{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T06:29:41Z","timestamp":1726295381560},"reference-count":41,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2018,3,16]],"date-time":"2018-03-16T00:00:00Z","timestamp":1521158400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["41704017","41604003","41574013","41731069"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Ground-based GNSS-R (global navigation satellite system reflectometry) can provide the absolute vertical distance from a GNSS antenna to the reflective surface of the ocean in a common height reference frame, given that vertical crustal motion at a GNSS station can be determined using direct GNSS signals. This technique offers the advantage of enabling ground-based sea level measurements to be more accurately determined compared with traditional tide gauges. Sea level changes can be retrieved from multipath effects on GNSS, which is caused by interference of the GNSS L-band microwave signals (directly from satellites) with reflections from the environment that occur before reaching the antenna. Most of the GNSS observation types, such as pseudo-range, carrier-phase and signal-to-noise ratio (SNR), suffer from this multipath effect. In this paper, sea level altimetry determinations are presented for the first time based on geometry-free linear combinations of the carrier phase at low elevation angles from a fixed global positioning system (GPS) station. The precision of the altimetry solutions are similar to those derived from GNSS SNR data. There are different types of observation and reflector height retrieval methods used in the data processing, and to analyze the performance of the different methods, five sea level determination strategies are adopted. The solutions from the five strategies are compared with tide gauge measurements near the GPS station, and the results show that sea level changes determined from GPS SNR and carrier phase combinations for the five strategies show good agreement (correlation coefficient of 0.97\u20130.98 and root-mean-square error values of <0.2 m).<\/jats:p>","DOI":"10.3390\/rs10030470","type":"journal-article","created":{"date-parts":[[2018,3,20]],"date-time":"2018-03-20T10:57:11Z","timestamp":1521543431000},"page":"470","source":"Crossref","is-referenced-by-count":31,"title":["Sea Level Estimation Based on GNSS Dual-Frequency Carrier Phase Linear Combinations and SNR"],"prefix":"10.3390","volume":"10","author":[{"given":"Nazi","family":"Wang","sequence":"first","affiliation":[{"name":"Institute of Space Science, Shandong University, Weihai 264209, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5818-6264","authenticated-orcid":false,"given":"Tianhe","family":"Xu","sequence":"additional","affiliation":[{"name":"Institute of Space Science, Shandong University, Weihai 264209, China"}]},{"given":"Fan","family":"Gao","sequence":"additional","affiliation":[{"name":"Institute of Space Science, Shandong University, Weihai 264209, China"}]},{"given":"Guochang","family":"Xu","sequence":"additional","affiliation":[{"name":"Institute of Space Science, Shandong University, Weihai 264209, China"}]}],"member":"1968","published-online":{"date-parts":[[2018,3,16]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"1211","DOI":"10.1126\/science.278.5341.1209c","article-title":"Estimates of coastal populations","volume":"278","author":"Cohen","year":"1997","journal-title":"Science"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1019","DOI":"10.1016\/j.asr.2012.09.011","article-title":"Coastal sea level changes in the Europe from GPS, tide gauge, satellite altimetry and GRACE, 1993\u20132011","volume":"51","author":"Feng","year":"2013","journal-title":"Adv. Space Res."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"193","DOI":"10.5194\/os-5-193-2009","article-title":"A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993\u20132008","volume":"5","author":"Ablain","year":"2009","journal-title":"Ocean Sci."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"171","DOI":"10.1016\/S0074-6142(01)80148-0","article-title":"Chapter 3 ocean currents and eddies","volume":"69","author":"Traon","year":"2001","journal-title":"Int. Geophys."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.rse.2015.10.011","article-title":"Sea level monitoring and sea state estimate using a single geodetic receiver","volume":"171","author":"Roussel","year":"2015","journal-title":"Remote Sens. Environ."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Bouffard, J., Roblou, L., Birol, F., Pascual, A., Fenoglio-Marc, L., and Cancet, M. (2011). Introduction and assessment of improved coastal altimetry strategies: Case study over the Northwestern Mediterranean Sea. Coastal Altimetry, Springer.","DOI":"10.1007\/978-3-642-12796-0_12"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1109\/36.898676","article-title":"The paris concept: An experimental demonstration of sea surface altimetry using GPS reflected signals","volume":"39","author":"Caparrini","year":"2001","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_8","first-page":"331","article-title":"A passive reflectometry and interferometry system (PARIS): Application to ocean altimetry","volume":"17","year":"1993","journal-title":"ESA J."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1375","DOI":"10.1029\/2002GL014759","article-title":"5-cm-Precision aircraft ocean altimetry using GPS reflections","volume":"29","author":"Lowe","year":"2002","journal-title":"Geophys. Res. Lett."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"L12306","DOI":"10.1029\/2004GL019994","article-title":"The Eddy Experiment: Accurate GNSS-R ocean altimetry from low altitude aircraft","volume":"31","author":"Ruffini","year":"2004","journal-title":"Geophys. Res. Lett."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"213","DOI":"10.1016\/j.asr.2010.08.015","article-title":"Monitoring coastal sea level using reflected GNSS signals","volume":"47","author":"Haas","year":"2011","journal-title":"Adv. Space Res."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1029\/2010GL046005","article-title":"Detection of Arctic Ocean tides using interferometric GNSS-R signals","volume":"38","author":"Semmling","year":"2011","journal-title":"Geophys. Res. Lett."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"37-1","DOI":"10.1029\/2002GL015524","article-title":"Sea surface state measured using GPS reflected signals","volume":"29","author":"Rius","year":"2002","journal-title":"Geophys. Res. Lett."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"207","DOI":"10.1109\/LGRS.2015.2506186","article-title":"Improvement of Data Precision and Spatial Resolution of cGNSS-R Altimetry Using Improved Device With External Atomic Clock","volume":"13","author":"Bao","year":"2016","journal-title":"IEEE Geosci. Remote Sens."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"767","DOI":"10.1002\/2015GL066624","article-title":"First spaceborne observation of sea surface height using GPS-Reflectometry","volume":"43","author":"Clarizia","year":"2016","journal-title":"Geophys. Res. Lett."},{"key":"ref_16","first-page":"71","article-title":"Land Geophysical Parameters Retrieval Using the Interference Pattern GNSS-R Technique","volume":"49","author":"Camps","year":"2010","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1118","DOI":"10.1175\/1520-0426(2000)017<1118:DOWLAT>2.0.CO;2","article-title":"Determination of water level and tides using interferometric observations of GPS signals","volume":"17","author":"Anderson","year":"1999","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1007\/s10291-007-0076-6","article-title":"Using GPS multipath to measure soil moisture fluctuations: Initial results","volume":"12","author":"Larson","year":"2008","journal-title":"GPS Solut."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"L24405","DOI":"10.1029\/2008GL036013","article-title":"Use of GPS receivers as a soil moisture network for water cycle studies","volume":"35","author":"Larson","year":"2008","journal-title":"Geophys. Res. Lett."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"L17502","DOI":"10.1029\/2009GL039430","article-title":"Can we measure snow depth with GPS receivers?","volume":"36","author":"Larson","year":"2009","journal-title":"Geophys. Res. Lett."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"L12401","DOI":"10.1029\/2010GL042951","article-title":"Sensing vegetation growth with reflected GPS signals","volume":"37","author":"Small","year":"2010","journal-title":"Geophys. Res. Lett."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1186\/1687-6180-2014-106","article-title":"Snow depth sensing using the GPS L2C signal with a dipole antenna","volume":"2014","author":"Chen","year":"2014","journal-title":"EURASIP J. Adv. Signal Process."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Jin, S., Qian, X., and Kutoglu, H. (2016). Snow depth variations estimated from GPS-Reflectometry: A case study in Alaska from L2P SNR data. Remote Sens., 8.","DOI":"10.3390\/rs8010063"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1104","DOI":"10.1016\/j.asr.2014.11.019","article-title":"Assessment of modernized GPS L5 SNR for ground-based multipath reflectometry applications","volume":"55","author":"Tabibi","year":"2015","journal-title":"Adv. Space Res."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1007\/s00190-011-0511-x","article-title":"GPS snow depth meter with geometry-free linear combinations of carrier phases","volume":"86","author":"Ozeki","year":"2012","journal-title":"J. Geodesy"},{"key":"ref_26","first-page":"4817","article-title":"Estimation of snow depth from GLONASS SNR and phase-based multipath reflectometry","volume":"9","author":"Qian","year":"2016","journal-title":"IEEE J.-STAR"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"5100","DOI":"10.1109\/TGRS.2015.2417214","article-title":"Snow Depth Estimation Based on Multipath Phase Combination of GPS Triple-Frequency Signals","volume":"53","author":"Yu","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s00190-014-0784-y","article-title":"Levelling co-located GNSS and tide gauge stations using GNSS reflectometry","volume":"89","author":"Watson","year":"2015","journal-title":"J. Geodesy"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1016\/j.gloplacha.2016.12.010","article-title":"Sea level change from BeiDou Navigation Satellite System-Reflectometry (BDS-R): First results and evaluation","volume":"149","author":"Jin","year":"2017","journal-title":"Glob. Planet Chang."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Strandberg, J., Hobiger, T., and Haas, R. (2016, January 10\u201315). Inverse modelling of GNSS multipath for sea level measurements\u2014Initial results. Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China.","DOI":"10.1109\/IGARSS.2016.7729479"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1303","DOI":"10.1016\/j.asr.2012.04.017","article-title":"Coastal sea level measurements using a single geodetic GPS receiver","volume":"51","author":"Larson","year":"2013","journal-title":"Adv. Space Res."},{"key":"ref_32","first-page":"66","article-title":"Sea-level analysis using 100 days of reflected GNSS signals","volume":"80","author":"Haas","year":"2014","journal-title":"J. Geodyn."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"295","DOI":"10.1175\/JTECH-D-16-0101.1","article-title":"A ten-year comparison of water levels measured with a geodetic GPS receiver versus a conventional tide gauge","volume":"34","author":"Larson","year":"2017","journal-title":"J. Atmos. Ocean. Technol."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1546","DOI":"10.1016\/j.asr.2018.01.002","article-title":"Azimuth selection for sea level measurements using geodetic GPS receivers","volume":"61","author":"Wang","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_35","first-page":"RS6002","article-title":"Isolating the multipath component in GNSS signal-to-noise data and locating reflecting objects","volume":"46","author":"Benton","year":"2016","journal-title":"Radio Sci."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"9921","DOI":"10.1029\/95JB00868","article-title":"Geodesy using the global positioning system: The effects of signal scattering on estimates of site position","volume":"100","author":"Davis","year":"1995","journal-title":"J. Geophys. Res. Sol. Earth"},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1029\/2003GL017639","article-title":"The effect of the second order GPS ionospheric correction on receiver positions","volume":"30","author":"Kedar","year":"2003","journal-title":"Geophys. Res. Lett."},{"key":"ref_38","unstructured":"Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E. (2008). GNSS\u2014Global Navigation Satellite Systems, Springer."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"473","DOI":"10.1007\/s10291-014-0370-z","article-title":"An open source GPS multipath simulator in Matlab\/Octave","volume":"18","author":"Nievinski","year":"2014","journal-title":"GPS Solut."},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Hall, C.D., and Cordey, R.A. (1988, January 12\u201316). Multistatic Scatterometry. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS\u201988), Edinburgh, UK.","DOI":"10.1109\/IGARSS.1988.570200"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1200","DOI":"10.1109\/LGRS.2012.2236075","article-title":"The accidental tide gauge: A GPS refection case study from Kachemak Bay, Alaska","volume":"10","author":"Larson","year":"2013","journal-title":"IEEE Geosci. Remote Sens. Lett."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/10\/3\/470\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,10]],"date-time":"2024-06-10T04:31:55Z","timestamp":1717993915000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/10\/3\/470"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,3,16]]},"references-count":41,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2018,3]]}},"alternative-id":["rs10030470"],"URL":"https:\/\/doi.org\/10.3390\/rs10030470","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,3,16]]}}}