{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,19]],"date-time":"2025-01-19T05:19:25Z","timestamp":1737263965020,"version":"3.33.0"},"reference-count":103,"publisher":"MDPI AG","issue":"8","license":[{"start":{"date-parts":[[2024,7,27]],"date-time":"2024-07-27T00:00:00Z","timestamp":1722038400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"national funds through Funda\u00e7\u00e3o para a Ci\u00eancia e a Tecnologia (FCT)","award":["LA\/P\/0083\/2020","UIDP\/50009\/2020"]},{"name":"Laboratory of Robotics and Engineering Systems (LARSyS)","award":["UIDB\/50009\/2020"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Robotics"],"abstract":"In many Unmanned Aerial Vehicle (UAV) operations, accurately estimating the UAV\u2019s position and orientation over time is crucial for controlling its trajectory. This is especially important when considering the landing maneuver, where a ground-based camera system can estimate the UAV\u2019s 3D position and orientation. A Red, Green, and Blue (RGB) ground-based monocular approach can be used for this purpose, allowing for more complex algorithms and higher processing power. The proposed method uses a hybrid Artificial Neural Network (ANN) model, incorporating a Kohonen Neural Network (KNN) or Self-Organizing Map (SOM) to identify feature points representing a cluster obtained from a binary image containing the UAV. A Deep Neural Network (DNN) architecture is then used to estimate the actual UAV pose based on a single frame, including translation and orientation. Utilizing the UAV Computer-Aided Design (CAD) model, the network structure can be easily trained using a synthetic dataset, and then fine-tuning can be done to perform transfer learning to deal with real data. The experimental results demonstrate that the system achieves high accuracy, characterized by low errors in UAV pose estimation. This implementation paves the way for automating operational tasks like autonomous landing, which is especially hazardous and prone to failure.<\/jats:p>","DOI":"10.3390\/robotics13080114","type":"journal-article","created":{"date-parts":[[2024,7,29]],"date-time":"2024-07-29T11:54:03Z","timestamp":1722254043000},"page":"114","source":"Crossref","is-referenced-by-count":0,"title":["Fixed-Wing UAV Pose Estimation Using a Self-Organizing Map and Deep Learning"],"prefix":"10.3390","volume":"13","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-8079-9451","authenticated-orcid":false,"given":"Nuno","family":"Pessanha Santos","sequence":"first","affiliation":[{"name":"Portuguese Military Research Center (CINAMIL), Portuguese Military Academy (Academia Militar), R. Gomes Freire 203, 1169-203 Lisbon, Portugal"},{"name":"Institute for Systems and Robotics (ISR), Instituto Superior T\u00e9cnico (IST), Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal"},{"name":"Portuguese Navy Research Center (CINAV), Portuguese Naval Academy (Escola Naval), Base Naval de Lisboa, Alfeite, 2800-001 Almada, Portugal"}]}],"member":"1968","published-online":{"date-parts":[[2024,7,27]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Chaurasia, R., and Mohindru, V. (2021). Unmanned aerial vehicle (UAV): A comprehensive survey. Unmanned Aerial Vehicles for Internet of Things (IoT) Concepts, Techniques, and Applications, Wiley.","DOI":"10.1002\/9781119769170.ch1"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"8615367","DOI":"10.1155\/2021\/8615367","article-title":"Energy-efficient unmanned aerial vehicle (UAV) surveillance utilizing artificial intelligence (AI)","volume":"2021","author":"Do","year":"2021","journal-title":"Wirel. Commun. Mob. Comput."},{"key":"ref_3","first-page":"215","article-title":"A review on object detection in unmanned aerial vehicle surveillance","volume":"2","author":"Ramachandran","year":"2021","journal-title":"Int. J. Cogn. Comput. Eng."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"114937","DOI":"10.1016\/j.eswa.2021.114937","article-title":"Search and rescue operation using UAVs: A case study","volume":"178","author":"Golcarenarenji","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Lyu, M., Zhao, Y., Huang, C., and Huang, H. (2023). Unmanned Aerial Vehicles for Search and Rescue: A Survey. Remote Sens., 15.","DOI":"10.3390\/rs15133266"},{"key":"ref_6","first-page":"102456","article-title":"A review on deep learning in UAV remote sensing","volume":"102","author":"Osco","year":"2021","journal-title":"Int. J. Appl. Earth Obs. Geoinf."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Zhang, Z., and Zhu, L. (2023). A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. Drones, 7.","DOI":"10.3390\/drones7060398"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Pessanha Santos, N., Rodrigues, V.B., Pinto, A.B., and Damas, B. (2023, January 26\u201327). Automatic Detection of Civilian and Military Personnel in Reconnaissance Missions using a UAV. Proceedings of the 2023 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC), Tomar, Portugal.","DOI":"10.1109\/ICARSC58346.2023.10129575"},{"key":"ref_9","unstructured":"Long, S., and Dhillon, B.S. (2020, January 24\u201326). The Use of Unmanned Aerial Vehicle in Military Operations. Proceedings of the Man-Machine-Environment System Engineering, Zhengzhou, China."},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Antunes, T.L., Pessanha Santos, N., Moura, R.P., and Lobo, V. (2023, January 6\u20139). Sea Pollution: Analysis and Monitoring using Unmanned Vehicles. Proceedings of the 2023 IEEE Underwater Technology (UT), Tokyo, Japan.","DOI":"10.1109\/UT49729.2023.10103429"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"159741","DOI":"10.1016\/j.scitotenv.2022.159741","article-title":"Marine environmental monitoring with unmanned vehicle platforms: Present applications and future prospects","volume":"858","author":"Yuan","year":"2023","journal-title":"Sci. Total Environ."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Chen, H., Wang, X.m., and Li, Y. (2009, January 7\u20138). A survey of autonomous control for UAV. Proceedings of the 2009 International Conference on Artificial Intelligence and Computational Intelligence, Shanghai, China.","DOI":"10.1109\/AICI.2009.147"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Han, P., Yang, X., Zhao, Y., Guan, X., and Wang, S. (2022). Quantitative Ground Risk Assessment for Urban Logistical Unmanned Aerial Vehicle (UAV) Based on Bayesian Network. Sustainability, 14.","DOI":"10.3390\/su14095733"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Oncu, M., and Yildiz, S. (2014). An Analysis of Human Causal Factors in Unmanned Aerial Vehicle (UAV) Accidents. [Master\u2019s Thesis, Naval Postgraduate School].","DOI":"10.21236\/ADA620843"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Lee, H., Jung, S., and Shim, D.H. (2016, January 7\u201310). Vision-based UAV landing on the moving vehicle. Proceedings of the 2016 International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA.","DOI":"10.1109\/ICUAS.2016.7502574"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1007\/s10846-021-01409-y","article-title":"Unscented particle filters with refinement steps for uav pose tracking","volume":"102","author":"Lobo","year":"2021","journal-title":"J. Intell. Robot. Syst."},{"key":"ref_17","first-page":"66","article-title":"Design of avionics system and control scenario of small hybrid vertical take-off and landing (VTOL) UAV","volume":"2","author":"Hadi","year":"2016","journal-title":"J. Instrum. Autom. Syst."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"33884","DOI":"10.1109\/ACCESS.2020.2973970","article-title":"Directional statistics for 3D model-based UAV tracking","volume":"8","author":"Lobo","year":"2020","journal-title":"IEEE Access"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Pessanha Santos, N., Lobo, V., and Bernardino, A. (2023). Fixed-wing unmanned aerial vehicle 3D-model-based tracking for autonomous landing. Drones, 7.","DOI":"10.3390\/drones7040243"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"83","DOI":"10.1007\/s10846-015-0325-9","article-title":"Transition flight modeling of a fixed-wing VTOL UAV","volume":"84","author":"Yuksek","year":"2016","journal-title":"J. Intell. Robot. Syst."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"639","DOI":"10.1007\/s10846-015-0328-6","article-title":"Rapid prototyping of a fixed-wing VTOL UAV for design testing","volume":"84","author":"Aktas","year":"2016","journal-title":"J. Intell. Robot. Syst."},{"key":"ref_22","first-page":"8","article-title":"Review of vertical take-off and landing fixed-wing UAV and its application prospect in precision agriculture","volume":"3","author":"Zhou","year":"2020","journal-title":"Int. J. Precis. Agric. Aviat."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Santos, N.P., Lobo, V., and Bernardino, A. (2019, January 27\u201331). Autoland project: Fixed-wing UAV landing on a fast patrol boat using computer vision. Proceedings of the OCEANS 2019 MTS\/IEEE, Seattle, WA, USA.","DOI":"10.23919\/OCEANS40490.2019.8962869"},{"key":"ref_24","unstructured":"Pessanha Santos, N. (2021). Fixed-Wing UAV Tracking in Outdoor Scenarios for Autonomous Landing. [Ph.D. Thesis, University of Lisbon\u2014Instituto Superior T\u00e9cnico (IST)]."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"67","DOI":"10.5772\/62027","article-title":"Ground stereo vision-based navigation for autonomous take-off and landing of uavs: A chan-vese model approach","volume":"13","author":"Tang","year":"2016","journal-title":"Int. J. Adv. Robot. Syst."},{"key":"ref_26","first-page":"138","article-title":"A ground-based vision system for uav pose estimation","volume":"1","author":"Lobo","year":"2014","journal-title":"Int. J. Robot. Mechatronics"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"580","DOI":"10.1002\/rob.21933","article-title":"Two-stage 3D model-based UAV pose estimation: A comparison of methods for optimization","volume":"37","author":"Lobo","year":"2020","journal-title":"J. Field Robot."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Zhigui, Y., and ChuanJun, L. (2017, January 14\u201316). Review on vision-based pose estimation of UAV based on landmark. Proceedings of the 2017 2nd International Conference on Frontiers of Sensors Technologies (ICFST), Shenzhen, China.","DOI":"10.1109\/ICFST.2017.8210555"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"578","DOI":"10.1016\/j.proeng.2011.08.109","article-title":"Vision-based pose estimation of UAV from line correspondences","volume":"15","author":"Li","year":"2011","journal-title":"Procedia Eng."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1134\/S2075108722040022","article-title":"A Review of Navigation Algorithms for Unmanned Aerial Vehicles Based on Computer Vision Systems","volume":"13","author":"Ali","year":"2022","journal-title":"Gyroscopy Navig."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Cazzato, D., Cimarelli, C., Sanchez-Lopez, J.L., Voos, H., and Leo, M. (2020). A Survey of Computer Vision Methods for 2D Object Detection from Unmanned Aerial Vehicles. J. Imaging, 6.","DOI":"10.3390\/jimaging6080078"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1464","DOI":"10.1109\/5.58325","article-title":"The self-organizing map","volume":"78","author":"Kohonen","year":"1990","journal-title":"Proc. IEEE"},{"key":"ref_33","first-page":"1464","article-title":"The self-organizing map","volume":"21","author":"Kohonen","year":"1998","journal-title":"Neurocomputing"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1016\/j.neunet.2012.09.018","article-title":"Essentials of the self-organizing map","volume":"37","author":"Kohonen","year":"2013","journal-title":"Neural Netw."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"4151","DOI":"10.1007\/s00371-021-02286-0","article-title":"Background subtraction for moving object detection: Explorations of recent developments and challenges","volume":"38","author":"Kalsotra","year":"2022","journal-title":"Vis. Comput."},{"key":"ref_36","first-page":"185","article-title":"Outdoor object detection for surveillance based on modified GMM and adaptive thresholding","volume":"13","author":"Ghedia","year":"2021","journal-title":"Int. J. Inf. Technol."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"99","DOI":"10.1016\/j.paerosci.2017.04.003","article-title":"Classifications, applications, and design challenges of drones: A review","volume":"91","author":"Hassanalian","year":"2017","journal-title":"Prog. Aerosp. Sci."},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Amici, C., Ceresoli, F., Pasetti, M., Saponi, M., Tiboni, M., and Zanoni, S. (2021). Review of propulsion system design strategies for unmanned aerial vehicles. Appl. Sci., 11.","DOI":"10.3390\/app11115209"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"466","DOI":"10.1017\/aer.2022.75","article-title":"Applications and classifications of unmanned aerial vehicles: A literature review with focus on multi-rotors","volume":"127","author":"Sabour","year":"2023","journal-title":"Aeronaut. J."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1147","DOI":"10.1109\/TCST.2020.2992389","article-title":"Comparison of Control Methods for Trajectory Tracking in Fully Actuated Unmanned Aerial Vehicles","volume":"29","author":"Invernizzi","year":"2021","journal-title":"IEEE Trans. Control Syst. Technol."},{"key":"ref_41","first-page":"29","article-title":"UAV operations: An analysis of incidents and accidents with human factors and crew resource management perspective","volume":"49","author":"Sharma","year":"2005","journal-title":"Indian J. Aerosp. Med."},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Balestrieri, E., Daponte, P., De Vito, L., Picariello, F., and Tudosa, I. (2021). Sensors and measurements for UAV safety: An overview. Sensors, 21.","DOI":"10.3390\/s21248253"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"600","DOI":"10.1016\/j.patrec.2008.12.011","article-title":"Research on computer vision-based for UAV autonomous landing on a ship","volume":"30","author":"Xu","year":"2009","journal-title":"Pattern Recognit. Lett."},{"key":"ref_44","unstructured":"Hu, H., and Wei, N. (2009, January 19\u201320). A study of GPS jamming and anti-jamming. Proceedings of the 2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, China."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"2705","DOI":"10.1007\/s11277-020-07212-6","article-title":"Effective GPS jamming techniques for UAVs using low-cost SDR platforms","volume":"115","author":"Ferreira","year":"2020","journal-title":"Wirel. Pers. Commun."},{"key":"ref_46","doi-asserted-by":"crossref","unstructured":"Alrefaei, F., Alzahrani, A., Song, H., and Alrefaei, S. (2022, January 1\u20134). A Survey on the Jamming and Spoofing attacks on the Unmanned Aerial Vehicle Networks. Proceedings of the 2022 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), Toronto, ON, USA.","DOI":"10.1109\/IEMTRONICS55184.2022.9795809"},{"key":"ref_47","unstructured":"Piccardi, M. (2004, January 10\u201313). Background subtraction techniques: A review. Proceedings of the 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), The Hague, The Netherlands."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1540","DOI":"10.1002\/tee.22718","article-title":"Improved background subtraction method for detecting moving objects based on GMM","volume":"13","author":"Lu","year":"2018","journal-title":"IEEJ Trans. Electr. Electron. Eng."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1007\/s10462-017-9542-x","article-title":"Review of background subtraction methods using Gaussian mixture model for video surveillance systems","volume":"50","author":"Goyal","year":"2018","journal-title":"Artif. Intell. Rev."},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Minematsu, T., Shimada, A., Uchiyama, H., and Taniguchi, R.i. (2018). Analytics of deep neural network-based background subtraction. J. Imaging, 4.","DOI":"10.3390\/jimaging4060078"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.neunet.2019.04.024","article-title":"Deep neural network concepts for background subtraction: A systematic review and comparative evaluation","volume":"117","author":"Bouwmans","year":"2019","journal-title":"Neural Netw."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.engappai.2014.06.006","article-title":"Real time hand detection in a complex background","volume":"35","author":"Stergiopoulou","year":"2014","journal-title":"Eng. Appl. Artif. Intell."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1007\/s41095-016-0074-0","article-title":"Practical automatic background substitution for live video","volume":"3","author":"Huang","year":"2017","journal-title":"Comput. Vis. Media"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1168","DOI":"10.1109\/TIP.2008.924285","article-title":"A Self-Organizing Approach to Background Subtraction for Visual Surveillance Applications","volume":"17","author":"Maddalena","year":"2008","journal-title":"IEEE Trans. Image Process."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1016\/j.patrec.2005.06.015","article-title":"Computer vision based method for real-time fire and flame detection","volume":"27","year":"2006","journal-title":"Pattern Recognit. Lett."},{"key":"ref_56","first-page":"112","article-title":"Modified background subtraction algorithm for motion detection in surveillance systems","volume":"1","year":"2010","journal-title":"J. Am. Arab. Acad. Sci. Technol."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"100204","DOI":"10.1016\/j.cosrev.2019.100204","article-title":"Background subtraction in real applications: Challenges, current models and future directions","volume":"35","author":"Bouwmans","year":"2020","journal-title":"Comput. Sci. Rev."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"100310","DOI":"10.1016\/j.cosrev.2020.100310","article-title":"Moving objects detection with a moving camera: A comprehensive review","volume":"38","author":"Chapel","year":"2020","journal-title":"Comput. Sci. Rev."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"3609","DOI":"10.1007\/s00530-023-01139-1","article-title":"A multi-scale feature fusion spatial\u2013channel attention model for background subtraction","volume":"29","author":"Yang","year":"2023","journal-title":"Multimed. Syst."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"53849","DOI":"10.1109\/ACCESS.2021.3071163","article-title":"BSUV-Net 2.0: Spatio-Temporal Data Augmentations for Video-Agnostic Supervised Background Subtraction","volume":"9","author":"Tezcan","year":"2021","journal-title":"IEEE Access"},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"4566","DOI":"10.1016\/j.watres.2007.06.030","article-title":"Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets","volume":"41","author":"Astel","year":"2007","journal-title":"Water Res."},{"key":"ref_62","doi-asserted-by":"crossref","unstructured":"Santos, R., Moura, R., and Lobo, V. (2022, January 6\u20137). Application of Kohonen Maps in Predicting and Characterizing VAT Fraud in a Sub-Saharan African Country. Proceedings of the International Workshop on Self-Organizing Maps, Prague, Czechia.","DOI":"10.1007\/978-3-031-15444-7_8"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"155","DOI":"10.1016\/j.cageo.2004.06.013","article-title":"The self-organizing map, the Geo-SOM, and relevant variants for geosciences","volume":"31","author":"Lobo","year":"2005","journal-title":"Comput. Geosci."},{"key":"ref_64","unstructured":"Egenhofer, M.J., Freksa, C., and Miller, H.J. (2004, January 20\u201323). Geo-Self-Organizing Map (Geo-SOM) for Building and Exploring Homogeneous Regions. Proceedings of the Geographic Information Science, Adelphi, MD, USA."},{"key":"ref_65","first-page":"253","article-title":"A review of self-organizing map applications in meteorology and oceanography","volume":"1","author":"Liu","year":"2011","journal-title":"Self-Organ. Maps Appl. Nov. Algorithm Des."},{"key":"ref_66","first-page":"213","article-title":"Financial applications of self-organizing maps","volume":"8","author":"Deboeck","year":"1998","journal-title":"Neural Netw. World"},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"808","DOI":"10.1007\/s11036-019-01353-0","article-title":"A survey on the development of self-organizing maps for unsupervised intrusion detection","volume":"26","author":"Qu","year":"2021","journal-title":"Mob. Netw. Appl."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"18059","DOI":"10.1007\/s11042-022-14265-1","article-title":"Breast cancer diagnosis using stochastic self-organizing map and enlarge C4. 5","volume":"82","author":"Jaiswal","year":"2023","journal-title":"Multimed. Tools Appl."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"107035","DOI":"10.1109\/ACCESS.2020.3000829","article-title":"Deep Convolutional Self-Organizing Map Network for Robust Handwritten Digit Recognition","volume":"8","author":"Aly","year":"2020","journal-title":"IEEE Access"},{"key":"ref_70","doi-asserted-by":"crossref","unstructured":"Haker, M., B\u00f6hme, M., Martinetz, T., and Barth, E. (2009, January 9). Self-organizing maps for pose estimation with a time-of-flight camera. Proceedings of the Dynamic 3D Imaging: DAGM 2009 Workshop, Dyn3D 2009, Jena, Germany.","DOI":"10.1007\/978-3-642-03778-8_11"},{"key":"ref_71","unstructured":"Guan, H., Feris, R.S., and Turk, M. (2006, January 10\u201312). The isometric self-organizing map for 3D hand pose estimation. Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR06), Southampton, UK."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1126\/science.295.5552.7a","article-title":"The isomap algorithm and topological stability","volume":"295","author":"Balasubramanian","year":"2002","journal-title":"Science"},{"key":"ref_73","doi-asserted-by":"crossref","unstructured":"Toshev, A., and Szegedy, C. (2014, January 23\u201328). Deeppose: Human pose estimation via deep neural networks. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA.","DOI":"10.1109\/CVPR.2014.214"},{"key":"ref_74","doi-asserted-by":"crossref","unstructured":"Khan, N.U., and Wan, W. (2018, January 16\u201317). A review of human pose estimation from single image. Proceedings of the 2018 International Conference on Audio, Language and Image Processing (ICALIP), Shanghai, China.","DOI":"10.1109\/ICALIP.2018.8455796"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/TIM.2020.3043872","article-title":"POISON: Human pose estimation in insufficient lighting conditions using sensor fusion","volume":"70","author":"Crescitelli","year":"2020","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"9370","DOI":"10.1109\/JSEN.2018.2870957","article-title":"Visual object recognition and pose estimation based on a deep semantic segmentation network","volume":"18","author":"Lin","year":"2018","journal-title":"IEEE Sens. J."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"143746","DOI":"10.1109\/ACCESS.2021.3114399","article-title":"A comprehensive review on 3D object detection and 6D pose estimation with deep learning","volume":"9","author":"Hoque","year":"2021","journal-title":"IEEE Access"},{"key":"ref_78","doi-asserted-by":"crossref","unstructured":"Harvey, W., Rainwater, C., and Cothren, J. (2021). Direct Aerial Visual Geolocalization Using Deep Neural Networks. Remote Sens., 13.","DOI":"10.3390\/rs13194017"},{"key":"ref_79","doi-asserted-by":"crossref","unstructured":"Singh, P.K., Veselov, G., Pljonkin, A., Kumar, Y., Paprzycki, M., and Zachinyaev, Y. (2021, January 10\u201311). A Deep Learning Approach for Autonomous Navigation of UAV. Proceedings of the Futuristic Trends in Network and Communication Technologies, Ahmedabad, India.","DOI":"10.1007\/978-981-16-1483-5"},{"key":"ref_80","doi-asserted-by":"crossref","unstructured":"Yao, H., Qin, R., and Chen, X. (2019). Unmanned aerial vehicle for remote sensing applications\u2014A review. Remote Sens., 11.","DOI":"10.3390\/rs11121443"},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"107148","DOI":"10.1016\/j.comnet.2020.107148","article-title":"A compilation of UAV applications for precision agriculture","volume":"172","author":"Sarigiannidis","year":"2020","journal-title":"Comput. Netw."},{"key":"ref_82","unstructured":"Muchiri, G., and Kimathi, S. (2022, January 20\u201324). A review of applications and potential applications of UAV. Proceedings of the Sustainable Research and Innovation Conference, Pretoria, South Africa."},{"key":"ref_83","doi-asserted-by":"crossref","unstructured":"Baldini, F., Anandkumar, A., and Murray, R.M. (2020, January 1\u20133). Learning Pose Estimation for UAV Autonomous Navigation and Landing Using Visual-Inertial Sensor Data. Proceedings of the 2020 American Control Conference (ACC), Denver, CO, USA.","DOI":"10.23919\/ACC45564.2020.9147400"},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"1913","DOI":"10.1109\/JIOT.2021.3091643","article-title":"Fully Onboard AI-Powered Human-Drone Pose Estimation on Ultralow-Power Autonomous Flying Nano-UAVs","volume":"9","author":"Palossi","year":"2022","journal-title":"Proc. IEEE Internet Things J."},{"key":"ref_85","doi-asserted-by":"crossref","unstructured":"Pessanha Santos, N., Lobo, V., and Bernardino, A. (2019, January 27\u201331). 3D Model-Based UAV Pose Estimation using GPU. Proceedings of the OCEANS 2019 MTS\/IEEE, Seattle, WA, USA.","DOI":"10.23919\/OCEANS40490.2019.8962704"},{"key":"ref_86","unstructured":"J\u00e4hne, B., Haussecker, H., and Geissler, P. (1999). Handbook of Computer Vision and Applications, Citeseer."},{"key":"ref_87","doi-asserted-by":"crossref","unstructured":"Hartley, R., and Zisserman, A. (2003). Multiple View Geometry in Computer Vision, Cambridge University Press.","DOI":"10.1017\/CBO9780511811685"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"1707","DOI":"10.1111\/2041-210X.13880","article-title":"Estimating animal size or distance in camera trap images: Photogrammetry using the pinhole camera model","volume":"13","author":"Leorna","year":"2022","journal-title":"Methods Ecol. Evol."},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1002\/ima.1850050102","article-title":"Simple pinhole camera calibration","volume":"5","author":"Vernon","year":"1994","journal-title":"Int. J. Imaging Syst. Technol."},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"173","DOI":"10.1016\/0146-664X(81)90024-1","article-title":"Camera models based on data from two calibration planes","volume":"17","author":"Martins","year":"1981","journal-title":"Comput. Graph. Image Process."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1111\/jifm.12053","article-title":"Financial distress prediction in an international context: A review and empirical analysis of Altman\u2019s Z-score model","volume":"28","author":"Altman","year":"2017","journal-title":"J. Int. Financ. Manag. Account."},{"key":"ref_92","first-page":"13","article-title":"Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer","volume":"4","author":"Henderi","year":"2021","journal-title":"Int. J. Inform. Inf. Syst."},{"key":"ref_93","unstructured":"Ba\u00e7\u00e3o, F., Lobo, V., and Painho, M. (2005, January 22\u201325). Self-organizing maps as substitutes for k-means clustering. Proceedings of the Computational Science\u2014ICCS 2005: 5th International Conference, Atlanta, GA, USA. Proceedings, Part III 5."},{"key":"ref_94","doi-asserted-by":"crossref","unstructured":"Ferreira, T., Bernardino, A., and Damas, B. (2021, January 20\u201323). 6D UAV pose estimation for ship landing guidance. Proceedings of the OCEANS 2021: San Diego\u2014Porto, San Diego, CA, USA.","DOI":"10.23919\/OCEANS44145.2021.9705884"},{"key":"ref_95","first-page":"13756489","article-title":"Attention is all you need","volume":"30","author":"Vaswani","year":"2017","journal-title":"Adv. Neural Inf. Process. Syst."},{"key":"ref_96","doi-asserted-by":"crossref","unstructured":"Shaw, P., Uszkoreit, J., and Vaswani, A. (2018). Self-attention with relative position representations. arXiv.","DOI":"10.18653\/v1\/N18-2074"},{"key":"ref_97","unstructured":"Parisi, L., Neagu, D., Ma, R., and Campean, F. (2020). QReLU and m-QReLU: Two novel quantum activation functions to aid medical diagnostics. arXiv."},{"key":"ref_98","unstructured":"Parcollet, T., Ravanelli, M., Morchid, M., Linar\u00e8s, G., Trabelsi, C., De Mori, R., and Bengio, Y. (2018). Quaternion recurrent neural networks. arXiv."},{"key":"ref_99","unstructured":"Wang, Y., and Solomon, J.M. (2020). 6D Object Pose Regression via Supervised Learning on Point Clouds. arXiv."},{"key":"ref_100","doi-asserted-by":"crossref","unstructured":"Hong, Y., Liu, J., Jahangir, Z., He, S., and Zhang, Q. (2021). Estimation of 6D Object Pose Using a 2D Bounding Box. Sensors, 21.","DOI":"10.3390\/s21092939"},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"174","DOI":"10.1016\/j.tics.2021.11.008","article-title":"Next-generation deep learning based on simulators and synthetic data","volume":"26","author":"Torralba","year":"2022","journal-title":"Trends Cogn. Sci."},{"key":"ref_102","doi-asserted-by":"crossref","unstructured":"Nikolenko, S.I. (2021). Synthetic Data for Deep Learning, Springer.","DOI":"10.1007\/978-3-030-75178-4"},{"key":"ref_103","doi-asserted-by":"crossref","first-page":"79","DOI":"10.3354\/cr030079","article-title":"Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance","volume":"30","author":"Willmott","year":"2005","journal-title":"Clim. Res."}],"container-title":["Robotics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2218-6581\/13\/8\/114\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,18]],"date-time":"2025-01-18T08:47:56Z","timestamp":1737190076000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2218-6581\/13\/8\/114"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7,27]]},"references-count":103,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2024,8]]}},"alternative-id":["robotics13080114"],"URL":"https:\/\/doi.org\/10.3390\/robotics13080114","relation":{},"ISSN":["2218-6581"],"issn-type":[{"type":"electronic","value":"2218-6581"}],"subject":[],"published":{"date-parts":[[2024,7,27]]}}}