{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:40:44Z","timestamp":1732038044939},"reference-count":63,"publisher":"MDPI AG","issue":"12","license":[{"start":{"date-parts":[[2018,12,18]],"date-time":"2018-12-18T00:00:00Z","timestamp":1545091200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"China Postdoctoral Science Foundation funded project","award":["2017M620075 and BX201700286"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Mapping the spatial and temporal dynamics of cropland is an important prerequisite for regular crop condition monitoring, management of land and water resources, or tracing and understanding the environmental impacts of agriculture. Analyzing archives of satellite earth observations is a proven means to accurately identify and map croplands. However, existing maps of the annual cropland extent either have a low spatial resolution (e.g., 250\u20131000 m from Advanced Very High Resolution Radiometer (AVHRR) to Moderate-resolution Imaging Spectroradiometer (MODIS); and existing high-resolution maps (such as 30 m from Landsat) are not provided frequently (for example, on a regular, annual basis) because of the lack of in situ reference data, irregular timing of the Landsat and Sentinel-2 image time series, the huge amount of data for processing, and the need to have a regionally or globally consistent methodology. Against this backdrop, we propose a reference time-series-based mapping method (RBM), and create binary cropland vs. non-cropland maps using irregular Landsat time series and RBM. As a test case, we created and evaluated annual cropland maps at 30 m in seven distinct agricultural landscapes in Xinjiang, China, and the Aral Sea Basin. The results revealed that RBM could accurately identify cropland annually, with producer\u2019s accuracies (PA) and user\u2019s accuracies (UA) higher than 85% between 2006 and 2016. In addition, cropland maps by RBM were significantly more accurate than the two existing products, namely GlobaLand30 and Finer Resolution Observation and Monitoring of Global Land Cover (FROM\u2013GLC).<\/jats:p>","DOI":"10.3390\/rs10122057","type":"journal-article","created":{"date-parts":[[2018,12,18]],"date-time":"2018-12-18T10:47:45Z","timestamp":1545130065000},"page":"2057","source":"Crossref","is-referenced-by-count":27,"title":["Annual Cropland Mapping Using Reference Landsat Time Series\u2014A Case Study in Central Asia"],"prefix":"10.3390","volume":"10","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3711-6157","authenticated-orcid":false,"given":"Pengyu","family":"Hao","sequence":"first","affiliation":[{"name":"Key Laboratory of Agricultural Remote Sensing, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0632-890X","authenticated-orcid":false,"given":"Fabian","family":"L\u00f6w","sequence":"additional","affiliation":[{"name":"MapTailor Geospatial Consulting, 53113 Bonn, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9532-9452","authenticated-orcid":false,"given":"Chandrashekhar","family":"Biradar","sequence":"additional","affiliation":[{"name":"International Centre for Agricultural Research in Dry Areas (ICARDA), Cairo 11431, Egypt"}]}],"member":"1968","published-online":{"date-parts":[[2018,12,18]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"3465","DOI":"10.1073\/pnas.1100480108","article-title":"Global land use change, economic globalization, and the looming land scarcity","volume":"108","author":"Lambin","year":"2011","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_2","unstructured":"Justice, C.O., and Becker-Reshef, I. (2007). Report from the Workshop on Developing a Strategy for Global Agricultural Monitoring in the Framework of Group on Earth Observations, FAO."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1016\/j.gloenvcha.2016.02.009","article-title":"Recultivation of abandoned agricultural lands in Ukraine: Patterns and drivers","volume":"38","author":"Smaliychuk","year":"2016","journal-title":"Glob. Environ. Chang."},{"key":"ref_4","unstructured":"JICA The Study on Regional Development in Karakalpakstan in the Republic of Uzbekistan (Progress Report), JICA."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"997","DOI":"10.1029\/1999GB900046","article-title":"Estimating historical changes in global land cover: Croplands from 1700 to 1992","volume":"13","author":"Ramankutty","year":"1999","journal-title":"Glob. Biogeochem. Cycles"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"L\u00f6w, F., Prishchepov, A.V., Waldner, F., Dubovyk, O., Akramkhanov, A., Biradar, C., and Lamers, J.P.A. (2018). Mapping cropland abandonment in the aral sea basin with modis time series. Remote Sens., 10.","DOI":"10.3390\/rs10020159"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"873","DOI":"10.1016\/j.landusepol.2012.06.011","article-title":"Determinants of agricultural land abandonment in post-soviet European Russia","volume":"30","author":"Prishchepov","year":"2013","journal-title":"Land Use Policy"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"2063","DOI":"10.1007\/s12665-011-1186-6","article-title":"Spatio-temporal patterns of agricultural expansion and its effect on watershed degradation: A case from the mountains of Nepal","volume":"65","author":"Bahadur","year":"2012","journal-title":"Environ. Earth Sci."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"3405","DOI":"10.1111\/gcb.13298","article-title":"Land-use change affects water recycling in brazil\u2019s last agricultural frontier","volume":"22","author":"Spera","year":"2016","journal-title":"Glob. Chang. Biol."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"227","DOI":"10.1177\/0022343311425843","article-title":"Climate change and international water conflict in central Asia","volume":"49","author":"Bernauer","year":"2012","journal-title":"J. Peace Res."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1016\/S0034-4257(02)00078-0","article-title":"Global land cover mapping from modis: Algorithms and early results","volume":"83","author":"Friedl","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_12","unstructured":"(2018, December 12). ESA Globcover. Available online: http:\/\/due.esrin.esa.int\/page_globcover.php."},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Waldner, F., Hansen, M.C., Potapov, P.V., L\u00f6w, F., Newby, T., Ferreira, S., and Defourny, P. (2017). National-scale cropland mapping based on spectral-temporal features and outdated land cover information. PLoS ONE, 12.","DOI":"10.1371\/journal.pone.0181911"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"2607","DOI":"10.1080\/01431161.2012.748992","article-title":"Finer resolution observation and monitoring of global land cover: First mapping results with landsat tm and etm+ data","volume":"34","author":"Gong","year":"2013","journal-title":"Int. J. Remote Sens."},{"key":"ref_15","unstructured":"NGCC (2018, December 12). Global Land Cover Mapping at 30 m Resolution, Available online: http:\/\/ngcc.sbsm.gov.cn\/article\/en\/ps\/mp\/201302\/20130200001694.shtml."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Xiong, J., Thenkabail, P., Tilton, J., Gumma, M., Teluguntla, P., Oliphant, A., Congalton, R., Yadav, K., and Gorelick, N. (2017). Nominal 30-m cropland extent map of continental Africa by integrating pixel-based and object-based algorithms using sentinel-2 and landsat-8 data on google earth engine. Remote Sens., 9.","DOI":"10.3390\/rs9101065"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1196","DOI":"10.1016\/j.rse.2007.08.011","article-title":"The availability of cloud-free landsat etm plus data over the conterminous united states and globally","volume":"112","author":"Ju","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"L\u00f6w, F., Biradar, C., Dubovyk, O., Fliemann, E., Akramkhanov, A., Vallejo, A.N., and Waldner, F. (2017). Regional-scale monitoring of cropland intensity and productivity with multi-source satellite image time series. GIScience Remote Sens., 55.","DOI":"10.1080\/15481603.2017.1414010"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"14","DOI":"10.1016\/j.inffus.2015.12.005","article-title":"An improved high spatial and temporal data fusion approach for combining landsat and modis data to generate daily synthetic landsat imagery","volume":"31","author":"Wu","year":"2016","journal-title":"Inf. Fusion"},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Knauer, K., Gessner, U., Fensholt, R., Forkuor, G., and Kuenzer, C. (2017). Monitoring agricultural expansion in Burkina Faso over 14 years with 30 m resolution time series: The role of population growth and implications for the environment. Remote Sens., 9.","DOI":"10.3390\/rs9020132"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1007\/s11442-014-1082-6","article-title":"Spatiotemporal characteristics, patterns, and causes of land-use changes in china since the late 1980s","volume":"24","author":"Liu","year":"2014","journal-title":"J. Geogr. Sci."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.rse.2013.08.023","article-title":"Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using landsat imagery","volume":"140","author":"Zhong","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/j.rse.2014.01.006","article-title":"Automated crop field extraction from multi-temporal web enabled landsat data","volume":"144","author":"Yan","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1061","DOI":"10.5721\/EuJRS20164954","article-title":"Crop classification using crop knowledge of the previous year: Case study in southwest Kansas, USA","volume":"49","author":"Hao","year":"2016","journal-title":"Eur. J. Remote Sens."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Hao, P., Wang, L., Zhan, Y., and Niu, Z. (2016). Using moderate-resolution temporal Ndvi profiles for high-resolution crop mapping in years of absent ground reference data: A case study of bole and Manas counties in Xinjiang, China. ISPRS Int. Geo-Inf., 5.","DOI":"10.3390\/ijgi5050067"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1016\/j.isprsjprs.2016.05.014","article-title":"Automated mapping of soybean and corn using phenology","volume":"119","author":"Zhong","year":"2016","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.isprsjprs.2015.09.013","article-title":"Automated annual cropland mapping using knowledge-based temporal features","volume":"110","author":"Waldner","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"349","DOI":"10.1016\/S0143-6228(00)00014-X","article-title":"Irrigation expansion and dynamics of desertification in the circum-aral region of central Asia","volume":"20","author":"Saiko","year":"2000","journal-title":"Appl. Geogr."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.gloenvcha.2016.01.003","article-title":"Drivers, constraints and trade-offs associated with recultivating abandoned cropland in Russia, Ukraine and Kazakhstan","volume":"37","author":"Meyfroidt","year":"2016","journal-title":"Glob. Environ. Chang."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1007\/s10114-008-7011-9","article-title":"Spatial-temporal change in different vegetation growth of Xinjiang from 1982 to 2013","volume":"25","author":"Xu","year":"2016","journal-title":"Acta Pratacult. Sin."},{"key":"ref_31","first-page":"300","article-title":"Study on the change of ecosystem in Xinjiang from 2000 to 2010","volume":"17","author":"Yuan","year":"2015","journal-title":"J. Geo-Inf. Sci."},{"key":"ref_32","first-page":"748","article-title":"Landscape pattern change and its driving forces in agricultural oasis of Sangong river basin in Xinjiang, northwest china in recent 30 years","volume":"32","author":"Lu","year":"2013","journal-title":"Chin. J. Ecol."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"9729","DOI":"10.1007\/s10661-013-3286-0","article-title":"Land use\/land cover change and their effects on landscape patterns in the Yanqi basin, Xinjiang (China)","volume":"185","author":"Wang","year":"2013","journal-title":"Environ. Monit. Assess."},{"key":"ref_34","first-page":"1019","article-title":"Cultivated land resources security of oases and its conservation strategies in Xinjiang","volume":"33","author":"Zhao","year":"2010","journal-title":"Arid. Land Geogr."},{"key":"ref_35","first-page":"772","article-title":"Comprehensive improvement of cultivated land for ecological protection to agriculture in arid areas: A case of Manasi river basin of Xinjiang","volume":"35","author":"Fan","year":"2012","journal-title":"Arid. Land Geogr."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"881","DOI":"10.1007\/s10584-011-0253-z","article-title":"Will climate change exacerbate water stress in central Asia?","volume":"112","author":"Siegfried","year":"2012","journal-title":"Clim. Chang."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"521","DOI":"10.1080\/17538947.2013.822574","article-title":"From-gc: 30 m global cropland extent derived through multisource data integration","volume":"6","author":"Yu","year":"2013","journal-title":"Int. J. Digit. Earth"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.isprsjprs.2014.09.002","article-title":"Global land cover mapping at 30 m resolution: A pok-based operational approach","volume":"103","author":"Chen","year":"2015","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_39","unstructured":"JAXA (2018, October 31). Alos Global Digital Surface Model \u201cAlos World 3d-30m\u201d (aw3d30). Available online: http:\/\/www.eorc.jaxa.jp\/ALOS\/en\/aw3d30\/index.htm."},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Hu, Z., Peng, J., Hou, Y., and Shan, J. (2017). Evaluation of recently released open global digital elevation models of Hubei, china. Remote Sens., 9.","DOI":"10.3390\/rs9030262"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"18","DOI":"10.1016\/j.rse.2017.06.031","article-title":"Google earth engine: Planetary-scale geospatial analysis for everyone","volume":"202","author":"Gorelick","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_42","unstructured":"Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., and Harlan, J.C. (1974). Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"31","DOI":"10.1080\/10106049109354290","article-title":"Mapping burns and natural reforestation using thematic mapper data","volume":"6","author":"Caselles","year":"1991","journal-title":"Geocarto Int."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"257","DOI":"10.1016\/S0034-4257(96)00067-3","article-title":"Ndwi\u2014A normalized difference water index for remote sensing of vegetation liquid water from space","volume":"58","author":"Gao","year":"1996","journal-title":"Remote Sens. Environ."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/S0034-4257(01)00289-9","article-title":"Novel algorithms for remote estimation of vegetation fraction","volume":"80","author":"Gitelson","year":"2002","journal-title":"Remote Sens. Environ."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"351","DOI":"10.1016\/j.rse.2003.10.016","article-title":"Estimating fractional snow cover from modis using the normalized difference snow index","volume":"89","author":"Salomonson","year":"2004","journal-title":"Remote Sens. Environ."},{"key":"ref_47","unstructured":"Hawthorne, B. (2018, January 30). Hawth\u2019s Analysis Tools for Arcgis. Available online: http:\/\/www.spatialecology.com\/htools\/overview.php."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1023\/A:1010933404324","article-title":"Random forests","volume":"45","author":"Breiman","year":"2001","journal-title":"Mach. Learn."},{"key":"ref_49","unstructured":"Liaw, A., and Wiener, M. (2018, December 15). Randomforest: Breiman and Cutler\u2019s Random Forests for Classification and Regression. Available online: http:\/\/cran.r-project.org\/web\/packages\/randomForest\/index.html."},{"key":"ref_50","first-page":"173","article-title":"Random forests as a tool for estimating uncertainty at pixel-level in sar image classification","volume":"19","author":"Loosvelt","year":"2012","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1016\/j.rse.2010.10.005","article-title":"An artificial immune network approach to multi-sensor land use\/land cover classification","volume":"115","author":"Gong","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Chang, P.C., Lin, C.H., and Chen, M.H. (2016). A hybrid course recommendation system by integrating collaborative filtering and artificial immune systems. Algorithms, 9.","DOI":"10.3390\/a9030047"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"894","DOI":"10.1109\/TGRS.2011.2162589","article-title":"An adaptive artificial immune network for supervised classification of multi-\/hyperspectral remote sensing imagery","volume":"50","author":"Zhong","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"3129","DOI":"10.1016\/j.rse.2011.06.020","article-title":"A comparison of time series similarity measures for classification and change detection of ecosystem dynamics","volume":"115","author":"Lhermitte","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_55","unstructured":"NPC-PRC (2018, March 17). People Republic of Soil and Water Conservation Low, Available online: http:\/\/www.npc.gov.cn\/npc\/xinwen\/2010-12\/25\/content_1612679.htm."},{"key":"ref_56","unstructured":"Ningxia, N.-P.O. (2018, March 17). Interpretion of \u201cPeople Republic of Soil and Water Conservation Law\u201d in Ningxia, Available online: http:\/\/www.nxrd.gov.cn\/rdzt\/zzqrdcwhhy\/sbc\/sqcmtbd\/201508\/t20150807_3453670.html."},{"key":"ref_57","unstructured":"NARC (1984). Technical Specification for Land Use Investigation, NARC."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/0034-4257(91)90048-B","article-title":"A review of assessing the accuracy of classifications of remotely sensed data","volume":"37","author":"Congalton","year":"1991","journal-title":"Remote Sens. Environ."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"627","DOI":"10.14358\/PERS.70.5.627","article-title":"Thematic map comparison: Evaluating the statistical significance of differences in classification accuracy","volume":"70","author":"Foody","year":"2004","journal-title":"Photogramm. Eng. Remote Sens."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1016\/j.rse.2014.01.011","article-title":"Continuous change detection and classification of land cover using all available landsat data","volume":"144","author":"Zhu","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"1096","DOI":"10.1016\/j.rse.2007.07.019","article-title":"Large-area crop mapping using time-series modis 250 m ndvi data: An assessment for the U.S. Central great plains","volume":"112","author":"Wardlow","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"096035","DOI":"10.1117\/1.JRS.9.096035","article-title":"Potential of multitemporal gaofen-1 panchromatic\/multispectral images for crop classification: Case study in xinjiang uygur autonomous region, China","volume":"9","author":"Hao","year":"2015","journal-title":"J. Appl. Remote Sens."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"9034","DOI":"10.3390\/rs6099034","article-title":"Defining the spatial resolution requirements for crop identification using optical remote sensing","volume":"6","author":"Low","year":"2014","journal-title":"Remote Sens."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/10\/12\/2057\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,14]],"date-time":"2024-06-14T22:10:09Z","timestamp":1718403009000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/10\/12\/2057"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,12,18]]},"references-count":63,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2018,12]]}},"alternative-id":["rs10122057"],"URL":"https:\/\/doi.org\/10.3390\/rs10122057","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,12,18]]}}}