{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,19]],"date-time":"2024-08-19T14:31:18Z","timestamp":1724077878445},"reference-count":131,"publisher":"MDPI AG","issue":"3","license":[{"start":{"date-parts":[[2018,3,9]],"date-time":"2018-03-09T00:00:00Z","timestamp":1520553600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Remote Sensing"],"abstract":"Several studies currently strive to improve the spatial resolution of coarse scale high temporal resolution global soil moisture products of SMOS, SMAP, and ASCAT. Soil texture heterogeneity is known to be one of the main sources of soil moisture spatial variability. With the recent development of high resolution maps of basic soil properties such as soil texture and bulk density, relevant information to estimate soil moisture variability within a satellite product grid cell is available. We use this information for the prediction of the sub-grid soil moisture variability for each SMOS, SMAP, and ASCAT grid cell. The approach is based on a method that predicts the soil moisture standard deviation as a function of the mean soil moisture based on soil texture information. It is a closed-form expression using stochastic analysis of 1D unsaturated gravitational flow in an infinitely long vertical profile based on the Mualem-van Genuchten model and first-order Taylor expansions. We provide a look-up table that indicates the soil moisture standard deviation for any given soil moisture mean, available at https:\/\/doi.org\/10.1594\/PANGAEA.878889. The resulting data set helps identify adequate regions to validate coarse scale soil moisture products by providing a measure of representativeness of small-scale measurements for the coarse grid cell. Moreover, it contains important information for downscaling coarse soil moisture observations of the SMOS, SMAP, and ASCAT missions. In this study, we present a simple application of the estimated sub-grid soil moisture heterogeneity scaling down SMAP soil moisture to 1 km resolution. Validation results in the TERENO and REMEDHUS soil moisture monitoring networks in Germany and Spain, respectively, indicate a similar or slightly improved accuracy for downscaled and original SMAP soil moisture in the time domain for the year 2016, but with a much higher spatial resolution.<\/jats:p>","DOI":"10.3390\/rs10030427","type":"journal-article","created":{"date-parts":[[2018,3,9]],"date-time":"2018-03-09T17:17:41Z","timestamp":1520615861000},"page":"427","source":"Crossref","is-referenced-by-count":45,"title":["A New Soil Moisture Downscaling Approach for SMAP, SMOS, and ASCAT by Predicting Sub-Grid Variability"],"prefix":"10.3390","volume":"10","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0812-8570","authenticated-orcid":false,"given":"Carsten","family":"Montzka","sequence":"first","affiliation":[{"name":"Forschungszentrum J\u00fclich, Institute of Bio- and Geosciences: Agrosphere (IBG-3), 52428 J\u00fclich, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1413-6836","authenticated-orcid":false,"given":"Kathrina","family":"R\u00f6tzer","sequence":"additional","affiliation":[{"name":"Forschungszentrum J\u00fclich, Institute of Bio- and Geosciences: Agrosphere (IBG-3), 52428 J\u00fclich, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9974-6686","authenticated-orcid":false,"given":"Heye","family":"Bogena","sequence":"additional","affiliation":[{"name":"Forschungszentrum J\u00fclich, Institute of Bio- and Geosciences: Agrosphere (IBG-3), 52428 J\u00fclich, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8396-6550","authenticated-orcid":false,"given":"Nilda","family":"Sanchez","sequence":"additional","affiliation":[{"name":"Instituto Hispano Luso de Investigaciones Agrarias, University of Salamanca, 37185 Salamanca, Spain"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8051-8517","authenticated-orcid":false,"given":"Harry","family":"Vereecken","sequence":"additional","affiliation":[{"name":"Forschungszentrum J\u00fclich, Institute of Bio- and Geosciences: Agrosphere (IBG-3), 52428 J\u00fclich, Germany"}]}],"member":"1968","published-online":{"date-parts":[[2018,3,9]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"100","DOI":"10.1038\/ngeo2868","article-title":"The global distribution and dynamics of surface soil moisture","volume":"10","author":"McColl","year":"2017","journal-title":"Nat. Geosci."},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Brocca, L., Ciabatta, L., Massari, C., Camici, S., and Tarpanelli, A. (2017). Soil moisture for hydrological applications: Open questions and new opportunities. Water, 9.","DOI":"10.3390\/w9020140"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"666","DOI":"10.1109\/JPROC.2010.2043032","article-title":"The smos mission: New tool for monitoring key elements of the global water cycle","volume":"98","author":"Kerr","year":"2010","journal-title":"Proc. IEEE"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"704","DOI":"10.1109\/JPROC.2010.2043918","article-title":"The soil moisture active passive (smap) mission","volume":"98","author":"Entekhabi","year":"2010","journal-title":"Proc. IEEE"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"5","DOI":"10.1127\/0941-2948\/2013\/0399","article-title":"The ascat soil moisture product: A review of its specifications, validation results, and emerging applications","volume":"22","author":"Wagner","year":"2013","journal-title":"Meteorologische Zeitschrift"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"310","DOI":"10.1002\/hyp.10391","article-title":"Hyper-resolution global hydrological modelling: What is next? \u201cEverywhere and locally relevant\u201d","volume":"29","author":"Bierkens","year":"2015","journal-title":"Hydrol. Processes"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Wood, E.F., Roundy, J.K., Troy, T.J., van Beek, L.P.H., Bierkens, M.F.P., Blyth, E., de Roo, A., Doll, P., Ek, M., and Famiglietti, J. (2011). Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring earth\u2019s terrestrial water. Water Resour. Res., 47.","DOI":"10.1029\/2010WR010090"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"3879","DOI":"10.5194\/hess-21-3879-2017","article-title":"The future of earth observation in hydrology","volume":"21","author":"McCabe","year":"2017","journal-title":"Hydrol. Earth Syst. Sci. Discuss."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"2285","DOI":"10.1109\/JSTARS.2017.2651140","article-title":"A review of the applications of ascat soil moisture products","volume":"10","author":"Brocca","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"258","DOI":"10.1016\/j.jhydrol.2013.12.008","article-title":"Soil moisture at watershed scale: Remote sensing techniques","volume":"516","author":"Fang","year":"2014","journal-title":"J. Hydrol."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1888","DOI":"10.2136\/sssaj2013.03.0093","article-title":"State of the art in large-scale soil moisture monitoring","volume":"77","author":"Ochsner","year":"2013","journal-title":"Soil Sci. Soc. Am. J."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Vereecken, H., Schnepf, A., Hopmans, J.W., Javaux, M., Or, D., Roose, D.O.T., Vanderborght, J., Young, M.H., Amelung, W., and Aitkenhead, M. (2016). Modeling soil processes: Review, key challenges, and new perspectives. Vadose Zone J., 15.","DOI":"10.2136\/vzj2015.09.0131"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Mohanty, B.P., Cosh, M.H., Lakshmi, V., and Montzka, C. (2017). Soil moisture remote sensing: State-of-the-science. Vadose Zone J., 16.","DOI":"10.2136\/vzj2016.10.0105"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"341","DOI":"10.1002\/2016RG000543","article-title":"A review of spatial downscaling of satellite remotely sensed soil moisture","volume":"55","author":"Peng","year":"2017","journal-title":"Rev. Geophys."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Famiglietti, J.S., Ryu, D.R., Berg, A.A., Rodell, M., and Jackson, T.J. (2008). Field observations of soil moisture variability across scales. Water Resour. Res., 44.","DOI":"10.1029\/2006WR005804"},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Rodr\u00edguez-Iturbe, I., and Porporato, A. (2004). Ecohydrology of Water-Controlled Ecosystems: Soil Moisture and Plant Dynamics, Cambridge Press.","DOI":"10.1017\/CBO9780511535727"},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Mohanty, B.P., Cosh, M., Lakshmi, V., and Montzka, C. (2013). Remote sensing for vadose zone hydrology\u2014A synthesis from the vantage point. Vadose Zone J. Spec. Sect. Remote Sens. Vadose Zone Hydrol., 12.","DOI":"10.2136\/vzj2013.07.0128"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1016\/j.jhydrol.2014.12.038","article-title":"Spatio-temporal variability of global soil moisture products","volume":"522","author":"Montzka","year":"2015","journal-title":"J. Hydrol."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1016\/j.jhydrol.2013.11.061","article-title":"On the spatio-temporal dynamics of soil moisture at the field scale","volume":"516","author":"Vereecken","year":"2014","journal-title":"J. Hydrol."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"2145","DOI":"10.1016\/j.advwatres.2006.07.009","article-title":"Scaling characteristics of spatial patterns of soil moisture from distributed modelling","volume":"30","author":"Manfreda","year":"2007","journal-title":"Adv. Water Resour."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"2757","DOI":"10.1029\/95GL02779","article-title":"On the spatial-organization of soil-moisture fields","volume":"22","author":"Vogel","year":"1995","journal-title":"Geophys. Res. Lett."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"547","DOI":"10.2136\/vzj2007.0040","article-title":"Spatial scaling analyses of soil physical properties: A review of spectral and wavelet methods all rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher","volume":"7","author":"Si","year":"2008","journal-title":"Vadose Zone J."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1016\/j.geoderma.2016.08.017","article-title":"Scale and scaling in soils","volume":"287","author":"Pachepsky","year":"2017","journal-title":"Geoderma"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Hohenbrink, T.L., Lischeid, G., Schindler, U., and Hufnagel, J. (2016). Disentangling the effects of land management and soil heterogeneity on soil moisture dynamics. Vadose Zone J., 15.","DOI":"10.2136\/vzj2015.07.0107er"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"751","DOI":"10.5194\/hess-14-751-2010","article-title":"Analysis of surface soil moisture patterns in agricultural landscapes using empirical orthogonal functions","volume":"14","author":"Korres","year":"2010","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Martini, E., Wollschlager, U., Kogler, S., Behrens, T., Dietrich, P., Reinstorf, F., Schmidt, K., Weiler, M., Werban, U., and Zacharias, S. (2015). Spatial and temporal dynamics of hillslope-scale soil moisture patterns: Characteristic states and transition mechanisms. Vadose Zone J., 14.","DOI":"10.2136\/vzj2014.10.0150"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"11372","DOI":"10.3390\/rs70911372","article-title":"Upscaling in situ soil moisture observations to pixel averages with spatio-temporal geostatistics","volume":"7","author":"Wang","year":"2015","journal-title":"Remote Sens."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"326","DOI":"10.1016\/j.jhydrol.2014.11.042","article-title":"Spatio-temporal soil moisture patterns\u2014A meta-analysis using plot to catchment scale data","volume":"520","author":"Korres","year":"2015","journal-title":"J. Hydrol."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"356","DOI":"10.1016\/j.jhydrol.2006.09.004","article-title":"Soil moisture spatial variability in experimental areas of Central Italy","volume":"333","author":"Brocca","year":"2007","journal-title":"J. Hydrol."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Ryu, D., and Famiglietti, J.S. (2006). Multi-scale spatial correlation and scaling behavior of surface soil moisture. Geophys. Res. Lett., 33.","DOI":"10.1029\/2006GL025831"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"822","DOI":"10.2136\/sssaj1985.03615995004900040006x","article-title":"Temporal stability of spatially measured soil-water probability density-function","volume":"49","author":"Vachaud","year":"1985","journal-title":"Soil Sci. Soc. Am. J."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Vanderlinden, K., Vereecken, H., Hardelauf, H., Herbst, M., Martinez, G., Cosh, M.H., and Pachepsky, Y.A. (2012). Temporal stability of soil water contents: A review of data and analyses. Vadose Zone J., 11.","DOI":"10.2136\/vzj2011.0178"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1016\/j.jhydrol.2012.12.033","article-title":"Spatiotemporal analysis of soil moisture observations within a tibetan mesoscale area and its implication to regional soil moisture measurements","volume":"482","author":"Zhao","year":"2013","journal-title":"J. Hydrol."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"594","DOI":"10.1111\/ejss.12145","article-title":"Scaling analysis of soil water storage with missing measurements using the second-generation continuous wavelet transform","volume":"65","author":"Biswas","year":"2014","journal-title":"Eur. J. Soil Sci."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"7555","DOI":"10.1002\/2015JD023265","article-title":"Wavelet correlations to reveal multiscale coupling in geophysical systems","volume":"120","author":"Casagrande","year":"2015","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"9075","DOI":"10.1007\/s10661-014-4067-0","article-title":"Representative locations from time series of soil water content using time stability and wavelet analysis","volume":"186","author":"Rivera","year":"2014","journal-title":"Environ. Monit. Assess."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"522","DOI":"10.1016\/j.rse.2007.05.007","article-title":"Temporal dynamics of psr-based soil moisture across spatial scales in an agricultural landscape during smex02: A wavelet approach","volume":"112","author":"Das","year":"2008","journal-title":"Remote Sens. Environ."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"50","DOI":"10.1016\/j.geoderma.2011.07.002","article-title":"Identifying scale specific controls of soil water storage in a hummocky landscape using wavelet coherency","volume":"165","author":"Biswas","year":"2011","journal-title":"Geoderma"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"86","DOI":"10.1016\/S0022-1694(02)00016-1","article-title":"Intraseasonal dynamics of soil moisture variability within a small agricultural maize cropped field","volume":"261","author":"Hupet","year":"2002","journal-title":"J. Hydrol."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"259","DOI":"10.1016\/S0022-1694(98)00187-5","article-title":"Variability in surface moisture content along a hillslope transect: Rattlesnake Hill, Texas","volume":"210","author":"Famiglietti","year":"1998","journal-title":"J. Hydrol."},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Rosenbaum, U., Bogena, H.R., Herbst, M., Huisman, J.A., Peterson, T.J., Weuthen, A., Western, A.W., and Vereecken, H. (2012). Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res., 48.","DOI":"10.1029\/2011WR011518"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"63","DOI":"10.1016\/j.jhydrol.2011.12.039","article-title":"Catchment scale soil moisture spatial-temporal variability","volume":"422","author":"Brocca","year":"2012","journal-title":"J. Hydrol."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"926","DOI":"10.1002\/hyp.7877","article-title":"Spatial soil moisture scaling structure during soil moisture experiment 2005","volume":"25","author":"Choi","year":"2011","journal-title":"Hydrol. Processes"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"2463","DOI":"10.5194\/hess-18-2463-2014","article-title":"Characterizing coarse-resolution watershed soil moisture heterogeneity using fine-scale simulations","volume":"18","author":"Riley","year":"2014","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Vereecken, H., Kamai, T., Harter, T., Kasteel, R., Hopmans, J., and Vanderborght, J. (2007). Explaining soil moisture variability as a function of mean soil moisture: A stochastic unsaturated flow perspective. Geophys. Res. Lett., 34.","DOI":"10.1029\/2007GL031813"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"1757","DOI":"10.1029\/98GL01138","article-title":"Limiting relations between soil moisture and soil texture with implications for measured, modeled and remotely sensed estimates","volume":"25","author":"Salvucci","year":"1998","journal-title":"Geophys. Res. Lett."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Lawrence, J.E., and Hornberger, G.M. (2007). Soil moisture variability across climate zones. Geophys. Res. Lett., 34.","DOI":"10.1029\/2007GL031382"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"5128","DOI":"10.1002\/2014JD021489","article-title":"Soil as a natural rain gauge: Estimating global rainfall from satellite soil moisture data","volume":"119","author":"Brocca","year":"2014","journal-title":"J. Geophys. Res. Atmos."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"7213","DOI":"10.1002\/2016WR019024","article-title":"Precipitation estimation using l-band and c-band soil moisture retrievals","volume":"52","author":"Koster","year":"2016","journal-title":"Water Resour. Res."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"797","DOI":"10.1029\/1998WR900065","article-title":"Observed spatial organization of soil moisture and its relation to terrain indices","volume":"35","author":"Western","year":"1999","journal-title":"Water Resour. Res."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"431","DOI":"10.1002\/hyp.11039","article-title":"Factors affecting soil moisture spatial variability for a humid forest hillslope","volume":"31","author":"Gwak","year":"2017","journal-title":"Hydrol. Processes"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1046\/j.1365-2745.2003.00758.x","article-title":"Temporal heterogeneity of soil moisture in grassland and forest","volume":"91","author":"James","year":"2003","journal-title":"J. Ecol."},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Ivanov, V.Y., Fatichi, S., Jenerette, G.D., Espeleta, J.F., Troch, P.A., and Huxman, T.E. (2010). Hysteresis of soil moisture spatial heterogeneity and the \u201chomogenizing\u201d effect of vegetation. Water Resour. Res., 46.","DOI":"10.1029\/2009WR008611"},{"key":"ref_54","doi-asserted-by":"crossref","unstructured":"D\u2019Odorico, P., Caylor, K., Okin, G.S., and Scanlon, T.M. (2007). On soil moisture-vegetation feedbacks and their possible effects on the dynamics of dryland ecosystems. J. Geophys. Res. Biogeosci., 112.","DOI":"10.1029\/2006JG000379"},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Teuling, A.J., and Troch, P.A. (2005). Improved understanding of soil moisture variability dynamics. Geophys. Res. Lett., 32.","DOI":"10.1029\/2004GL021935"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"739","DOI":"10.1029\/WR019i003p00739","article-title":"Estimating spatial variability in soil-moisture with a simplified dynamic-model","volume":"19","author":"Clapp","year":"1983","journal-title":"Water Resour. Res."},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Crow, W.T., Berg, A.A., Cosh, M.H., Loew, A., Mohanty, B.P., Panciera, R., de Rosnay, P., Ryu, D., and Walker, J.P. (2012). Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys., 50.","DOI":"10.1029\/2011RG000372"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"576","DOI":"10.1016\/j.jhydrol.2015.03.019","article-title":"Investigating soil controls on soil moisture spatial variability: Numerical simulations and field observations","volume":"524","author":"Wang","year":"2015","journal-title":"J. Hydrol."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"789","DOI":"10.1002\/2014GL062496","article-title":"Predicting subgrid variability of soil water content from basic soil information","volume":"42","author":"Qu","year":"2015","journal-title":"Geophys. Res. Lett."},{"key":"ref_60","first-page":"221","article-title":"Dispatch as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to smos and amsr-e data in Southeastern Australia","volume":"45","author":"Malbeteau","year":"2016","journal-title":"Int. J. Appl. Earth Obs."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"3845","DOI":"10.1109\/JSTARS.2014.2325398","article-title":"A downscaling approach for smos land observations: Evaluation of high-resolution soil moisture maps over the Iberian Peninsula","volume":"7","author":"Piles","year":"2014","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"361","DOI":"10.1016\/j.rse.2016.02.045","article-title":"Smos disaggregated soil moisture product at 1 km resolution: Processor overview and first validation results","volume":"180","author":"Molero","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"403","DOI":"10.1016\/j.rse.2016.02.048","article-title":"Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of smos and msg seviri spaceborne observations","volume":"180","author":"Piles","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_64","doi-asserted-by":"crossref","unstructured":"Zhang, X., Zhang, T., Zhou, P., Shao, Y., and Gao, S. (2017). Validation analysis of smap and amsr2 soil moisture products over the united states using ground-based measurements. Remote Sens., 9.","DOI":"10.3390\/rs9020104"},{"key":"ref_65","doi-asserted-by":"crossref","unstructured":"Montzka, C., Bogena, H.R., Zreda, M., Monerris, A., Morrison, R., Muddu, S., and Vereecken, H. (2017). Validation of spaceborne and modelled surface soil moisture products with cosmic-ray neutron probes. Remote Sens., 9.","DOI":"10.3390\/rs9020103"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"215","DOI":"10.1016\/j.rse.2017.01.021","article-title":"Validation of smap surface soil moisture products with core validation sites","volume":"191","author":"Colliander","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"4994","DOI":"10.1109\/TGRS.2016.2561938","article-title":"Assessment of the smap passive soil moisture product","volume":"54","author":"Chan","year":"2016","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"9662","DOI":"10.1002\/2016GL069964","article-title":"An initial assessment of smap soil moisture retrievals using high-resolution model simulations and in situ observations","volume":"43","author":"Pan","year":"2016","journal-title":"Geophys. Res. Lett."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1109\/JSTARS.2016.2569998","article-title":"Application of triple collocation in ground-based validation of soil moisture active\/passive (smap) level 2 data products","volume":"10","author":"Chen","year":"2017","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"1728","DOI":"10.1109\/TGRS.2012.2206031","article-title":"Brightness temperature and soil moisture validation at different scales during the smos validation campaign in the Rur and Erft catchments, Germany","volume":"51","author":"Montzka","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"1572","DOI":"10.1109\/TGRS.2012.2186581","article-title":"Evaluation of smos soil moisture products over continental U.S. Using the scan\/snotel network","volume":"50","author":"Leroux","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"2969","DOI":"10.1109\/TGRS.2012.2215041","article-title":"Validation of smos l1c and l2 products and important parameters of the retrieval algorithm in the Skjern river catchment, Western Denmark","volume":"51","author":"Bircher","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"934","DOI":"10.1016\/j.jhydrol.2014.07.065","article-title":"Catchment scale validation of smos and ascat soil moisture products using hydrological modeling and temporal stability analysis","volume":"519","author":"Montzka","year":"2014","journal-title":"J. Hydrol."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"1602","DOI":"10.1109\/TGRS.2012.2186971","article-title":"Validation of the smos l2 soil moisture data in the remedhus network (Spain)","volume":"50","author":"Sanchez","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"3390","DOI":"10.1016\/j.rse.2011.08.003","article-title":"Soil moisture estimation through ascat and amsr-e sensors: An intercomparison and validation study across europe","volume":"115","author":"Brocca","year":"2011","journal-title":"Remote Sens. Environ."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1016\/j.rse.2012.11.008","article-title":"Self-calibrated evaporation-based disaggregation of smos soil moisture: An evaluation study at 3 km and 100 m resolution in Catalunya, Spain","volume":"130","author":"Merlin","year":"2013","journal-title":"Remote Sens. Environ."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"3127","DOI":"10.1007\/s11269-013-0337-9","article-title":"Machine learning techniques for downscaling smos satellite soil moisture using modis land surface temperature for hydrological application","volume":"27","author":"Srivastava","year":"2013","journal-title":"Water Resour. Manag."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"3507","DOI":"10.1109\/TGRS.2014.2378913","article-title":"Copula-based downscaling of coarse-scale soil moisture observations with implicit bias correction","volume":"53","author":"Verhoest","year":"2015","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"117","DOI":"10.1016\/j.rse.2017.01.015","article-title":"Merging active and passive microwave observations in soil moisture data assimilation","volume":"191","author":"Kolassa","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"1504","DOI":"10.1109\/TGRS.2010.2089526","article-title":"An algorithm for merging smap radiometer and radar data for high-resolution soil-moisture retrieval","volume":"49","author":"Das","year":"2011","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.rse.2011.05.028","article-title":"Gmes sentinel-1 mission","volume":"120","author":"Torres","year":"2012","journal-title":"Remote Sens. Environ."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"3878","DOI":"10.1109\/TGRS.2016.2529659","article-title":"Investigation of smap fusion algorithms with airborne active and passive l-band microwave remote sensing","volume":"54","author":"Montzka","year":"2016","journal-title":"IEEE Trans. Geosci. Rem. Sens."},{"key":"ref_83","unstructured":"Das, N., Entekhabi, D., Kim, S., Yueh, S., Dunbar, R.S., and Colliander, A. (2017). Smap\/Sentinel-1 l2 Radiometer\/Radar 30-Second Scene 3 km Ease-Grid Soil Moisture, NASA National Snow and Ice Data Center Distributed Active Archive Center. Version 1."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"2018","DOI":"10.1109\/TGRS.2013.2257605","article-title":"Tests of the smap combined radar and radiometer algorithm using airborne field campaign observations and simulated data","volume":"52","author":"Das","year":"2014","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"210","DOI":"10.1016\/j.rse.2014.08.021","article-title":"Evaluation of the smap brightness temperature downscaling algorithm using active\u2013passive microwave observations","volume":"155","author":"Wu","year":"2014","journal-title":"Remote Sens. Environ."},{"key":"ref_86","doi-asserted-by":"crossref","unstructured":"Jagdhuber, T., Konings, A.G., McColl, K.A., Alemohammad, S.H., Das, N.N., Montzka, C., Link, M., Akbar, R., and Entekhabi, D. (2018). Physically-based modelling of active-passive microwave covariations over vegetated surfaces. IEEE Trans. Geosci. Rem. Sens., in review.","DOI":"10.1109\/TGRS.2018.2860630"},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1002\/ldr.2656","article-title":"S-world: A global soil map for environmental modelling","volume":"28","author":"Stoorvogel","year":"2017","journal-title":"Land Degrad. Dev."},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1002\/2013MS000293","article-title":"A global soil data set for earth system modeling","volume":"6","author":"Shangguan","year":"2014","journal-title":"J. Adv. Model. Earth Syst."},{"key":"ref_89","doi-asserted-by":"crossref","unstructured":"Hengl, T., de Jesus, J.M., MacMillan, R.A., Batjes, N.H., and Heuvelink, G.B.M. (2014). Soilgrids1km\u2014Global soil information based on automated mapping. PLoS ONE, 9.","DOI":"10.1371\/journal.pone.0105992"},{"key":"ref_90","doi-asserted-by":"crossref","unstructured":"Hengl, T., Mendes de Jesus, J., Heuvelink, G.B.M., Ruiperez Gonzalez, M., Kilibarda, M., Blagoti\u0107, A., Shangguan, W., Wright, M.N., Geng, X., and Bauer-Marschallinger, B. (2017). Soilgrids250m: Global gridded soil information based on machine learning. PLoS ONE, 12.","DOI":"10.1371\/journal.pone.0169748"},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"1437","DOI":"10.1029\/98WR00317","article-title":"Stochastic analysis of steady-state unsaturated flow in heterogeneous media: Comparison of the brooks-corey and gardner-russo models","volume":"34","author":"Zhang","year":"1998","journal-title":"Water Resour. Res."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1111\/ejss.12192","article-title":"New generation of hydraulic pedotransfer functions for Europe","volume":"66","author":"Toth","year":"2015","journal-title":"Eur. J. Soil Sci."},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1029\/WR012i003p00513","article-title":"New model for predicting hydraulic conductivity of unsaturated porous-media","volume":"12","author":"Mualem","year":"1976","journal-title":"Water Resour. Res."},{"key":"ref_94","unstructured":"Toth, G., Jones, A., and Montanarella, L. (2013). Lucas Topsoil Survey. Methodology, Data and Results, Publications Office of the European Union."},{"key":"ref_95","unstructured":"Van Engelen, V., and Dijkshoorn, J. (2012). Global and National Soils and Terrain Digital Databases (Soter), Procedures Manual, ISRIC. Version 2.0."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"169","DOI":"10.1016\/S0016-7061(98)00132-3","article-title":"Development and use of a database of hydraulic properties of European soils","volume":"90","author":"Lilly","year":"1999","journal-title":"Geoderma"},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"417","DOI":"10.1016\/S1002-0160(15)60054-6","article-title":"Pedotransfer functions for estimating soil hydraulic properties: A review","volume":"26","author":"Patil","year":"2016","journal-title":"Pedosphere"},{"key":"ref_98","unstructured":"Looy, K.V., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C., Nemes, A., Pachepsky, Y., and Padarian, J. (2017). Pedotransfer functions in earth system science: Challenges and perspectives. Rev. Geophys."},{"key":"ref_99","unstructured":"O\u2019Neill, P., Chan, S., Njoku, E., and Jackson, T. (2016). Smap l3 Radiometer Global Daily 36 km Ease-Grid Soil Moisture, NASA National Snow and Ice Data Center Distributed Active Archive Center. Version 3."},{"key":"ref_100","first-page":"71","article-title":"The global smos level 3 daily soil moisture and brightness temperature maps","volume":"201","author":"Mialon","year":"2017","journal-title":"Earth Syst. Sci. Data Discuss."},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"4765","DOI":"10.5194\/hess-19-4765-2015","article-title":"Evaluation of soil moisture downscaling using a simple thermal-based proxy\u2014The Remedhus network (Spain) example","volume":"19","author":"Peng","year":"2015","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"1120","DOI":"10.1007\/s12665-016-5917-6","article-title":"Downscaling of amsr-e soil moisture with modis products using machine learning approaches","volume":"75","author":"Im","year":"2016","journal-title":"Environ. Earth Sci."},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"4986","DOI":"10.1080\/01431161.2015.1041178","article-title":"A comparison study on empirical microwave soil moisture downscaling methods based on the integration of microwave-optical\/ir data on the Tibetan Plateau","volume":"36","author":"Zhao","year":"2015","journal-title":"Int. J. Remote Sens."},{"key":"ref_104","doi-asserted-by":"crossref","unstructured":"Fang, B., Lakshmi, V., Bindlish, R., Jackson, T.J., Cosh, M., and Basara, J. (2013). Passive microwave soil moisture downscaling using vegetation index and skin surface temperature. Vadose Zone J., 12.","DOI":"10.2136\/vzj2013.05.0089er"},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.advwatres.2014.12.003","article-title":"A method to downscale soil moisture to fine resolutions using topographic, vegetation, and soil data","volume":"76","author":"Ranney","year":"2015","journal-title":"Adv. Water Resour."},{"key":"ref_106","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.isprsjprs.2014.02.005","article-title":"Soil moisture retrieval from airborne l-band passive microwave using high resolution multispectral data","volume":"91","author":"Hasan","year":"2014","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_107","doi-asserted-by":"crossref","first-page":"2763","DOI":"10.1109\/JSTARS.2016.2517401","article-title":"Validation of aquarius soil moisture products over the northwest of Spain: A comparison with smos","volume":"9","author":"Sanchez","year":"2016","journal-title":"IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens."},{"key":"ref_108","doi-asserted-by":"crossref","first-page":"1070","DOI":"10.1016\/j.envsoft.2007.11.010","article-title":"Multispectral remotely sensed data in modelling the annual variability of nitrate concentrations in the leachate","volume":"23","author":"Montzka","year":"2008","journal-title":"Environ. Model. Softw."},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"322","DOI":"10.1016\/j.jhydrol.2008.02.018","article-title":"Modelling the water balance of a mesoscale catchment basin using remotely sensed land cover data","volume":"353","author":"Montzka","year":"2008","journal-title":"J. Hydrol."},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"262","DOI":"10.1016\/j.geoderma.2014.11.015","article-title":"Linking satellite derived lai patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements","volume":"241\u2013242","author":"Rudolph","year":"2015","journal-title":"Geoderma"},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"1349","DOI":"10.5194\/hess-16-1349-2012","article-title":"Spatial horizontal correlation characteristics in the land data assimilation of soil moisture","volume":"16","author":"Han","year":"2012","journal-title":"Hydrol. Earth Syst. Sci."},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"6081","DOI":"10.1002\/2013WR014586","article-title":"Soil moisture and soil properties estimation in the community land model with synthetic brightness temperature observations","volume":"50","author":"Han","year":"2014","journal-title":"Water Resour. Res."},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"2030","DOI":"10.1002\/2014WR016443","article-title":"An empirical vegetation correction for soil water content quantification using cosmic ray probes","volume":"51","author":"Baatz","year":"2015","journal-title":"Water Resour. Res."},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"231","DOI":"10.1016\/j.jhydrol.2014.02.026","article-title":"Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods","volume":"516","author":"Baatz","year":"2014","journal-title":"J. Hydrol."},{"key":"ref_115","first-page":"138","article-title":"Tereno\u2014Long-term monitoring network for terrestrial environmental research","volume":"56","author":"Bogena","year":"2012","journal-title":"Hydrol. Wasserbewirtsch."},{"key":"ref_116","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.rse.2017.04.020","article-title":"Soil moisture retrieval from amsr-e and ascat microwave observation synergy. Part 2: Product evaluation","volume":"195","author":"Kolassa","year":"2017","journal-title":"Remote Sens. Environ."},{"key":"ref_117","doi-asserted-by":"crossref","first-page":"6145","DOI":"10.1002\/2017GL073904","article-title":"Joint sentinel-1 and smap data assimilation to improve soil moisture estimates","volume":"44","author":"Lievens","year":"2017","journal-title":"Geophys. Res. Lett."},{"key":"ref_118","doi-asserted-by":"crossref","first-page":"529","DOI":"10.5194\/essd-9-529-2017","article-title":"A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves","volume":"9","author":"Montzka","year":"2017","journal-title":"Earth Syst. Sci. Data"},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"1087","DOI":"10.1175\/JHM-D-14-0145.1","article-title":"Soil moisture model calibration and validation: An ars watershed on the South Fork Iowa River","volume":"16","author":"Coopersmith","year":"2015","journal-title":"J. Hydrometeorol."},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"1544","DOI":"10.1109\/TGRS.2011.2178158","article-title":"Comparisons of evening and morning smos passes over the Midwest United States","volume":"50","author":"Rowlandson","year":"2012","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_121","doi-asserted-by":"crossref","first-page":"889","DOI":"10.1175\/JHM-D-14-0137.1","article-title":"Different rates of soil drying after rainfall are observed by the smos satellite and the south fork in situ soil moisture network","volume":"16","author":"Rondinelli","year":"2015","journal-title":"J. Hydrometeorol."},{"key":"ref_122","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1016\/j.rse.2016.02.043","article-title":"Smos optical thickness changes in response to the growth and development of crops, crop management, and weather","volume":"180","author":"Hornbuckle","year":"2016","journal-title":"Remote Sens. Environ."},{"key":"ref_123","doi-asserted-by":"crossref","unstructured":"Bramer, L.M., Hornbuckle, B.K., and Caragea, P.C. (2013). How many measurements of soil moisture within the footprint of a ground-based microwave radiometer are required to account for meter-scale spatial variability?. Vadose Zone J., 12.","DOI":"10.2136\/vzj2012.0100"},{"key":"ref_124","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1016\/S0022-1694(01)00466-8","article-title":"Rosetta: A computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions","volume":"251","author":"Schaap","year":"2001","journal-title":"J. Hydrol."},{"key":"ref_125","doi-asserted-by":"crossref","first-page":"389","DOI":"10.1097\/00010694-198912000-00001","article-title":"Estimating the soil-moisture retention characteristic from texture, bulk-density, and carbon content","volume":"148","author":"Vereecken","year":"1989","journal-title":"Soil Sci."},{"key":"ref_126","doi-asserted-by":"crossref","first-page":"86","DOI":"10.2136\/vzj2008.0062","article-title":"Revisiting vereecken pedotransfer functions: Introducing a closed-form hydraulic model","volume":"8","author":"Weynants","year":"2009","journal-title":"Vadose Zone J."},{"key":"ref_127","doi-asserted-by":"crossref","first-page":"3653","DOI":"10.1029\/2000WR900130","article-title":"Estimating soil water-holding capacities by linking the food and agriculture organization soil map of the world with global pedon databases and continuous pedotransfer functions","volume":"36","author":"Reynolds","year":"2000","journal-title":"Water Resour. Res."},{"key":"ref_128","unstructured":"Nachtergaele, F.O., van Velthuizen, H.T., Verelst, L., Wiberg, D., Batjes, N.H., Dijkshoorn, J.A., van Engelen, V.W.P., Fischer, G., Jones, A., and Montanarella, L. (2012). Harmonized World Soil Database, FAO. Version 1.2."},{"key":"ref_129","doi-asserted-by":"crossref","first-page":"1569","DOI":"10.2136\/sssaj2005.0117","article-title":"Soil water characteristic estimates by texture and organic matter for hydrologic solutions","volume":"70","author":"Saxton","year":"2006","journal-title":"Soil Sci. Soc. Am. J."},{"key":"ref_130","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1016\/j.agwat.2010.07.014","article-title":"Combining remote sensing and in situ soil moisture data for the application and validation of a distributed water balance model (hidromore)","volume":"98","author":"Sanchez","year":"2010","journal-title":"Agric. Water Manag."},{"key":"ref_131","doi-asserted-by":"crossref","first-page":"6790","DOI":"10.3390\/rs5126790","article-title":"A downscaling method for improving the spatial resolution of amsr-e derived soil moisture product based on msg-seviri data","volume":"5","author":"Zhao","year":"2013","journal-title":"Remote Sens."}],"container-title":["Remote Sensing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2072-4292\/10\/3\/427\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,10]],"date-time":"2024-06-10T03:09:27Z","timestamp":1717988967000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2072-4292\/10\/3\/427"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,3,9]]},"references-count":131,"journal-issue":{"issue":"3","published-online":{"date-parts":[[2018,3]]}},"alternative-id":["rs10030427"],"URL":"https:\/\/doi.org\/10.3390\/rs10030427","relation":{},"ISSN":["2072-4292"],"issn-type":[{"value":"2072-4292","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,3,9]]}}}