CryoSat-2 and SARAL\/AltiKa missions","volume":"186","author":"Guerreiro","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"825","DOI":"10.5194\/os-12-825-2016","article-title":"Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis","volume":"12","author":"Carrere","year":"2016","journal-title":"Ocean Sci."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"25249","DOI":"10.1029\/95JC01389","article-title":"Global ocean tides from ERS 1 and TOPEX\/POSEIDON altimetry","volume":"100","author":"Andersen","year":"1995","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1002\/2014RG000450","article-title":"Accuracy assessment of global barotropic ocean tide models","volume":"52","author":"Stammer","year":"2014","journal-title":"Revi. Geophys."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"8593","DOI":"10.1002\/2017JC013176","article-title":"An assessment of state-of-the-art mean sea surface and geoid models of the Arctic Ocean: Implications for sea ice freeboard retrieval","volume":"122","author":"Skourup","year":"2017","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_97","unstructured":"Andersen, O., Stenseng, L., Piccioni, G., and Knudsen, P. (2016, January 9\u201313). The DTU15 MSS (mean sea surface) and DTU15LAT (lowest astronomical tide) reference surface. Proceedings of the ESA Living Planet Symposium, Prague, Czech Republic."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"194","DOI":"10.1038\/ngeo1379","article-title":"Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre","volume":"5","author":"Giles","year":"2012","journal-title":"Nat. Geosci."},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"6195","DOI":"10.1029\/2018GL078607","article-title":"Variability of the Ross Gyre, Southern Ocean: Drivers and Responses Revealed by Satellite Altimetry","volume":"45","author":"Dotto","year":"2018","journal-title":"Geophys. Res. Lett."},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"3551","DOI":"10.5194\/tc-12-3551-2018","article-title":"Estimating snow depth over Arctic sea ice from calibrated dual-frequency radar freeboards","volume":"12","author":"Lawrence","year":"2018","journal-title":"Cryosphere"},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"851","DOI":"10.1080\/01431169508954448","article-title":"Laboratory measurements of radar backscatter from bare and snow-covered saline ice sheets","volume":"16","author":"Beaven","year":"1995","journal-title":"Int. J. Remote Sens."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"20325","DOI":"10.1029\/92JC02014","article-title":"Relationship between sea ice freeboard and draft in the Arctic Basin, and implications for ice thickness monitoring","volume":"97","author":"Wadhams","year":"1992","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"373","DOI":"10.5194\/tc-4-373-2010","article-title":"The relation between sea ice thickness and freeboard in the Arctic","volume":"4","author":"Alexandrov","year":"2010","journal-title":"Cryosphere"},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"37","DOI":"10.5194\/tc-9-37-2015","article-title":"The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: Results from the ESA-CCI sea ice ECV project round robin exercise","volume":"9","author":"Kern","year":"2015","journal-title":"Cryosphere"},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"1814","DOI":"10.1175\/1520-0442(1999)012<1814:SDOASI>2.0.CO;2","article-title":"Snow depth on Arctic sea ice","volume":"12","author":"Warren","year":"1999","journal-title":"J. Clim."},{"key":"ref_106","doi-asserted-by":"crossref","unstructured":"Kurtz, N.T., and Farrell, S.L. (2011). Large-scale surveys of snow depth on Arctic sea ice from Operation IceBridge. Geophys. Res. Lett., 38.","DOI":"10.1029\/2011GL049216"},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"5395","DOI":"10.1002\/2014JC009985","article-title":"Interdecadal changes in snow depth on Arctic sea ice","volume":"119","author":"Webster","year":"2014","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_108","doi-asserted-by":"crossref","unstructured":"Doble, M.J., Skourup, H., Wadhams, P., and Geiger, C.A. (2011). The relation between Arctic sea ice surface elevation and draft: A case study using coincident AUV sonar and airborne scanning laser. J. Geophys. Res. Oceans, 116.","DOI":"10.1029\/2011JC007076"},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"197","DOI":"10.3189\/172756411795931589","article-title":"Ku-band radar penetration into snow cover on Arctic sea ice using airborne data","volume":"52","author":"Willatt","year":"2011","journal-title":"Ann. Glaciol."},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"237","DOI":"10.1109\/LGRS.2005.862276","article-title":"Simulation of the Ku-band radar altimeter sea ice effective scattering surface","volume":"3","author":"Tonboe","year":"2006","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1109\/LGRS.2009.2015968","article-title":"Simulation of ASIRAS altimeter echoes for snow-covered first-year sea ice","volume":"6","author":"Makynen","year":"2018","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"4447","DOI":"10.1002\/2015GL064081","article-title":"Impact of snow accumulation on CryoSat-2 range retrievals over Arctic sea ice: An observational approach with buoy data","volume":"42","author":"Ricker","year":"2015","journal-title":"Geophys. Res. Lett."},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"2433","DOI":"10.1080\/01431169208904280","article-title":"Observations of the snowcover on sea ice in the Gulf of Bothnia","volume":"13","author":"Crocker","year":"1992","journal-title":"Int. J. Remote Sens."},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"274","DOI":"10.3189\/S0022143000007012","article-title":"Modelling changes in scattering properties of the dielectric and young snow-covered sea ice at GHz requencies","volume":"34","author":"Drinkwater","year":"1988","journal-title":"J. Glaciol."},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"10419","DOI":"10.1002\/2017GL074506","article-title":"Effect of snow salinity on CryoSat-2 Arctic first-year sea ice freeboard measurements","volume":"44","author":"Nandan","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_116","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1126\/science.265.5172.621","article-title":"Arctic Ocean gravity field derived from ERS-1 satellite altimetry","volume":"265","author":"Laxon","year":"1994","journal-title":"Science"},{"key":"ref_117","unstructured":"Jin, S., and Barzaghi, R. (2015). The DTU13 MSS (Mean Sea Surface) and MDT (Mean Dynamic TOpography) from 20 Years of Satellite Altimetry, Springer International Publishing. IGFS 2014."},{"key":"ref_118","doi-asserted-by":"crossref","first-page":"37","DOI":"10.3997\/1365-2397.2017022","article-title":"Global gravity field from recent satellites (DTU15) - Arctic improvements","volume":"35","author":"Andersen","year":"2017","journal-title":"First Break"},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"4303","DOI":"10.1002\/2015JC011579","article-title":"Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003\u20132014","volume":"121","author":"Armitage","year":"2016","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"1445","DOI":"10.1175\/JCLI-D-13-00013.1","article-title":"Arctic Ocean circulation patterns revealed by GRACE","volume":"27","author":"Morison","year":"2014","journal-title":"J. Clim."},{"key":"ref_121","doi-asserted-by":"crossref","unstructured":"Farrell, S.L., McAdoo, D.C., Laxon, S.W., Zwally, H.J., Yi, D., Ridout, A., and Giles, K. (2012). Mean dynamic topography of the Arctic Ocean. Geophys. Res. Lett., 39.","DOI":"10.1029\/2011GL050052"},{"key":"ref_122","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1007\/s10712-013-9270-y","article-title":"Toward improved estimation of the dynamic topography and ocean circulation in the high latitude and Arctic Ocean: The importance of GOCE","volume":"35","author":"Johannessen","year":"2014","journal-title":"Surv. Geophys."},{"key":"ref_123","doi-asserted-by":"crossref","first-page":"674","DOI":"10.1002\/2015JC011357","article-title":"Sea surface height and dynamic topography of the ice-covered oceans from CryoSat-2: 2011\u20132014","volume":"121","author":"Kwok","year":"2016","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_124","doi-asserted-by":"crossref","first-page":"8936","DOI":"10.1002\/2014JC010170","article-title":"Multimodel simulations of Arctic Ocean sea surface height variability in the period 1970\u20132009","volume":"119","author":"Koldunov","year":"2014","journal-title":"J. Geophys. Res. Oceans"},{"key":"ref_125","unstructured":"Peacock, N.R. (1999). Arctic Sea Ice and Ocean Topography from Satellite Altimetry. [Ph.D. Thesis, University College London]."},{"key":"ref_126","doi-asserted-by":"crossref","first-page":"1324","DOI":"10.1016\/j.asr.2018.01.007","article-title":"Arctide2017, a high-resolution regional tidal model in the Arctic Ocean","volume":"62","author":"Cancet","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_127","first-page":"493","article-title":"New data systems and products at the Permanent Service for Mean Sea Level","volume":"29","author":"Holgate","year":"2013","journal-title":"J. Coast. Res."},{"key":"ref_128","doi-asserted-by":"crossref","first-page":"1767","DOI":"10.5194\/tc-11-1767-2017","article-title":"Arctic Ocean surface geostrophic circulation 2003\u20132014","volume":"11","author":"Armitage","year":"2017","journal-title":"Cryosphere"},{"key":"ref_129","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1080\/01490419.2015.1005782","article-title":"Estimation of sea ice freeboard from SARAL\/AltiKa data","volume":"38","author":"Maheshwari","year":"2015","journal-title":"Mar. Geodesy"},{"key":"ref_130","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1016\/j.rse.2017.10.010","article-title":"Assessing three waveform retrackers on sea ice freeboard retrieval from Cryosat-2 using Operation IceBridge airborne altimetry datasets","volume":"204","author":"Xia","year":"2018","journal-title":"Remote Sens. Environ."},{"key":"ref_131","doi-asserted-by":"crossref","first-page":"269","DOI":"10.5194\/tc-9-269-2015","article-title":"Arctic sea ice thickness loss determined using subsurface, aircraft, and satellite observations","volume":"9","author":"Lindsay","year":"2015","journal-title":"Cryosphere"},{"key":"ref_132","doi-asserted-by":"crossref","first-page":"5506","DOI":"10.1109\/TGRS.2017.2709343","article-title":"REAPER: Reprocessing 12 years of ERS-1 and ERS-2 altimeters and microwave radiometer data","volume":"55","author":"Brockley","year":"2017","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_133","doi-asserted-by":"crossref","first-page":"1143","DOI":"10.1175\/JTECH2030.1","article-title":"Signature of lighthouses, ships, and small islands in altimeter waveforms","volume":"24","author":"Tournadre","year":"2007","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_134","doi-asserted-by":"crossref","unstructured":"Boergens, E., Dettmering, D., Schwatke, C., and Seitz, F. (2016). Treating the hooking effect in satellite altimetry data: A case study along the Mekong River and its tributaries. Remote Sens., 8.","DOI":"10.3390\/rs8020091"},{"key":"ref_135","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1016\/j.rse.2004.11.018","article-title":"ENVISAT radar altimeter measurements over continental surfaces and ice caps using the ICE-2 retracking algorithm","volume":"95","author":"Legresy","year":"2005","journal-title":"Remote Sens. Environ."},{"key":"ref_136","doi-asserted-by":"crossref","first-page":"3694","DOI":"10.1109\/TGRS.2008.2000818","article-title":"Snow facies over ice sheets derived from Envisat active and passive observations","volume":"46","author":"Tran","year":"2008","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_137","doi-asserted-by":"crossref","first-page":"77","DOI":"10.1109\/LGRS.2008.2005275","article-title":"Defining a sea ice flag for Envisat altimetry mission","volume":"6","author":"Tran","year":"2009","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_138","doi-asserted-by":"crossref","unstructured":"Schutz, B.E., Zwally, H.J., Shuman, C.A., Hancock, D., and DiMarzio, J. (2005). Overview of the ICESat mission. Geophys. Res. Lett., 32.","DOI":"10.1029\/2005GL024009"},{"key":"ref_139","doi-asserted-by":"crossref","unstructured":"Kwok, R., Cunningham, G.F., Zwally, H.J., and Yi, D. (2007). Ice, Cloud, and land Elevation Satellite (ICESat) over Arctic sea ice: Retrieval of freeboard. J. Geophys. Res. Oceans, 112.","DOI":"10.1029\/2006JC003978"},{"key":"ref_140","doi-asserted-by":"crossref","first-page":"260","DOI":"10.1016\/j.rse.2016.12.029","article-title":"The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation","volume":"190","author":"Markus","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_141","doi-asserted-by":"crossref","first-page":"2305","DOI":"10.1109\/TGRS.2004.834352","article-title":"The mean echo and echo cross product from a beamforming interferometric altimeter and their application to elevation measurement","volume":"42","author":"Wingham","year":"2004","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_142","doi-asserted-by":"crossref","first-page":"1841","DOI":"10.1002\/2015GL063131","article-title":"Coastal sea level from inland CryoSat-2 interferometric SAR altimetry","volume":"42","author":"Abulaitijiang","year":"2015","journal-title":"Geophys. Res. Lett."},{"key":"ref_143","doi-asserted-by":"crossref","first-page":"1358","DOI":"10.1016\/j.asr.2018.03.015","article-title":"SARin mode, and a window delay approach, for coastal altimetry","volume":"62","author":"Roca","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_144","doi-asserted-by":"crossref","unstructured":"Di Bella, A., Skourup, H., Bouffard, J., and Parrinello, T. (2018). Uncertainty reduction of Arctic sea ice freeboard from CryoSat-2 interferometric mode. Adv. Space Res.","DOI":"10.1016\/j.asr.2018.03.018"},{"key":"ref_145","doi-asserted-by":"crossref","unstructured":"Beckers, J., Casey, J., Hendricks, S., Ricker, R., Helm, V., and Haas, C. (2013, January 21\u201326). Characteristics of CryoSat-2 signals over multi-year and seasonal sea ice. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium\u2014IGARSS, Melbourne, Australia.","DOI":"10.1109\/IGARSS.2013.6721131"},{"key":"ref_146","doi-asserted-by":"crossref","unstructured":"Id\u017eanovi\u0107, M., Ophaug, V., and Andersen, O.B. (2017). Coastal sea level from CryoSat-2 SARIn altimetry in Norway. Adv. Space Res.","DOI":"10.1016\/j.asr.2017.07.043"},{"key":"ref_147","unstructured":"Skourup, H., Olesen, A.V., Sandberg S\u00f8rensen, L., Simonsen, S., Coccia, A., Ladkin, R., and Forsberg, R. (2017). ESA CryoVEx\/EU ICE-ARC 2017 Airborne Field Campaign Data Acquisition Report, ESA. ESA Contract Report: 4000120131\/17\/NL\/FF\/mg (CCN1), v1.0."},{"key":"ref_148","doi-asserted-by":"crossref","unstructured":"Kaleschke, L., Tian-Kunze, X., Maa\u00df, N., M\u00e4kynen, M., and Drusch, M. (2012). Sea ice thickness retrieval from SMOS brightness temperatures during the Arctic freeze-up period. Geophys. Res. Lett., 39.","DOI":"10.1029\/2012GL050916"},{"key":"ref_149","doi-asserted-by":"crossref","first-page":"997","DOI":"10.5194\/tc-8-997-2014","article-title":"SMOS-derived thin sea ice thickness: Algorithm baseline, product specifications and initial verification","volume":"8","author":"Kaleschke","year":"2014","journal-title":"Cryosphere"},{"key":"ref_150","unstructured":"MOSAIC (2018). MOSAIC Science Plan, International Arctic Science Committee. Technical Report."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/11\/7\/881\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,17]],"date-time":"2024-06-17T01:24:23Z","timestamp":1718587463000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/11\/7\/881"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,4,11]]},"references-count":150,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2019,4]]}},"alternative-id":["rs11070881"],"URL":"https:\/\/doi.org\/10.3390\/rs11070881","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,4,11]]}}}